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Two generalizations of Frame's theory of the conjugating representation of a finite group G are 
explored and applied to the problem of forming tensor operators out of a group algebra. In each 
case the group G acts on the group algebra A (G), where G either contains G or covers G as a 
central extension. By construction, an affirmative answer is given to the question, raised by de Vries 
and van Zanten, as to whether or not G may be found such that A (G) carries all the irreducible 
representations of G. Several examples are given, with the groups chosen from among the 
crystallographic point groups. 

1. INTRODUCTION 

From the earliest days of quantum mechanics the 
notion of a set of tensor operators for a group has been 
of utmost importance, particularly in angular momen
tum studies (Refs. 1-3). Although it is often the case 
that tensor operators in quantum mechanics are con
structed from physical observables using the various 
operations of the tensor calculus, there is some virtue 
in working within a more abstract setting. In particular 
there has been interest recently in the construction of 
tensor operators for a fini,te group G out of its own 
group algebra A(G) (Refs. 4-8). We recall that A(G) has 
elements which are complex linear combinations of a 
set of baSis members in one-to-one correspondence 
with, and for convenience actually denoted by, the set 
of elements of G. The multiplication in A(G) is given as 
the linear extension of the product in G itself. Of 
course, A(G) provides a module for the regular repre
sentation of G, but it also has a G-module structure 
relative to the action a - gag-\ for a EA(G), gE G. In 
the pure group theory literature this action has been 
termed the conjugating representation, originally dis
cussed by Frame in Ref. 9 and more recently by 
Solomon, Roth, and Formanek (Refs. 10-12). It is pre
cisely this action which has been considered by Gamba 
Killingbeck, and Van Zanten and de Vries (Refs. 4-8): 
independently of the above-mentioned authors. 

It is at once clear that the center Z of G acts trivially 
on A(G), the implication being that irreducible tensor 
operators may only be associated with those irreducible 
representations (reps) of G which give rise to ordinary 
reps of G/Z. Contrary perhaps to instinct, by following 
trials with simple examples and some theoretical results 
of Roth (Ref. 11), it was shown in Ref. 12 by Formanek 
and in Ref. 8 by van Zanten and de Vries that A(G) does 
not necessarily carryall the reps of G/Z. However, 
the latter were able to show that each rep of G/Z occurs 
as a constituent of at least one of the modules in the 
sequence 0 nA(G), n=l, 2, .... Indeed, it follows that 
there is an integer N, such that 0 nA(G) contains every 
rep of G/Z whenever n ~ N. The same authors left open 
the question of aSSOCiating tensor operators, in an 
analogous fashion, with all the reps of G. 

The aim of the present paper is to offer some gener
alizations of the above -mentioned work, incidentally 
dealing in principle with the lacuna noted in Ref. 8 by 
van Zanten and de Vries. For the sake of SimpliCity we 
have separated the generalizations into two types. In the 
first case in ~c. 2 we aQow G to act in a conjugating 
manner on A(G), where G is a finite group containing G. 
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In particular we analyze A(G) as a G-module into its 
irreducible G-submodules, and we also look at some 
other natural G-submodules. Section 3 contains the re
sults of applying Sec. 2 to two main choices for G: first 
as the full permutation group on the elements of G and 
secondly as the holomorph of G. The second generaliza
tion is conSidered in Sec. 4, where G acts on A(G), G 
containing a central subgroup K such that G/K::::G. We 
quickly specialize to the chOice G = GW

, the linearizing 
group of the projective representations of G with factor 
system w. Here we find that A(G) has a natural image 
A(G; w), called a twisted group algebra, on which G 
may act in tensor fashion. We note that it is necessary 
to widen the notion of a tensor operator, as given for 
example in Sec. 2 of Ref. 8, to include the possibility 
that G acts via a projective representation, a not un
common Situation. The analySiS is similar to that given 
in Sec. 2. We conclude by noting that any point group 
may act in accordance with Sec. 4 on a subalgebra of 
the group algebra of its associated double group. 

2. G AS A SUBGROUP OF G 

_ If the gr~up G is contained as a subgroup in the group 
G, then A(G), the group algebra of G, can be conSidered 
as a _G-module relative to the action a - g a g-l, for a 
EA(G) an~gEG. Clearly, ifgEZnG, w,lere Z is the 
center of G, then g acts trivially on A(G); hence the 
latter can be alternati~ly considered as a [G/(Z n G)J
m~ule. But if gE G - Z n G,_then g acts nontrivially on 
A(G), so that, a fortiori, A(G) is a faithful [G/(Z n G)]
module. It now follows from a theorem of Burnside (for 
a particularly siElple proof see Ref. 13) that every 
irreducible [G/(Z n G)J-module occurs as a constituent 
of at least one of the tensor power modules 0 nA(G), 
n = 1,_2, .. '. This conclusion is noted for the special 
case G = G in Ref. 8. The hope is that with the greater 
freedom now allowed to us, by a suitable choice of G 
we will be able to accommodate all the reps of G. W~ 
return to this point in Sec. 3. 

A(G) has as baSis the set {g:gEG}, which may be 
used to determine the character function, XQ, of the 
generalized conjuga!ing representation carried by A(G). 
~ fact, for gEG, xG(g) = IN(g)1 = IGI/IC(g)l, where 
~(g) is the normalizer (centralizer) of g in G and where 
C( g) denotes the conjugacy class of G containing g. Now 
let {X .. } denote the set of irreducible characters of G 
and xf denote the va~ue of X" on the ith conjugacy c!;ss, 
C;, of G. Then, if X = L: "a" Xu, we have 

1 -
au =TGT ~ I C i I X?X~, (2.1) 
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since X? is real, 

(2.2) 

(2.3) 

where e I E C I and C I and where the barred and unbarred 
symbols refer, respectively, to G and G. Notice that the 
coefficient of X~ is a positive integer since N(e j) is a 
subgroup of N(cj). Equations (2.2) and (2.3) generalize 
the result of Frame, also noted in Refs. 4, 8, that, for 
G=G, XO='[,,,b,,X", where b,,='[,jX~, the sum of the 
entries in the J.l.th row of the character table of G. This 
latter sum is therefore a nonnegative integer, as is a". 

Consider now the character afforded by the power 
module 0 nA(G), for n"" 1. Clearly it is (xil)n, and it con
tains X" with frequency 

(n ) ') I N(c ;) I " " 
a" =Ly'IN(c)1 Xi> 

which reduces in the case G = G to 

b~n) =2:: IN(c;) 1"-1 X~, 
j 

being equivalent to Eq. (23) of Ref. 8. 

(2.4) 

(2.5) 

We turn now to a consideration of certain natural G
submodules of A(G), namely those generated by ele
ments of single classes in G. Clearly the character of 
the representation afforded by A(D j ), where D j denotes 
both the ith conjugacy class of G and the submodule of 
A(G) which it generates, is given by xDj(g)= IN(g)nDjl. 
Then we have 

Theorem 1: Let d j be a fixed member of the class D j 
of G, and let 1 j denote the trivial character of the nor
malizer subgroup N(d l ). Then 

xDi =(l l tGHG. (2.6) 

In particular D j carries a monomial representation. 

Proof: Write the coset decomposition G=LhjN(d l ). 

Then it is easy to see that D I can be written as the set 
{h'/djh j : allj}. Consider (lj tG)(g), for gEG, which is 
equal to the number ofj's for which hj ghj1 EN(d). This, 
however, equals the number of j's for which 
h/djlhjghjldjhj =g, a characterization which immediate
ly implies (2. 6). This concludes the proof. 

In the special case that G = G, this result appears in 
the proof of Lemma 1. 5 of Ref. 11, and it is also equiv
alent, through the Frobenius reciprocity theorem, to 
Theorem 1 and its corollary of Ref. 8. The following is 
a simple consequence of the Mackey subgroup theorem 
(see, for example, Ref. 14). 

Corollary 1: Let G='ZaGh",N(d) be a double coset 
decomposition of G. Write L" = Gn N(h"d jh~1) and let 1" 
denote the trivial character of L". Then 

(2.7) 

To conclude, we return to the choice G = G and note 
the result of Frame that XO = L: " X" X*", where X*" is 
the complex conjugate of the character XIL and where the 
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summation is over all inequivalent characters of G. 
This formula, which is implicit in Eq. (18) of Ref. 8, is 
easily proved using the orthogonality properties of 
irreducible characters, for example, see Theorem (1. 2) 
of Ref. 11. However, it is perhaps interesting to obtain 
it in the following direct manner. For suppose we reduce 
the left regular representation of G into its primary 
parts, and concentrate attention on the two-sided ideal 
JIL of A(G) which carries the rep D" with multiplicity d" 
(=dimD"). If we assume that g is represented by D"(g) 
o I", where IlL is the d" xd" identity matrix, then a 
matrix basis for J" is the set {Ers 0 I,,: (Ers)pq = 6rpo .. , 
for 1 ~ r, s ~ d",}. A simple calculation shows that, 
under the conjugating action of gE G, ers 0/" is sent to 
the matrix 

L [D"(g) 0 D*IL(g) Jpq ,r5(EP• 0/,'). (2.8) 
P •• 

Thus J" carriers DIL ® D*", and Frame'S theorem fol
lows on summing over the /l'S to fill out the whole of 
A(G). 

If we write the Kronecker product formula X" XV = 
L).g~vX\ then b).='[,jx~='Z"g;,., so that b). is zero if and 
only if every g;,. is zero. The dual Situation, in the 
sense given in Refs. 15, 16, is also of interest. For 
the dual of L,.,X"X*" is the class sum LiCjCi./ICjl, 
which can be variously calculated as '[,j)hjj"k/ I C j I )Ck 

and Lk,,,(Xk" /d,,)Ck, where the numbers hli"k are class 
multiplication coefficients. Since the latter are nonnega
tive integers, it follows that '[, "Xk " /d" is zero if and only 
if hji',k = 0 for aU i, and this if and only if Ck has no 
elements of the form aba-1b-1. We reach the well-known 
result that Ck consists only of commutators if and only 
if L,1. X: / d" * O. Of course, it is crucial in the proof to 
note that a class either has no commutators or consists 
entirely of commutators. Further to this, it is shown 
in Ref. 8 that 

2:: Xk" (= z; h ii'!~) 
" d", \ ' ICil 

measures the number of ways an element of C k can be 
written as a commutator. 

3, EXAMPLES 

It is perhaps trivial, but nevertheless often useful, to 
regard the relationship G~ G as having arisen in the 
following situation. Suppose G acts as a transformation 
group on a set 5, that is, with each gE G there is asso
ciated a one-to-one transformation, Tg , of the set 5 onto 
itself, such that Te is the trivial transformation and 
Tg g = Tg Tg , for aU gu ';2 E G. But 5 may very well 

1 2 1 2 < 

possess one-to-one transformations other than the T/s, 
gE: G. So there may exist many transformation groups 
G lying between G and P(5), the full permutation group 
of the set 5. For example, suppose it is possible to 
write 5= U is;, where the sets 5 j have the same cardi
nality and are G-invariant. Clearly we may embed G in 
several subgroups of P(S) simply by the adjunction of 
transformations which bodily interchange some or all 
of the sets Si in a consistent fashion. This is a situation 
which occurs when a complex molecule is symmetrical
ly built from equivalent subunits which themselves 
possess symmetry. In Ref. 17, Boyle has successfully 
exploited this feature of complex molecules, and, by 
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uSing the theory of induced representations, has 
developed the method of ascent of symmetry as a useful 
tool in molecular studies. 

For the present purpose, however, we content our
selves with the choice S= G and let G act on itself by 
left translations. Thus, if gE G, the left translation Ag 
acts on g' E G to give gg'. In the first example we take 
O=SIGI, the full permutation group on IGI symbols, of 
order I GI !. We first remark that, except in the trivial 
case IGI =2, SIOI has trivial center so that G/znG=G. 
It follows that irreducible tensor operators may be 
associated with every rep of G by employing the G
module A(SIGI) and its powers. This settles in principle 
the question asked by van Zanten and de Vries towards 
the end of Sec. 3 in Ref. 8. We now decompose A(SIGI) 
by computing the integers a .. , as given in Eq. (2.3). For 
each g E G we need to consider the normalizer of Ag in 
S IQ I' Suppose 1T E N(Ag), then (1TAg )g' = (Ag 1T)g' for all 
g' E G. It follows that ?T(gg') = g?T(g') for all g' E G, which 
means that 1T is essentially only a function of the cosets 
of (g) in G, where (g) denotes the cyclic group of order 
m(g) generated by g. Hence I N(Ag) I = I G I ! /[ I G I - r(g)] !, 
where r(g) = I GI /m(g). Finally 

'\ IGI! ICil.. (31) 
a"='!(IGI_ri)!IGTXi, . 

where r i =r(Ci) for Ci E C i. We are guaranteed that a" 
"" 0, but this may be strengthened. 

Theorem 2: a" >0 for all /J. unless IGI =2. 

Proof: Write 

IGI! +2:: IGI! IC;!" 
a"=TGT d " ito(IGI-ri)! TGTXi' 

where the second term is an integer, positive, negative, 
or zero, whose magnitude does not exceed 

~d L ICII 
IGI "ito (IGI -r i )! 

Suppose m is the least order of the nontrivial elements 
of G, and r is I GI /m. It follows that 

2:: IC;! 
ito (IGI -r i )! 

does not exceed 

1 I IGI -1 
(IGI -r)! t;o cil = (IGI -r)! 

Thus a" =(IGI !/IGI)d" (1 +a), where lal ~(IGI -1)/ 
( I G I - r)!. We will have established our result if we can 
show that I a I < 1. Actually this condition is violated for 
I G I = 2, 3, 4, but the validity of the theorem for the 
cases I G I = 3, 4 can be verified directly (see the final 
sentence of Sec. 3). To deal with larger values of I GI, 
we note that r~ I GI /2 if IGI is even and r~ (I GI -1)/2 
if IGI is odd. Hence lal ~ (IGI -1)/(IGI/2)! if IGI is 
even and lal~ (IGI -1)/[(IGI +1)/2]! if IGI is odd. 
These numbers are less than (I GI -1)/1 GI and 
(IGI-1)/(IGI +1), respectively, if IGI>4. Hence lal 
<1 for allil if IGI >4. With the cases IGI =3,4, we 
have that aU. > 0 for all Il for I GI "" 3. There remains the 
exception, when I G I = 2. This completes the proof. 

We have shown therefore that A(SIGI) carries every 
rep of G when G acts in the conjugating fashion. Perhaps 

445 J. Math. Phys., Vol. 16, No.3, March 1975 

this is hardly surprising when one considers the enor
mity of SIGI when IGI is not small. It would be interest
ing to have more information about pairs of groups 
(G, 0) with G~ G and where the generalized conjugating 
representation of G on A(G) contains every rep of G. 
There is strong empirical evidence to suggest that 0 
= G= Sn is such a case, except for n = 2. 

For our second example we take G as the holomorph 
of G, denoted holG. holG is a subgroup of SIOI and con
sists of the pairs Aga, gEG and aEautG. Clearly AgO' 

sends g' into g a(g'), from which it fOllows quickly that 
the elements of holG may be represented in the form 
(g, a), with the product law 

(3.2) 

for gl' g2 E G and al> (J2 E autG. It is now easy to check 
that holG is indeed a group, having identity (e, 1), and 
where the inverse of (g, a) is «(J-l(g-l), 0'-1). Further
more, the elements (e, (J), aE autG, form a subgroup 
isomorphic to autG, and the elements (g, 1), gE G, 
make up a normal subgroup isomorphic to G. Finally, 
holG is the semidirect product of G by autG, written 
hoIG=G®autG. We now calculate the center of holG. 

Lemma 1: Z(holG)={(z, 1) :ZEZ(G) and a(z)=z for all 
all a EautG}. 

Proof: If (g, a) is central, then (g, a)(g', a') 
(g' a')(g, a), for all (g', a') E holG. Hence 

ga(g') = g' a,(g)!, 

0'0" = 0"0' 

(3.3) 

for aU (g', a') E holG. In particular Eqs. (3.3) hold when 
a' is the identity. Then ga(g')=g'g, for all g' E G, with 
the result that a is the inner automorphism correspond
ing to the element g-l. Putting this information back into 
(3.3) we see that g=a'(g) for all a' E autG. In particular 
g is a member of Z(G) and hence a is trivial. This con
cludes the proof. 

Although Z(holG) is not trivial, in general, the follow
ing result provides a certain amount of encouragement. 

Theorem 3: Let G be a finite Abelian group whose 
Sylow 2-subgroup is C(2"'1)XC(2"'2)X ... x C(2"'r), where 
C(2") is cyclic of order 2"', and (Ill"" (112? ... "" (IIr' Then 
Z(holG) is trivial unless (Ill> (112' In the exceptional cases 
Z(holG) is generated by the unique element of order 2 
in C(2"'1), as a subgroup of holG. 

Proof: The proof is a rather elementary, but long
winded exercise. We merely state that the essential 
point is the discovery of a sufficient number of automor
phisms of G. 

Theorem 3 tells us that the very worst groups from 
the point of view of the ordinary conjugating representa
tion, namely the Abelian groups, are very good candi
dates for the employment of the generalized conjugating 
representation acting on the holomorph. 

We now consider some simple examples. For each 
group G, we choose a suitable group G co!!taining G, but 
with trivial center, and then decompose XG using (2.2). 
We take the examples from among the crystallographic 
point group, taking notation from Ref. 14. 
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C2 : The smallest group containing C2 and having trivi
al center is C3v (or D3)-both 8 101 and holG are of order 
two and hence unsuitable. Then XG=4A +2B. 

C3 :Jn this case we choose G as C3v (or D3 ). In fact 
this ch~ice of 0 is also a realization of 8 10 I and holG. 
Then XO =4A +lE +2E. 

C4 : By Theorem 3, holG has nontrivial center, and 
indeed holG can be identified with D4 • However, 8 101 

= 84 , which can be identified with 0, the proper cubic 
group. Then 

i=10A +6B+4lE +4 2E. 

D2 : In this case 8 10 I = 84, which this time can be iden
tified with the full tetrahedral group T d. Also, it is 
clear, by considering the possible bases for D2 , that 
autG=83 • Indeed, holG=Td again. However, Td is 
larger than is absolutely necessary for our purposes. 
We need look no further than G=T. We find XCi =6A 
+2Bl +2B2 +2B3. 

D4 : This is a group which Killingbeck (Ref. 7) was 
unable to treat fully. We choose 0=0. Then we find 
XCi = 8Al +2A2 + 4Bl + 2B2 +4E. 

This concludes our set of examples. We observe final
ly that we have established directly the validity of 
Theorem 2 for IGI =3, 4. 

4. TWISTED GROUP ALGEBRAS 

Suppose 0 is a finite group containing a central sub
group K, where O/K:::: G. Then we claim that G acts 
tensorially on A(O). To see this let 1T be the canonical 
epimorphism of 0 onto G, and let CJ be a section of the 
extension 1-K 1.. 0..1. G -1; that is, CJ is a map: G - 0, 
where 1T 0 CJ is the identity on G, thus providing us with a 
set of coset representatives of K in O. Then, if gE G 
and aEA(O), g sends a to CJ(g)aCJ(g)-l. Since K is cen
tral, it is clear that the action is independent of the 
choice of the section CJ. Evidently A(G) is a faithful 
(G/Z)-module, hence A(O) and its powers exhaust all 
irreducible (G/Z)-modules. Again, since K is central, 
the character of the action of G on A(G) is the projection 
onto G of the character L:" X"X*", where Jl runs over all 
the rep labels of G. 

Although it is possible to develop further the above 
analysis, it is perhaps more profitable to look at a 
special case which is closer to the experience of mathe
matical physicists. We suppose that w is a factor system 
for the group G, where the values assumed by ware nth 
roots of unity for some n. Then we consider the exten
sion 1 - Cn - GW 

- G - 1, where Cn is the cyclic group 
of nth roots of unity. It will be recalled from Mackey 
(Ref. 18) that GW is the group which linearises the w
representations of G. More concretely, GW has under
lying set G xCn , and possesses the multiplication law 

(4.1) 

forg1> g2EG, and 21> 22ECn. ThesetC~={(e, 2):2 
E Cn} is a central subgroup of GW

, and GW /C~:::: G. Hence 
G acts tensorially on A(GW). However, it is also true 
that G acts tensorially on a natural image of A(GW

), 

namely the twisted group algebra A(G; w). This algebra, 
which has been discussed by several authors (Refs. 19-
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22), is a module over the complex field, with basis the 
set of objects {v(g) :gE G}, and further has a multiplica
tion which is the linear extension of the law 

(4.2) 

for all gl> g2 E G. The link with A(GW) is seen in the fol
lowing manner. Choose a faithful matrix w-representa
tion of G, and lift it to a matrix representation of A(GW

) 

in which the element (e, 2) E C~ and the scalar y E Care 
represented by diag(2) and diag(y), respectively. Then 
A(G; w) is isomorphic with the algebra generated by the 
representation matrices of the elements (g, 1), which 
are precisely the w-representation matrices of the ele
ments gE G. We now show directly that the transforma
tion rule a - v(g)a v(gt\ a EA(G; w) and gE G, turns 
A(G; w) into a G-module. Here, V(g)-l=V(g-l)/W(g, g-l). 
We calculate V(g1)V(g2) a V(g2t l V(gltl as 

W(gl' g2)W(g~1, g~1)W(glg2' (glg2>-1) 
W(g2' g~l) W(gl' g~l) 

x V(glg2) a V(glg2)-1, 

the numerator of which becomes 

W(g2' g~l g~l) W(gl' g~l) w(g;\ g~l) 

(4.3) 

(4.4) 

(4.5) 

USing the simple properties of factor systems. It follows 
that (4.3) becomes V(g~2) a V(glg2tl , confirming that we 
have a true action. 

Before analysing this G-module we recall some no
tions and results (see Refs. 21, 22). An element gE G 
is termed w-regular if w(g, g') = w(g', g) for all g' 
E N(g), the centralizer of g. w-regularity is a class 
property and respects inversion. A fact which Simplifies 
calculations is that w can be so adjusted that w(g, g') 
= w(gg' g-l, g) for all g' E G if g is w -regular. Another 
useful result is that, for any given gE G, g' - w(g, /{')/ 
w(/{', g) is a linear character on N(g). Finally, this 
same result establishes that the subset of Z which con
sists of w -regular elements, forms a subgroup Z'M say. 

Consider now the result of the action of gE G on a 
basis element 

v(g') - v(g)v(g')V(g)-l (4.6) 

we/{, /{')w(g/{', /{-l) (g' -1) 
= (g~) v gg w ,/{ 

(4.7) 

= w(g,_ /{') V(gg'g-l). 
w(gg' /{ 1, /{) 

(4.8) 

It follows that g acts trivially on A(G; w) if and only if 
gE Z and g is w-regular. Hence A(G; w) is a faithful 
(G/Zw)-module. If Xw is the character function for the 
representation of G on A(G; w), then 

XW(g) =L' w(g, g')/w(g', g), (4.9) 

where the prime restricts the summation to elements 
g' E N(g). Clearly if g is w-regular, Xw(g) = 1 N(g) 1 

= 1 GI /1 C(g) I, but if g is not w-regular, the orthogonali
ty relations for the characters of N(g) imply Xw(g) = O. 
It quickly follows, if Xw = L: "c "X", that 

c" =L 'X~, 
j 
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where the prime restricts the summation to the w
regular classes. 

Several of the results of Sec. 2 carryover. In parti
cular, Xw=L~e~e*\ where the summation is over the 
inequivalent w-characters e~ of G. Also, Theorem 1 and 
Corollary 1 have analogs. 

5. EXAMPLES 

We begin with a theoretical example for which Zw may 
well be smaller than Z. In fact let G be a finite Abelian 
group, and let G(w) be the subset of w-regular elements 
of G. Since Zw = G(w), the latter is a subgroup of G. We 
have Xw(g) = I GI if gE G(w), but is zero otherwise. ,Also 
c" = L'EO(w)X"(g) is I G(w) I if X" ~ G(w) is trivial, but 
zero otherwise. It follows from this that 

(5.1) 

by the Frobenius reciprocity theorem, where 1", is the 
trivial character on G(w). It is clear that A(G; w) con
tains all irreducible modules of G/G(w). Further results 
relating to the w-rep theory of Abelian groups may be 
found in Refs. 23, 24. 

For a specifiC example take G=D2 , with elements 
e, a, b, ab, where a2 =b 2 =e and ab=ba. Define w by 
w(a, a)=w(b, b)=l, w(a, b)=-w(b, a)=i, and ex
tended bilinearly to the whole of D2 • We find that G(w) 
= {e}; hence Xw = 1 t D2 , the regular representation of D2 • 

This agrees with Frame's theorem, for there is just one 
equivalence class of w-reps of D2 , given for example by 

e-C J, a-(~:} b-(: -:). ab-(: _:} 
and for this we find that L ~ e>'e* >. has value 4 at g= e and 
zero elsewhere. 

This example leads on to a class of groups familiar to 
mathematical phYSiCists, namely the class of point 
groups. Here w is chosen as the factor system naturally 
associated with the 2: 1 homomorphism of SU(2) onto 
SO(3). The reader may consult Refs. 22, 25, where it 
is shown that if P is a point group, then P'" can be iden
tified with the double group P, and further that the con
clusions of Opechowski's theorem can be related to the 
w-regular class structure of P. To continue, when P 
acts on A(P; w), the latter carries a representation 
whose character is L>.e>'e*\ where e~ ranges over the 
irreducible double -valued representation of P. Also, 
the frequency of X"- in Xw is L: 'X~, where the prime in-
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dicates summation only over the w-regular classes of 
P. We recall from Ref. 22 that a class of P is w-regu
lar if either it contains no twofold rotation, or, if it 
does contain a twofold rotation R, there. is no twofold 
rotation in P whose axis is normal to that of R. 

We conclude with a concrete example, choosing P=T, 
the proper tetrahedral group. From our interpretation 
of Opechowski's theorem, it is clear that T has three 
w-regular classes, namely the identity class and the 
two classes of threefold rotations. The remaining class, 
containing the twofold rotations is not w-regular. We 
deduce from the ordinary character table of T that Xw 
= 3A +3T. Although A(T; w) does not carry the nontrivi
allinear characters of T, these do appear on 0 2 A(T; w). 
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The general problem considered is to obtain solutions w to the vector equation v = curl( w), where 
v is a given divergence-free vector field with singularities. Two methods are discussed: A special 
method, which applies when v is of the type which occurs in the Kirchhoff theory of diffraction, 
and a general method, which applies to any divergence-free vector field whatever. As an example the 
general method is used to obtain the Maggi-Rubinowicz representations of the Kirchhoff-Helmholtz 
(double) integral as a line integral. The singularities of the solutions ware known to produce 
important optical effects, and the nature of these singularities is largely determined by topological 
properties of the domain on which v is regular. 

I. INTRODUCTION 

A. Statement of problem 

In this paper we shall discuss methods for the calcu
lation of vector potentials; i. e., we are interested in 
obtaining solutions w to the equation 

(1. 1) 

where v is a given divergence free (solenoidal) vector 
field. If v has no singularities, then a solution to (10 1) 
is given by 

(1. 2) 

If v has singularities, as is always the case in optical 
applications, then complications ensue. 

The result (1.2) is a particular example of a much 
more general theorem, the Poincare lemma, which is 
well known to differential geometers. See, e.g., Refs. 
1 and 2. A simple direct proof will be given in Sec. 2B. 
[There is also a well-known solution given in terms of 
volume integrals (see, e. g., Ref. 3, p.2, or Ref. 4), 
which will not be used in this paper.] 

We shall present two methods for solving (1.1) when 
v has singularities: a special method, which is only ap
plicable to vector fields of the type which occur as inte
grands in the Kirchhoff theory of diffraction, and a gen
eral method, which is applicable to any divergence free 
vector field whatever. 

One matter to receive some attention in this paper is 
that of showing how Singularities in v produce singulari
ties in the solution w to (1.1). It may happen that every 
solution w will have more singularities than v 0 It is well 
known that certain topological properties of the domain 
on which v is regular determine whether or not this is 
possible. Certain other conditions determine whether or 
not two different solutions w to (1. 1) must necessarily 
differ by the gradient of a scalar function. These ques
tions will be discussed in Sec. 1C 0 The analysis of the 
singularities of the vector potentials w is of consider
able importance, since in the Miyamoto-Wolf theory of 
diffraction these Singularities play an essential role in 
producing geometrical optics effects. (See Sec. 1B be
low for references.) 

B. Motivation 

Let S be an aperture in an opaque screen, and let u 
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= u(r) be the space -dependent part of a monochromatic 
wave incident on the screen, so that u satisfies the sca
lar wave equation 

(1. 3) 

In the Kirchhoff theory of physical optics the field UK 

diffracted through S is given by 

where v is the "Helmholtz" vector field 

() ( )" exp(ikr) exp(ikr)" ( ) v r =u r v - vU r . r r 
(1.5) 

In these relations P is the field point (= point at which 
the diffracted field is measured), r is the position vec
tor PQ of a general point Q, and 1] is the unit normal to 
S, which generally, by convention, pOints away from the 
sources on the illuminated side of the screen. The vec
tor field v is divergence free by virtue of (1. 3). Hence 
if w is a solution to (1.1), and S contains no singulari
ties of w, then Stokes' theorem can be applied to obtain 

(1. 6) 

where as denotes the boundary of S. If w has singulari
ties, then certain terms must be adjoined to the right
hand side. See Refs. 5, 6. 

The transformation of the double integral (1. 4) into 
the line integral (1. 6) has much practical value because 
it greatly reduces the costs of machine calculation. 
(See, e. g., Ref. 7.) From the standpoint of theory these 
line integral representations are very interesting be
cause they show very clearly how the Kirchhoff theory 
predicts certain geometrical optics effects, and, quali
tatively at least, certain edge effects which are implied 
by the Fermat principle and Keller's "Geometrical The-
0ry of Diffraction. "R-10 

Methods for solving (1.1) when v is a vector field of 
the Helmholtz type (1. 5) have been discussed by 
Miyamoto-WolfS and by Rubinowicz. 4,6,11 In particular, 
for an historical survey see Ref. 4. 

C. Generalities: Existence and uniqueness of solutions 

(i) Existence. To facilitate discussion, whenever a 
vector field v has Singularities it is to be understood 
that these singularities are to be excluded from its 
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"domain" (of definition or regularity). We shall say that 
a domain D has Property 1 if for every divergence free 
vector field v with domain D there exists a solution to 
(1. 1) which is regular everywhere in D. It is well known 
that Property 1 is a topological property of a domain, 
and hence remains invariant when the domain is conti
nuously deformed. We shall illustrate this notion with 
a few examples. (The topologically sophisticated reader 
will recognize that Property 1 is equivalent to the van
ishing of the second Betti number of the deRham coho
mology of the domain. See, e. g., Refs. 1,2,) 

Example 1.1: In the solution (1. 2) r is the position 
vector of a general point drawn from a fixed but arbi
trary origin. The proof consists merely of calculating 
the curl of the right-hand Side, using some vector iden
tities and integration by parts. Therefore, the solution 
is valid in any region in which the integration paths t 
- tr do not hit singularities of v, Hence a region bound
ed by a spherical surface has Property 1. 

Example 1. 2: Since Property 1 is a topological prop
erty, any region obtained by continuously deforming a 
spherical region also has Property 1. For example, a 
tubular region having the shape of the letter 5 has Prop
erty 1, a fact which is not at all apparent from the solu-. 
tion (1.2). 

Example 1. 3: A domain D fails to have Property 1 if 
and only if there exists a divergence free vector field v 
with domain D which is not the curl of a field w with do
main D. As a corollary to Stokes' theorem it is known 
that a divergence free vector field v is the curl of some 
other vector field without singularities only if I Is V· 1) ciA 
= 0 for every closed surface S. Therefore, a domain D 
fails to have Property 1 if (and only if, see below) there 
exists a divergence free vector field v with domain D 
and a closed surface S in D such that f f s V· 1) ciA"* O. For 
example, the region obtained by removing a point from 
Euclidean 3-space E3 fails to have Property 1. To prove 
this we only need to note that f f s V(1/r)'1) ciA = - 471' when 
S is a sphere enclosing the origin. 

Example 1.4: A domain obtained by removing one 
point, or a discrete set of points, from any of the do
mains described in the first two examples fails to have 
Property 1. 

Remark 1,1: According to the first example, every 
regular point of a divergence free vector field v has, 
say, a spherical neighborhood in which (1.1) has a solu
tion. Also, the entire domain of v can be filled up with 
such neighborhoods. However, according to the last two 
examples, these "local" solutions cannot always be 
joined together to form a smooth solution to (1.1) which 
is valid everywhere in the domain. 

Let v be a divergence free vector field with domain 
D. Then the failure of D to have Property 1 does not at 
all imply that v is not a curl. (This remark is trivial: 
Let w be an arbitrary field with a prescribed set of sin
gularities and set v = V xw. ) There is in fact a well
known criterion for v to be a curl, half of which has al
ready been discussed in Example 1.3, viz., a diver
gence free vector field v is the curl of some other vec-
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tor field with domain (of regularity) D if and only if 
f f s V' 1) ciA = 0 for every closed surface S in D. 

(ii) Uniqueness: From the identity vx Vf=O it follows 
that if w is a solution to (1.1), then so is w + Vf where 
f is any scalar valued function. Hence solutions are not 
unique, and we now pose the question as to when any two 
solutions must necessarily differ by the gradient of a 
scalar function. Since the difference between any two 
solutions to (1. 1) is curl free, this question reduces to 
determining when a curl free vector field is necessarily 
the gradient of some function. Again, as in the case of 
existence, there is a topological condition on domains 
D which guarantee that every curl free vector field w 
with domain (of regularity) D is a gradient, and there is 
an analytical condition which insures that a vector field 
w is a gradient, and which applies whether or not its do
main has this topological property. 

We shall say that a domain D has Property 2 if every 
curl free vector field with domain D is the gradient of 
some scalar function with domain D. The following re
sults are well known. 

Proposition 1: A domain D has Property 2 if and only 
if it is simply connected; 1. e., if and only if every 
closed circuit in D can be continuously deformed into a 
point without leaving D. 

Proposition 2: A curl free vector field w with domain 
D is the gradient of some function if and only if fyw. dr 
= 0 for every closed curve 'Y. 

We recall that if w is a curl free vector field defined 
on a Simply connected domain D, then w = Vf, where 
f(P) = Ir (p)w • dr, and where r(p) is any curve joining a 
fixed but arbitrary origin to p. l The Simple connectivity 
of D is needed to establish, by means of Stokes' theo
rem, that the value of f(P) does not depend of the partic
ular choice of the curve r, 1 Hence, if D is E3 we can 
write 

f(r)= (lr'w(tr)dt=r' (lw(tr)dt. )0 )0 (1.7) 

Remark 1. 2: Both (1,2) and (1. 7) are particular ex
amples of the Poincare lemma, which contains these re
sults and a countably infinite number of others of a like 
nature. 

Example 1. 5: The domains obtained by removing a 
point from E3 or a spherical region have Property 2 but 
not Property 1. The domains obtained by removing an 
entire line from E3 have neither Property 1 nor Prop
erty 2. 

Example 1. 6: There are certain properties of the vec
tor field v=V(1/r) which will be used in the sequel. Al
though V • V(1/ r) = V2 (1/ r) = 0, this field (whose domain 
is E3 with a point removed) cannot be represented as a 
curl on this domain because for every closed surface S 

• _ {- 47T if S encloses the origin, 
f f s v(l/r) 1) ciA - 0 th . (1 8) o erwlse. . 

To represent V(1/r) as a curl in a more restricted do
main, we remove a line I from E3

, let x, y, z be rec
tangular coordinates with X2 + y2 + Z2 = rand 1 corre
sponding to the z axis, and set 
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ljI = [</lx, I/>y, 1/>.] = (z/ r)(x2 + y2fl[ - y, X, 0]. 

Then a straightforward calculation shows that 

V(l/r)=VxljI on E3_l. 

Since the domain E3 -1 is not simply connected, it is not 
necessarily true that any two such representations of 
V(1/ r) as a curl will differ by the gradient of some 
function. 

Finally, another property of V(1/r) which will be use
ful in the sequel is the following: On a surface S the in
finitesimal element dn of solid angle subtended by the 
origin is given by 

the sign depending on various conventions. The sign con
vention will be used consistently so that the solid angle 
subtended by a closed surface S is zero when S does not 
enclose the origin. With this understanding, for any 
open or closed surface S we shall write [cf. (10 8)] 

J J s v( 1/ r) . 1) dA = ± solid angle subtended by S at 
the origin. (10 9) 

II. THE SPECIAL METHOD 

A. Statement of results 

The main result of this section is contained in the fol
lowing proposition. 

Proposition: Let v = v(r) be a vector field of the 
Helmholtz type (1. 5). Then 

v(r) =u(O)V(l/r) + V xw(r), (2.1a) 

where 

w(r) =;:X Jr/ exp(iktr)Vu(tr) dt. (2.1b) 

In these relations u(O) is the value of the unperturbed 
incident radiation at the field point P (where r = 0), and 
the origin must be taken at P. The Singularities of w 
are contained in the set of line segments PQ where Q 
varies over the set of Singularities of u. 

As we mentioned at the end of the last section, the 
vector field V(l/ r) can be expressed in various nonequi
valent ways as a curl on domains consisting of E3 with 
a line removed. 

According to (1. 9) the contribution of the first term 
of the right-hand side of (2. 1a) to the Helmholtz integral 
(1.4) is the solid angle subtended by S at P. Therefore, 
one might conclude that this term would become negli
gible as P recedes to the far field. However, this solid 
angle is comparable in magnitude to the contribution 
from the other term. In fact, in the plane and spherical 
wave case, this solid angle combines with a certain part 
of the other term to produce the geometrical optics 
field (cL Sec. 3C). 

The line integral in (2.1b) is very similar to the 
Miyamoto-Wolf representations,5 except that it is an 
integral over a finite rather than an infinite intervaL 
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The Miyamoto-Wolf representations do not contain any 
explicit appearance of a term analogous to the first term 
on the right-hand side of (2. 1a), and we suspect that this 
may be related to the fact that the derivation of our re
sult (2.1) does not require that the incident field u or its 
derivatives satisfy any conditions at infinity (the Som
merfeld conditions) as is the case in the Miyamoto
Wolf theory. 

In the next paragraph we shall give a direct proof of 
(1. 2), and in Sec. 2C we shall show how this derivation 
can be easily modified to give (2. 1). 

B. Derivation of (1.2) 

Let w be the vector field defined by (1.2). We have to 
show that V x w = v. From the identity 

VX (AXB) = (B. V)A - B(V 'A) - (A. V)B +A(V' B), 

we get 

V x [r xv(tr)] =[v(tr). V]r -v(tr)(V . r) - (r . V)v(tr) 

+ rl V ·v(tr)] 

d 
=v(tr) - 3v(tr) - t dt v(tr) + 0 

d 
= - 2v(tr) - t dt v(tr). 

Hence 

Vxw(r)= il (2tv(tr)+t2 ~v(tr))dt. 
Integrating by parts, we obtain 

V xw(r) = t2v(tr) I ~=o. (2.2) 

This completes the proof since (in this case) it is as
sumed that v is a smooth field with no singularities. 

C. Derivation of (2.1) 

We now have to consider the case when v is given by 
(1. 5), and thus has a Singularity at r= O. We define 

w(r) = - e tr Xv(tr) dt. 
.- 0+ 

(2.3) 

As in the previous case [cf. (2.2)] we get 

V xw(r) = t2v(tr) I ~=o+. (2.4) 

Expanding V[exp(ikr)/ r] in (1. 5), we get 

. r (ik 1~ r 1 ~ v(r)=exp(lkr\u(r) r- r2'}y-:yvu(r)J' 
(2.5) 

so that 

lim [t2v(tr)] = - u(O)r/ r3 = u(O)V(l/ r). 
t .. o+ 

Substituting into (2.4), we get 

V xw(r) =v(r) - u(O)V(l/ r). 

Finally, to complete the proof we have to show that the 
field was defined by (2.3) is the same as that given in 
(2.1b). But this is an easy consequence of (2.3), (2.5), 
and the relation r x r = O. 
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Remark 2.1: The quadrature involved in the right
hand side of (2. Ib) must be expressed in closed form if 
this result is to be usefully applied in the reduction of 
the double integral (1.4) to the line integral (1. 6) (for 
the purpose of reducing the costs of machine calcula
tions). The corresponding result for the general method 
(discussed in the next section) requires the solution the 
exact differential equation dF =A dr + B dB + C dqJ for the 
function F, and our experience has been that the quadra
tures involved in the general method are likely to be 
easier than those involved in (2.1b), There is however, 
one case in which the quadrature in (2, 1b) is very easy; 
viz., in the plane wave case, u(r) = exp[ikr. ~] and one 
easily obtains 

~xr 
w(r) = 1 ~ x r 12 (1 - cosB)(I- exp[ikr(1 + cose)]) 

where cosB=(r.~)/r, 

Remark 2.1: As mentioned in Sec, lA, the solution 
(1. 2) can be obtained directly from the proof of the 
Poincare lemma, as given, say, in Ref, 2, pp. 155, 
156 . To the vector field v=[vx'vy,ve ] one associates the 
differential 2-form *v=vxdy!\dz + vydz/\dx + vEdx/\dy, 
Then *v is closed when v is divergence free, in which 
case one can write *v = d w where w = h *v, h being the 
chain homotopy operator used in the proof of the Poin
care lemma, which sends k-forms into (k -I)-forms, 
and satisfies dh + hd = identity. 

III. THE GENERAL METHOD 

A. Introductory remarks 

The general method is based on the following "well
known" proposition, which is a generalization of the 
Poincar~ lemma, and involves the idea of de Rham co
homology, 1,2 

Proposition: Let v be a divergence free vector field, 
with singularities, Then there exists an integer N de
pending only on the topological structure of the domain 
of regularity of v, such that if v u ••• , V N is a set of any 
N divergence free vector fields whose domains of re·
gularity contain that of v, there exist constants ao, 
au ' • " aN not all zero such that aov + aivi + 0 •• aNY N is 
the curl of some vector field w whose singularities (if 
they exist) are contained in the set of Singularities of v, 

In fact, if the set of singularities of v consists of a 
discrete set of points and/or lines, then w will have no 
singularities. The integer N is the second Betti number 
of the de Rham cohomology of the domain of v, 

The general method consists of the following steps, 

(i) By an appropriate choice of the vu ·'·, vN we can 
write 

(3.1) 

where the constants aI, ... ,aN and the vector field w can 
be determined as follows. 

(ii) To solve (3,1) for au ••• , aN we construct a set of 
closed surfaces 5u 0 0 • , 5N with the property that 
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so that 

(iii) The constants au· •• ,aN having been determined, 
we then solve (3.1) for w. In fact, we reduce (3.1) to an 
exact differential equation (cf. Remark 2.1) by translat
ing the equation into an equation involving differential 
forms. 

Example 3.1: Let v be the Helmholtz vector field (1.5) 
corresponding to a plane wave u(r) =exp[ikr . ~l. Then 
v has only a single Singular point at the field point 
P(r=O), and N=1. We take v1 =V(I/r), and 51 =a small 
sphere centered at p. It turns out that ai = 1, so that 

v(r) = V (l/r) + V Xw (3.2) 

which, formally at least, is the same as (2.1a). How
ever, in the present case [(3.2)], w is guaranteed not 
to have any singularities at all. In effect, we have used 
the vector field V(I/ r) to wipe out the singularity of v, 

Example 3.2: Let v be the Helmholtz vector field cor
responding to a spherical wave. Then v has two singular
ities, at r=O and ro=O, where r, ro are the position 
vectors of a general point drawn from the field pOint and 
source point, respectively. In this case N = 2 , VI 
=V(1/r), v2 =V(I/ro), 51 and 52 are small spheres cen
tered at r= ° and ro = 0, respectively, and we get 

v = V(1/r) + V(I/ ro) + V XW 

where w has no singularities. In effect, we have used 
the vector fields V(l/r) and V(I/ro) to wipe out the two 
Singularities of v. 

In Sec. 3C we shall show how the general method can 
be used to reproduce the Maggi-Rubinowicz line inte
gral represent~tions for the Helmholtz integrals (1,4) 
corresponding to plane and spherical wave radiation. In 
the next paragraph we shall reduce the Maggi
Rubinowicz results to a form which is convenient for 
this purpose. 

B. The Maggi-Rubinowicz representations 

Notation: S =an open surface in Euclidean 3-space 
which, physically, will correspond to an aperture in an 
opaque screen. It will always be assumed that S is finite 
in extent, oS=boundary of S, 1) = unit normal to S, and 
as is always oriented so that a point moving in a positive 
direction around as appears to move in a counterclock
wise direction when 1) is pointing towards the observer. 
The Helmholtz integral (1. 4) is given by the right-hand 
side of the relation 

41TU K(P) = J J s{u grad H - H grad u}.1) dA (3.3) 

where for convenience we set H = exp(ikr)/ r, r being the 
vector drawn from the field point P to a variable point 
in space. 

Let ~ be a unit vector, which in our applications will 
correspond to the normal to the unperturbed incident 
wave front at the field point P, and let 1 be the axis 
which passes through P and is parallel to ~. Let qJ be 
the angular coordinate which corresponds to a rotation 
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LINE OF I-POINTS---...J 

LINE OF B- POINTS ______ ...JI 1 
LINE OF S-POINTS------....J 

FIG. 1. I, B, and S-points. 

around l, so that if a special xyz coordinate system is 
chosen with e z =~, we have 

(3,4) 

Equivalently, if F is a function, the line integral IasFdcp 
can be written 

( F dcp = I F (~ x r) . d; / dt dt 
Jas as I ~Xrl 

(3,5) 

where r = r(t) is any parametric representation of 2S 
with respect to a fixed origin lying on l. Then we shall 
say that P is an I-point, a B-point, or an S-point accord
ing as to whether 2S winds around l, l intersects 2S, or 
l falls outside of 2S. (See Fig. 1.) Analytically, the con
dition that P be an I -point is that Ias dcp = ± 27T (the sign 
depending on the orientation of 2S), and the condition 
that Pbe an S-point is Ias dcp=O. If P is a B-point, the 
form Ias dcp is indeterminate. Physically, the set of 1-
points, B-points, and S-points correspond (respectively) 
to the geometrical optics illuminated zone, shadow 
boundary zone, and shadow zone. 

The Maggi-Rubinowicz results can now be expressed 
as follows (cf. Ref. 12 p. 79). 

Plane Wave Case; Let all vectors and angles be as 
shown in Fig. 2, and let u(r)=exp(ikr. ~). Then 

.f Is {u grad H - H grad u} . 7J dA 

= c - r (1 - cos e) exp[ikr(l + case)] dcp .las 

{
o if P is an S-point 

where c= 
47T if P is an I-point. 

(3.6) 

Spherical Wave Case: Let all vectors and angles be as 
is shown in Fig, 3, and let Po be the source of a spheri
cal wave u(r) = (1/ ro) exp(ikro) where ro is the vector 
drawn from Po to a variable point in space, Then 

.f Is { u grad H - H grad u} . 7J dA 
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s 

cos 8-= -;. fir 

cos /J-=-r'7jlr 

FIG. 2. Plane wave case. 

r 

exp~kR) {c - Ias[l - cos(e - eo)] exp[ik(ro + r - R)]dCP} 

where c = ° or 47T as before. 

C. A derivation of the Maggi -Rubinowicz 
representations 

(3.7) 

As mentioned in Sec. 3A, the reduction of (3.1) to an 

-{ 

-." 
s 

cos 8 = -; • 11r 

cos /J =-r' -;'r 

FIG. 3. Spherical wave case, 
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exact differential equation will involve translating the 
problem from vector language to the language of differ
ential forms. In the translation the Helmholtz vector 
field v=[v~,Vy,v~) will correspond to a differential 2-
form w=vrdy!\dz+vydz!\dx+v.dx!\dy, and the prop
erty of v being divergence free translates into W being 
closed. 

Let *, d, and!\be the usual operators employed in 
the calculus of differential forms. (See, e. g., Refs. 1, 
2, 13.) For smooth functions f, g recall that 

d*df="il'i, df!\*dg="ilf·"ilg, 
(3.8) 

Is *df = Is "ilf· T/ dA for any surface S. 

Let 

W = *(udH - Hdu). (3.9) 

Then the Helmholtz integral, i. e., the right-hand side 
of (1.4), is merely Isw; and w is a closed form: dw==O, 
For from (3.9) we have 

dw ==u(d*d)H -H(d *d)u + du!\*dH - dH!\*du. 

The last two terms cancel, and the first two terms can
cel because "ilZU + Ji2u = 0 and "il 2H + k 2H = O. 

Our detailed proof will be confined to the plane wave 
case -not because this case is any much simpler than 
the spherical wave case (it isn't), but because it pro
vides a better illustration of a certain matter involving 
constants of integration. 

Let 

1 
wo= - r2 *dr== *d(l/r). (3.10) 

Then dwo==O, and 

wo- --Is -is cOS/3dA 
s s r 

(3.11) 

where cos/3 == - T/ • "il r, and T/ == normal to S. Hence 

Is Wo == solid angle subtended by S at P. (3.12) 

From general principles (de Rham cohomology) we 
can assert the existence of a constant a and a I-form l/J 
such that 

w == awo + dl/J. 

We shall now show that a == 1, so that 

W== Wo + dl/J. 

(3.13) 

(3.13') 

Proof: Let Sp be a sphere of radius p centered at P. 
Then from (3.12) and (3.13) we get Is w == aIs Wo == 41Ta. 
Expanding (3.9) we get p p 

{(
ik 1) ik} W== -:Y-r2 *dr--:y*~ exp[ik(r+r'O) (3.14) 

(where the vector ~ == [~l> ~2' ~3) is identified with the 1-
form ~ == ~1 dx + ~z dy + ~3 dz, the xyz coordinate system 
being chosen as in (3.4)-see Eq. (3.16) below,) But 
dw = 0 implies Sp is independent of p> D, Hence allowing 
p- 0, we get 
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( ( *dr J w==- Js 7+ o(p)==4 1T • 
sp S p 

Hence a == 1. So we can write (3.13') as 

1 
w== - r2 *dr+dl/J. (3.15) 

We now have to solve this last equation for Ij!. Again, 
the angle B is defined as shown in Fig. 2, and an xyz 
rectangular coordinate system is chosen so that (3.4) 
holds, and so that ~ == e z' We shall also identify the vec
tor ~ with the differential form ~ == dz. Hence we have 

r2==xz + yZ +Z2, 

x == rsinB cosq1, y == rsinB sinq1, z = rcosB, 

~==e" ~==dz. 

We also have 

*dx ==dy!\dz, *dy ==dz!\dx, *dz ==dx!\dy, 

(3.16) 

(3.17) 
*(dy!\dz) == dx, * (dz!\dx) == dy, *(dx/\dy) == dz. 

From (3.4), (3.16), and (3.17) we get 

*~ = dx!\dy == rsinzB dr!\dq1 + r2 sinB cosB dB!\dq1, 

*dr==rsinB dB!\dq1. 
(3.18) 

[This last equation can be obtained by taking the wedge 
product of (3.4) with the relation - sin8 d8 ==d(cos8) 
=d(z/r) = (rdz -z dr)/r.) 

From (3.14), (3.15), and (3.18) we finally get 

dl/J = (A dr + B dB)!\dq1, where 

A= -iksinzBexplikr(l +cosB)], (3.19) 

B = sinB + [- sinB + ikrsinB(l - cos B») exp[ikr(l + cos B)]. 

Now since dl/J is exact, we should have A dr + B dB 
=dF where F=F(r, B). Integrating aF/ar=A, we get 

F = - (1 - cosB) exp[ikr(l + cos B») + G( B), (3.20) 

where G is a function of B only. The function G is ob
tained by solving the equation aF/aB=B. Hence 

aF 
B= 28== [- sinB + ikrsinB(1 - cos B») explikr(l + cos B)] 

+ G'(B). 

Comparing this last equation with (3.19), we get 

G(B)=b-cosB (3.21) 

where b is a constant. 

Caution: The value of the constant b is not arbitrary. 
For we have dl/J=dF!\dq1=d(Fdq1), so that l/J==Fdq1 is 
a solution. But this last relation must hold everywhere 
in space, and q1 is Singular on the axis l. Hence we must 
choose b so that F = 0 on t. The axis l is given by B = 0 
and B=1T. Hence b=l, and from (3.20) and (3.21) we 
get 

F(r, B) ==F1 +F2 , where 

Fl==l-cos B, 

F z == - (1 - cosB) exp[ikr(l + cos B)]. 
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Combining these results, we get 

*dr 
W = - 7 + d(Fdcp). 

Applying Stokes' theorem we have 

i [ *dr fa W=- 7+ Fdcp 
s s as 

=-l*~r +1 Fl dcp + ( F 2 dcp. 
s as Jas 

The use of Stokes' theorem is justified because the form 
F dcp has no singularities. 

To complete the proof we have to show that 

Case 1. P is an S-point: Then dF/\dcp has no singu
larities on 5, sO that we can apply Stokes' theorem to 
obtain 

.!as Fl dcp = Is dF/\dcp = fs d(l - cose)/\dcp 

= Is sine de/\d<p. 

But sine de/\drp = (*dr)/ r. Hence in this case c = D. 

Case 2. P is an I -point: Let a be small, and let D be 
the small disc -like subset of S whose boundary is given 
by e = 1T - a, and let A be the annular subset of 5 which 
is complementary to D. Then 
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!as Fl drp = !as Fl drp - !aD Fl dcp + !aD Fl drp 

= IA dF/\dcp + 21T(1 + cosa) 

*dr 
= fA 7+ 21T (1 +cosa). 

Hence as a - 0 we have 

and this completes the derivation. 
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Useful extremum principle for the variational calculation of 
matrix elements. II 
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Recent work [Phys. Rev. A 9, 108 (1974)] on variational principles for diagonal bound state matrix 
elements of arbitrary Hermitian operators is extended. In particular, it is shown that the previously 
derived minimum principle for the trial auxiliary function appearing in such variational principles can be 
constructed using a modified Hamiltonian possessing not heretofore recognized positive definite 
properties. Thus there is at least one alternative to the particular modified Hamiltonian on which the 
results of Phys. Rev. A 9, 108 (1974) originally were based. 

I. INTRODUCTION 

A constantly recurring problem in quantum theory is 
the estimation of the diagonal matrix element 

(1) 

of an arbitrary known linear Hermitian operator W, 
where the nth bound state normalized eigenfunction ¢n
corresponding to eigenenergy En of the given Hamiltonian 
H-is well specified but inexactly known. A natural pro
cedure for the estimation of Wnn is a variational ap
proach. In addition to having a trial estimate ¢nt of the 
exact <P n , making use of such variational principles for 
Wnn characteristically requires having a trial estimate 
L nt of an "auxiliary" function Ln satisfying the in
homogeneous equation 

(H -En)Ln=q(<Pn), 

where 

The variational principle is given by 

(¢~ W <Pn)var = ¢~t W ¢nt + 2Re L ~t (H - Ent)¢nt· 

(2) 

The determination of a reasonable L nt is very much 
more difficult than might seem at first to be the case. 
The source of the difficulty has only recently been com
pletely understood, and a method for by-passing the dif
ficulty introduced. 1 Briefly, Ln can be defined to be 
orthogonal to ¢n' the solution of the associated homo
geneous equation, and no Singularity problem arises on 
inverting H - En' In practice, of course, neither <Pn nor 
En is known precisely. If we replace En by E nt' there is 
no solution U to the homogeneous equation (H -Ent)U=O. 
We cannot require Lnt> the solution of 

(3a) 

to be orthogonal to anything, and the inversion of H - E nt 
in the determination of L nt leads to a near singularity. 
As a consequence the variational principle breaks down 
if the trial auxiliary function is chosen as the solution 
of (3a), as shown in Ref. 1. We must then modify (3a), 
preferably in a way which enables us to determine trial 
auxiliary functions by means of a well-defined, reliable 
approximation procedure. 
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The above authorsl discuss sequences of equations 

(3b) 

whose solutions Lnt-Ln as ¢nt- ¢n' where qt may dif
fer from q, where 

(4) 

and where the "trial" Hamiltonian H t need not - H as 
¢nt - <Pn' They further show that for any proposed <Pnt 
the desired L nt satisfying (3b) can itself be estimated 
from a variational prinCiple. Moreover, given a set of 
sufficiently accurate trial bound state eigenfunctions 
<Pit> i= 1, ... , n satisfying 

the variational principle for L nt becomes a minimum 
principle provided H t in (3b) is chosen to be 

where 

and the projection operators are defined as 

Pit = <Pit¢jt· 

(5) 

(6) 

(7) 

(8) 

The aforementioned minimum principle is expected to 
greatly facilitat~ the task of finding accurate estimates 
L ntt of the L nt exactly solving Eq. (3b), just as the 
Rayleigh-Ritz minimum prinCiple greatly facilitates 
the task of accurately estimating the exact ¢n satisfying 

(H - En)¢n= O. (9) 

The possibility of constructing a minimum principle for 
Lnl' i. e., of finding a functional M(L ntt ) which achieves 
its minimum value when Lntt=Lnt solving (3b), rests 
primarily on the fact that the operator H (nld t - E t is 
positive definite, i. e., that rno. n 

(</!, (H~~d.t - Entl</!) > 0 (10) 

in the space of quadratically integrable functions. 

A very much more detailed account of the origins .of 
the difficulty of estimating L nt and of the methods of 
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bypassing that difficulty, and references to earlier work, 
can be found in Ref. 1. 

We note that the alternative Hamiltonian defined by 
(11) below has been discussed in the past. 2,3 Indeed, the 
possibility of using H~l~, t for precisely the purposes of 
the present paper was suggested by Aranoff and Percus, 3 
who also made some use of the operator. They did not, 
however, obtain conditions on ¢It which guarantee the 
positivity of H~l~ d,t. 

II. AN ALTERNATIVE MODIFIED HAMILTONIAN 

The main objective of this paper is demonstrating 
that-for sufficiently accurate (a phrase made precise 
below) ¢u obeying (5) and (7)-an alt~rnative (to H~"c:d,t) 
choice for H t in (3b) is the operator H~~d,t defined by 
the sequence 

HA(il P HACi
_1 ) P +(1 P )HAU

-1> (1 P ) 
mod.t== it mod,t it - it mod.t - it' i=I, ... ,n 

(11) 

where 1 is the unit operator and 

H~O~d,t "H. (12) 

The operator H~n~d,t is positive definite in the space of 
quadratically integrable functions if! orthogonal to ¢ it' 
i = 1, ' .. , n; L e., provided the ¢it are sufficiently ac
curate, 

(13) 

if 

4>l t if!=O, i=I, ••• ,n. (14) 

Consequently (as will be amplified below) an alternative 
minimum principle for L.t can be obtained by using 
1l~~)d,t instead of the original H~~d,t specified by (6). 

We now prove Eq. (13). For simplicity. we assume 
none of the states ¢i are degenerate, so that the or
dering of the exact ¢ i can be supposed consistent with 
Ej<E J whenever i<j. The needed modifications in the 
proof to make it applicable in the case of degeneracy 
are straightforward and essentially the same as are 
needed1 to extend the validity domain of Eq. (10) from 
nondegenerate to degenerate ¢I' Suppose first that 
n= 1, i. e., that in the desired matrix element (1) the 
quantity ¢n" ¢1 is the ground state eigenfunction. De
note by X I any complete orthonormal set whose first 
element is Xl = 4>lt. the estimate of ¢1' Then one easily 
sees that in the X representation 

It 0 

fin) 
H22 

mod, t--
H32 

where 

Hjj=xIHX; 

0 

H23 

H33 

and E1t is defined by Eq. (7). 
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(15) 

(16) 

The basis for the submatrix 

(17) 

in (15) is a complete set of functions orthogonal to ¢w 
This basis approaches the function space spanned by 
the exact ¢2' ¢3' "', in the limit that ¢u - the exact 
¢l.j:n this limit, therefore, the exact E2 is approached 
by E~ 11, the lowest eigenvalue of H(l). It follows that for 
sufficiently accurate ¢it we surely will have 

(18) 

But Eq. (18) is sufficient to guarantee that Eq. (13) sub
ject to (14) will hold in the case n = 1 QED. We show in 
Appendix A that a sufficient condition for (18) to hold is 

(19) 

If there is only one bound state, E2 must be replaced by 
E tbr , the threshold energy for the beginning of the con
tinuum spectrum associated with H. 

Suppose next that n = 2, i. e., that ¢n in the desired 
matrix element (1) is the first excited state eigenfunc
tion. We now denote by Xi any complete orthonormal set 
whose first two elements obeying (7) are Xl'" 1>lt' X2 = 1>21' 

Then because Eq. (11) constructs H;;~d.t from 1l::~d.t by 
the same projection technique as was used to construct 
H~l~ d,t from H, it is clear that in the present X 
representation we have 

0 0 0 

0 E2t 0 0 

0 0 H33 H34 
H(2) = (20) 

mod.t 0 0 H43 H44 

where Ew E2t are defined by (7). As previously, fo.:: 
sufficiently accurate ¢It' ¢u the lowest eigenvalue E~2) 
of 

(21) 

surely will obey 

(22) 

which is sufficient to guarantee (13) for functions if! 
orthogonal to ¢It and ¢2t. It is shown in Appendix A that 
a sufficient condition for (22) to hold is 

E2t < t(E2 +E3)- [(E 1t-E 1 )(E3 - E 1 )/(E2 -E1 )J· (23) 

If there are only two bound states, E3 must be replaced 
by E thr • 

Appendix A makes it obvious that when ¢. is the nth 
bound state, Eq. (13) subject to (14) is guaranteed by 
relations similar to (23) and (19), though of course for 
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large n they will be rather more complicated than (23) 
and more tedious to derive. Once (13) subject to (14) has 
been assured, it is obvious from Eqs. (2.1)-(2.4), 
(3.15)-(3. IS), and (3.24)-(3.32) of I that for quadrati
cally integrable L nt t =- 1jJ satisfying (14) the functional 

M(L ntt) =L ~tt(H~n;d.t - Ent)L ntt - L~ttqt - qiLntt (24) 

attains its minimum value M(L nt) when (for given ¢u) 
the quantity L ntt equals the unique function L nt satisfying 

(H~"/,d,t-Ent)Lnt=- W¢nt+ t PUW¢nt=-qt (25) 
,=1 

subject to the orthogonality conditions (14); moreover, 
this function L nt is a suitable trial auxiliary function in 
the variational principle 

(Wnn)var = ¢~t W ¢nt + L~t[(H - Ent)¢nt] + [(H - Ent)¢nt]tL nt 

(26) 

providing a variational estimate of the desired exact 
Wnn of Eq. (1). 

With the above, we have achieved our main objective. 

Whether the present H~~d.tof Eq. (11) generally will 
be more or less convenient to employ than the former 
H~n;d.t of Eq. (6) will have to be determined by experi
ence. It is true that the orthogonality conditions (14) on 
Lntt-which can make the minimization of (24) awkward 
to carry out-do noe have to be imposed when H::~d.t 
is employed. Also, it is shown in Appendix B that the 
trial ¢ll needed to ensure the desired positive definite 
property (13) of H~1;d.talways will have to be more ac
curate than the trial ¢1t needed to ensure the corre
sponding positive definite property (10) of H~1;d.t' Never
theless, when 1f~n;d.t is used, satisfying the inequality 

E <E(n) 
nt n +1 (27) 

[which, with E~=i obviously defined, is the analog of (IS) 
and (22) needed to guarantee (13) subject to (14)] should 
not be a serious problem with any reasonably accurate 
estimate of Ell' E2 to ••• , E nt' e. g., with the E it esti
mated via the Rayleigh-Ritz applied to linear combina
tions of n orthogonal functions u1 , ••• , un' For example, 
with hydrogenic energy levels En= _R/n2

, Eq. (19) 
merely requires 

Elt - E1 < 3R/S. 

while Eq. (23) demands 

. '< 5R 32, ). E 21 -E 2 72"-27(E 11 -E1 , 

(28a) 

(28b) 

the inequalities (28) are satisfied if Ell and E21 are ac
curate to four percent, i. e., if 

E 1I -£1 <R/25, 

E2t - E2 < R/IOO. 

Furthermore, as discussed in Appendix B, the inequali
ties (19) and (23) are merely sufficient-not necessary
conditions for (IS) and (22), respectively; it is possible 
to have trial ¢it which satisfy (13) subject to (14) even 
though (19), (23) and their analogs for higher n are not 
obeyed. In any event, failure of (13) subject to (14) 
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should be easily recognizable in practice; when (13) fails 
the functional M(L"tt) will not steadily converge to a 
minimum value as the number of arbitrary parameters 
in the trial functions L"tt is steadily increased. In this 
circumstance, presumably possible only if (18), (22) or 
their analogs (27) for n> 2 fail, it will be necessary to 
introduce a more accurate set of trial eigenfunctions ¢ it 
and associated trial ene rgies E it' 

APPENDIX A: CONDITIONS ON TRIAL ENERGIES 

Let ¢1t be a normalized trial ground state wavefunc
tion which provides the energy estimate Elt via Eq. (4). 
We will prove that if X is a normalized function orthog
onal to ¢It but otherwise arbitrary, then the inequality 

(AI) 

is satisfied provided that Ell obeys the inequality (19). 
Since the eigenvalue E~1) is the minimum value of XWX 
for normalized X orthogonal to ¢It [recall the form of 
the matrix jj(ll, Eq. (17)], this proof implies that (19) 
indeed suffices to guarantee (18). 

Before proceeding with the aforementioned proof, we 
shall give a simplified argument which makes the result 
plausible. Suppose neither ¢It nor X have projections on 
states with energies above E 2 ; in effect we are supposing 
that H describes a two-level system. Then ¢It has the 
expansion 

(A2) 

where for simpliCity we further assume the expansion 
coefficients cose and sine are real, so that e is a real 
angle. The quantity X orthogonal to ¢ll now is 
represented by 

X = - (sinB)¢l + (COse)¢2' 

Accordingly, 

Ell =E1 cos2 e + E2 sin2 e, 

and 

X tHx =E l sin2 e + E2 cos2 e. 

The inequality (AI) now becomes 

(E2 - El)(cos2 B - sin2 e) > 0, 

(A3) 

(A4) 

(A5) 

(A6) 

which is satisfied whenever sin2 e < ~. But if sin2 e < ~, 
Eq. (A4) yields 

(A7) 

which is precisely the inequality (19). Conversely, if 
(19) holds in the present effectively two-level case, then 
(A 7) implies sin2 e < ~ and (A6) is obeyed, which in turn 
implies (AI) surely holds. 

The above discussion can be roughly restated as 
follows. The condition ¢ItX = 0 represents a linear con
straint on X. It follows from Sylvester's theorem, 4 or 
alternatively from the mini-max property5 of the eigen
values, that the spectrum 5 of eigenvalues in the space 
orthogonal to ¢It interlaces the spectrum E1> E 2, E 3 , ... 

of H. Thus the lowest eigenvalue of the spectrum 5, 
which we have denoted by E~ll, satisfies El ~E~ll ~E2' 
The statement that E I < ~(El + E 2 ) implies that the 

Gerjuoy. Rosenberg, and Spruch 457 



                                                                                                                                    

probability of finding the particle in state 1 is more than 
~. The orthogonality of X and 1>11 then implies that the 
probability of a particle with a wavefunction X being 
found in state 1 is less than ~. The lowest energy as
sociated with X is then above the value associated with 
probabilities of ~ each for finding the particle in states 
1 and 2, that is, above ~(E1 + E2), or above the value 
associated with 1>11" 

We now proceed to the promised proof that (19) im
plies (AI) even when the expansions of 1>lt and X are not 
restricted to the forms (A2) and (A3). In particular, 
suppose these expansions are 

(A8) 

(A9) 

in terms of the exact assumedly nondegenerate eigen
functions of H, ordered so that E1 < E2 < E3 < ... ; as 
1>11 - 1>1' I all l2 - 1. Here and subsequently the index i 
in L: 1 runs over all 1>1 starting from i = 1, with the 
understanding that the discrete sum is replaced by an 
integral when 1>i lies in the continuum. The normaliza
tion and orthogonality conditions on 1> i I and X take the 
form 

2 

:0 Ibll =1, 
j 

:0 btali=O. 
j 

From the expansion 

xtHx=:0lb i I
2

Ej 
i 

we obtain a lower bound on XtHX, namely 

XtHX~ Ib l 12E1 +E2[lb212+ Ib3 12+ ... J 

= IblI2E1+E2[1-lblI2]. 

In other words, we have 

XtHX ~ I bl 12(E1 - E2) + E2· 

(AlOa) 

(AlOb) 

(AlOc) 

(All) 

(A12) 

Because E1 - E2 < 0, its factor I bl 12 in (A12) can be 
replaced by any quantity ~ I bl l2

, e. g., by 1, we then 
obtain the trivial result xt HX :;. E 1 • To obtain an im
proved uppe r bound on I bl l 2

, and thence an improved 
lower bound on XtHX, we make use of the following 
general result. Let A and B be normalized orthogonal 
vectors. The orthogonality condition is 

O=:0BjA i 
i 

(A13) 

where n is arbitrary and will be chosen for convenience. 
From (A13) and the Schwarz inequality we have 

IB.12IA.12 = 1 ~ BjAj 12 J-. 
~ {:01 B j 12}{:0 IAj 12}. 

jtn H. 
(A14) 

Use of the normalization conditions 

:0IAiI 2=:0IBiI2=1 
i i 
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in (A14) then gives 

IB.121An12 ~(l- IB.12)(1- IAnI2) (A15) 

which may be written 

(A16) 
Applying this general result to the case at hand, 

wherein 1>11 and X having the expansions (A8) and (A9) 
are the pair of normalized orthogonal vectors, we obtain 

I bl 12 ~ 1 - I au l2
• 

Inserting (A17) in (A12) then yields 

XtHX :;. [1 - I a11 1
2 J (E1 - E 2 ) + E 2 • 

Moreover, we have the expansion 

·t.'11=:0lall I
2
E j , 

I 

which-as in the derivation of (A12)-implies 

E1t ~ I all l2 (El - E 2) + E 2• 

The inequality (A20) can be rewritten in the form 

E2-Ell~ lall I2 [E2-EJ, 

I a11 12 ~ (E~ - E 1I )/(E2 - E 1), 

(A17) 

(A18) 

(A19) 

(A20) 

(A2la) 

which is the so-called Eckart lower bound6 for the over
lap of 1>1 and 1>lt' From (A2la), we have 

(A2lb) 

Inserting into (A18) the upper bound (A2lb) on [1 - 1011 12 1. 
we find that 

(A22) 

The condition that this lower bound on XWX shall exceed 
Ell is seen to be precisely the inequality (19) QED. It 
is clear from the above derivation that if there is only 
one bound state, E2 must be replaced by Ethe , the 
threshold energy of the continuum; in so doing we are 
pre suming that E thr ~ 0, which of course must be the 
case for any system of particles with interaction 
potentials vanishing at infinity. 

The proof that (23) guarantees (22) is a generalization 
of the proof given immediately above. Equations (A8)
(AIO) are retained, but we now introduce as well the 
expansion 

The relations 

(A23) 

(A24a) 

(A24b) 

(A24c) 

express the fact that 1>21 is normalized and orthogonal to 
1>11 and to X, which now represents any function in the 
space orthogonal to both 1>11 and 1>21' In place of the 
manipulations leading to (A12) we now write 

XtHX ~ Ib l 12E1 + Ib2 12E2 +E3( Ib3 12+ 1 b4 12 + ... ) 
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= Ibl 12E1+ Ib212E2+Eg(1-lblI2_lb212). 

Thus 

xtHx ~ I bl l2(El - Eg) + I b212(E2 - Eg) + Eg (A25) 

replaces (A12). From (A24) and the general result (A16) 
we have 

(A26) 

in addition to our still valid (A17). Using (A17) and (A26) 
in (A25) yields 

xtHx ~ [1 - I all 12] (E1 - Eg) + [1- I a22 12] (E2 - Eg) + E g• 

(A27) 

When cf>lt and cf>2t are good trial functions, I all 12 and 
I ~212 in (AlOa) and (A24a) are close to unity. An upper 
bound on [1 - I a22 12] is obtained by generalizing the 
derivation of (A21b), which remains valid. We have 

E2t ="6 1~112EI' (A28) 
I 

which as in the derivation of (A25) implies 

E2t~ 1~112(EI-Eg)+ la2212(E2-Eg)+Eg' (A29) 

Since cf>lt tcf>2t=fJ we have, from (A16) and (A24c), 

1 a2l 12 ~ 1 - 1 all 12, (A30) 

so that (A29) becomes 

E2t~(1-lallI2)(E1-Eg)+ la2212(E2-Eg)+Eg' (A31) 

This is equivalent to 

1 1
2 Eg-E2t [ 1 12](Eg-E1) a22 ~ E _ E - 1 - all E _ E ' 

g 2 g 2 

or 

1 12 [ 1 12](Eg-E1) E2t -E2 1 - a22 ~ 1 - all E _ E + E _ E . 
g 2 g 2 

Equation (A32b) is the desired upper bound on 
[1-la22 12]. Using it in (A27), we find 

xtHx~Eg+E2-E2t+2(E1-Eg)[1-lallI2], 

which, making use of (A21b), becomes 

t ' Ell - E1 
XHX~Eg+E2-E2t+2(E1-Eg) E -E . 

2 1 

(A32a) 

(A32b) 

(A33) 

(A34) 

The condition that this lower bound on xtHx shall exceed 
E2t is precisely the inequality (23) QED. For E1I=El 
this combination reduces to E2t < (E2 + E g)/2 as might 
have been expected from our earlier discussion in this 
appendix. Since E2t ~ E2 always, the condition (23) 
guaranteeing (22) can be satisfied only if the right-hand 
side of (23) exceeds E 2 • This leads to the requirement 
that cf>lt must be sufficiently accurate that 

E < E + (Eg - E2) (E2 - E1) (A35) 
It 1 2 Eg - E1 • 

It can be seen (probably as might have been expected) 
that the condition (A35) on Elt-needed to ensure that 
(23) and thus (22) really can be satisfied-always is 
more stringent than the condition (19) merely needed to 
ensure (18). Evidently in (A34), (A35), and (23) Eg must 
be replaced by E thr if there are but two bound states. 
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The derivation of the inequality guaranteeing (27) 
would proceed along precisely the above lines. For in
stance, in the case n = 3 we would have (in an obvious 
notation) 

xtHx ~ [1- lall l2](El - E 4 )+ [1- 1~212](E2 - E4 ) 

+[1-lagg I2](Eg-E4)+E4' 

1-laggI2~[1-lallI2](!:=~:)+[1-la2212] 

x(E4 - E2) + E gt - Eg 
E4- E g E4- E g 

in place of (A27) and (A32b), respectively; the sought 
for sufficient condition follows on using (A21b), (A32b), 
and (A37) in (A36). The results for arbitrary n follow 
from (A36) and (A37) by inspection. 

APPENDIX B: COMPARATIVE STRINGENCY OF 
POSITIVE DEFINITE REQUIREMENTS 

The required positive definite property (10) of H~r::d.t 
can be guaranteed by sufficiency conditions1 on the ac
curacies of the trial E nt , akin to the sufficiency con
ditions (19) and (23) guaranteeing, respectively, the re
quired positive definite property (13) of H:';~d,t and 
H:;~d.I' Evidently the comparative stringency of these 
sufficiency conditions on E nt will have some bearing on 
the comparative ease with which H~n~d.t or H~r::d.1 can be 
employed, although (as we have stated above) the over
all comparative convenience of H~n~d.1 and H~~.t surely 
will have to be determined by experience. Therefore, it 
is interesting that in the case n= 1-i. e., in the case 
that cf>n= the ground state cf>1 in the desired matrix ele
ment (1)-we can show these sufficiency conditions on 
Ell always are more stringent for our present H:';~d ,I 
than for our earlierl H~l~d, t. The argument is trivial. 
According to Eq. (3. 12b) of I, a sufficient condition for 
(10) to hold in the case n = 1 is 

But 

i(El + E2) ~ - (E1E2)1 /2, 

because we have 

(B1) 

(B2) 

IE11 + IE21-2IE1E211/2=[IE111/2_IE211/2)2~0. 

(B3) 

Hence, as asserted, the sufficiency condition (19) al
ways is more stringent than the sufficiency condition 
(Bl). 

The above argument is not immediately germane to 
the comparative difficulties of guaranteeing the positive 
definite properties (10) and (13), because neither (19) 
nor (B1) are necessary conditions; they are merely suf
ficient. This claim is readily illustrated for the con
dition (19), using the expansions and notation in Ap
pendix A. Suppose for simplicity that the three lowest 
states have the equally spaced energies E1 = - 2a, 
E2 = - a, Ea = 0, with a> 0; suppose further that the 
particular cf>u being employed has projections only on 
cf>1 and cf>a' Then from (A19) we have 

(B4) 
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where for simplicity we are assuming all is real. We 
will have 

(B5) 

if 

(B6) 

With the present cf>1t it is obvious that the X minimizing 
(All) subject to (AlOc) can have no projections on those 
eigenfunctions cf>i for which i> 3, i. e., can have no 
projections on the positive energy continuum eigenfunc
tions. Thus (AlO) and (All) become 

b12+b22+b32=1, 

blaU + b3a13 = 0, 

XtHX = - 2ab/ - ab2
2, 

(B7a) 

(B7b) 

(B7c) 

where, since au has been supposed real, we now lose no 
Significant generality in supposing a13 , bl , b2 , and b3 

are real as well. Equations (B7a) and (B7b) can be solved 
for b

3 
and b2 in terms of bl , thereby converting (B7c) to 

XtHX = - 2ab l
2 - a{1 - (1 + au

2 
/ al /)bI

2
} 

(BB) 

According to Eq. (BB), if a112/a132 > 1, then the minimum 
value of xtHx is - a =E2 , obtained with bl

2 == O. In the 
range consistent with (B6), 

Also, recalling (B4), we will have Ell < E2 = - a if 

Therefore, if au and a l3 are chosen so that 

l<a112/aI32<3, 

in particular, if 

we will have (in the simple case under present 
discussion) 

(El +E2)/2 <EIt< (XtHX)mm =E~l). 

(B9) 

(BI0) 

Equation (BIO) demonstrates that (IB)-and consequently 
(13)-can hold even though the particular cf>lt used to 
construct fJ;';~d.t via (11) fails to obey (19). Since we 
explained in Appendix A that (23) reduces to 
E2t < t(E2 + E 3) when Elt is exact, it is obvious that we 
can construct a similar illustration-involving a cf>21 
with projections only on the equally spaced bound states 
cf>2 and cf>4-demonstrating that (23) is not a necessary 
condition for (22) to hold. 

On the other hand, we can prove rigorously that when
ever iI(1)d I -constructed via (11) with a given choice 

mo • 

of cf>lt-obeys 

(w, [iI~l~d. t - EII]I/!) > 0 (Blla) 

for quadratically integrable functions I/! obeying 

(Bllb) 

then surely H~l~.t -constructed via (6) with the same 
cf>lt-obeys 

(I/!, [H~l~d. t -Elt]l/!) > 0 (B12) 
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for quadratically integrable l/J unrestricted by (Bllb). 
The converse does not hold however; if H~l~ d. I con
struc!ed with a given cf>lt obeys (BI2), we cannot be sure 
that H:';~d.1 constructed from the same cf>ll will obey 
(Blla) for functions l/! subject to (B11b). Moreover, when 
cf>lt equals the exact cf>l it follows from the discussion 
following Eq. (17), and from Eq. (3.11) of I, that E2 is 
the lowest eigenvalue of H~I~d.1 and of iI:';~d.I' Therefore, 
as cf>lt is made increaSingly accurate starting from a 
very poor cf>lt' the positive definite requirement (B11) 
on fJ;';~d. I cannot be satisfied before the positive definite 
requirement (BI2) on H:';~d.1 is satisfied, although with 
sufficiently accurate cf>ll both (Bll) and (B12) surely will 
be satisfied. 

The above claims concerning the relationship between 
(B11) and (BI2) for the same cf>1t-which account for 
the assertion in the text immediately preceding Eq. 
(27)-are proved as follows. Introduce the prOjection 
operator 

Qlt= 1- Plt (B13a) 

obeying, by virtue of the definition (B), 

Plt QIt = QIIP1I == PII - Pil == O. (B13b) 

From (6), recalling the definition (4) of Ell' one readily 
verifies that 

PltH:';~d.t =H:';~d.tPlt=O. 

Therefore, we have 

QltH;';~d.tQlt= (1 - Plt)H~I~d. t(1 - PIt) ==H~l~d. t. (B14) 

Thus, returning to (6), we have 

Qlt HQ11 = QltH:';~d.tQlt + Qlt HPI tHQIt/Elt 

=H~l~d. t + QItHPltHQIt/Elt' 

In (B15) the coefficient of l/Elt is 

(QIIH cf>1t) (cf>itHQIt) = (Qlt H cf>1t)(Qlt H cf>lt)t 

(B15) 

since the definition (B13a) makes Qit==Qlt. Consequently, 
once cf>ll has been chosen accurate enough that Elt < 0 
[as it must be if there is to be any chance of satisfying 
either (10) or (13)], we will have the operator inequality 

(BI6) 

Equation (BI6) means that the lowest eigenvalue of 
H:';~.t in the space of quadratically integrable functions 
l/! never lies below the lowest eigenvalue of Q1tHQ lt in 
the same space. But this lowest eigenvalue of QltHQ lt 

is precisely the lowest eigenvalue E~ll of H(l), Eq. (17), 
because one easily sees that in the representation 
(spanning the entire space of l/J) which yields (15) for 
fJ~'C:d.t the operator QI~Qlt is given by 

(B17) 
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Since it is presumed that the lowest bound state energy 
E1 of H is < 0, it follows from SYlvester's theorem4 (as 
in Appendix A) that E~l) is < 0, i. e., it is certain that 
E~l) lies below the lowest eigenvalue, zero, associated 
with the matrix (B17); correspondingly, (B17) shows 
that the eigenfunct~n of Q1JlQ1 t belonging to its 
lowest eigenvalue E~l) lies in the subspace orthogonal to 
<Plt. Indeed, according to (11), we have 

fl:';~d,t = P lt HP1t + Q1tHQit" 

Consequently, since 

P1tX=XtP1t=0, 

ctltX=X 

(BI8) 

(B19) 

for any normalized X perpendicular to <Plt , Eqs. (B18) 
and (B19) imply that for such X 

xtH~1~d,t X = xtQltHQlt X =x WX. (B20a) 

Equation (B20a) in turn implies that for normalized X 
orthogonal to <P1 t 

min{x t H~l~d,tX}= min{xtQ1tHQltx} = min{xWx}= E~l). 

(B20b) 

As the accuracy of <P1 t is improved starting from 
comparatively inaccurate <P1I' Eq. (B12) will begin to 
hold when the lowest eigenvalue of ~~~, t becomes greater 
than Eit" The preceding results-especially (B16) and 
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(B20b)-have demonstrated that for such.!P1t, barely 
satisfying (B1Z), we generally will have E~l) < E lt , in 
which event the inequality (B11a) will fail for some 
functions 1/! consistent with (B11b). This demonstrates 
the claims made above concerning the relationship be
tween (B11) and (B12) for the same <P1I" 
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Perturbative-variational approximations to the spectral 
properties of semibounded Hilbert space operators, based on 
the moment problem with finite or diverging moments. 
Application to quantum mechanical systems 

D. Bessis and M. Villani* 
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We introduce in a systematic way the properly defined arctangent of the mean value of the resolvent 
of a Hilbert space operator. We consider more precisely the case of semibounded self-adjoint 
operators H, in the region of the discrete spectrum. The arctangent of the Pade approximations to 
the mean value of the resolvent are constructed out of the moments. They are shown to provide 
converging monotonic increasing sequences of lower bounds to the arctangent of the resolvent. 
Consequently bounds with the same properties are derived for the discrete eigenvalues of Hand, 
most remarkable, the ordering of the corresponding poles of the approximations reproduces the 
ordering of the exact poles. The Pade method is shown to provide a way to fully exploit the content 
of the Rayleigh-Ritz variational method, by providing a simple mechanical procedure to build up the 
variational subs paces: It defines a powerful both perturbative and variational approximation to 
semi bounded operators. The difficulties of the Ritz method in the degenerate case are overcome by 
the fact that all bounds in the Pade method are strict bounds. In a second part, we consider the 
important case in which the moments are given by diverging algorithms. By properly regularizing 
them, we show that the Pade-Ritz variational principle generalizes to produce absolute maxima of 
the arctangent of the Pade approximations in the regulator and that these maxima form monotonic 
converging sequences of lower bounds. In the last part, we discuss an application to quantum 
mechanical systems for which the perturbative variational method is applied to the energy, allowing 
us to treat the case of strong coupling. As a consequence it appears possible to solve (approximately) 
the R -dimensional anharmonic oscillator in a purely algebraic way. 

INTRODUCTION 

In quantum mechanics, one is often faced with the 
problem of calculating the matrix element of the resol
vent of an Hamiltonian Ho This operator H is, for physi
cal reasons, a semibounded self-adjoint Hilbert space 
operator. The use of the polarisation theorem allows 
ore to consider only mean values of the resolvent of H: 

(1) 

RIJ)(A) enjoys a remarkable property: It can be written as 
a disoersion relation with a nonnegative weight function o 

Introducing the "moments of H" 

(2) 

which are the Taylor expansion coefficients of R .. (A), the 
method of moments1

,2 gives us a powerful tool to build 
up approximations to R .. (A). However, it is necessary 
that the numbers I-l n exist, that is, that 1'1') be chosen in 
such a way to belong to the domain of any power of H. 
This is always so when H is a bounded self-adjoint oper
ator. In such a case, the method of moments gives con
verging approximations to R .. (A) whose formal and prac
tical aspects are discussed in Ref. 2. 

However, the operators H, with which we are faced in 
quantum mechanics are generally only semibounded. For 
this class of operators, the moment method suffers from 
two types of difficulties: 

(0 Even if all the I-l n exist, a certain indeterminacy on 
R .. (A) still survives, when the moment problem is inde
terminate. While when the problem is determinate, the 
knowledge of the I-l n is sufficient to rebuild R",(A). Only 
a sufficient condition (Carleman3

) on the Il n is known for 
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the problem to be determinate. [Practically Il n must not 
increase faster than (2n)! 1. 

(ii) If for some n ~ N, the Il n do not exist any more. 
This case appears very frequently, in particular in the 
so-called problem of singular interactionso 

If the moment problem is determinate, then one can 
extend the results valid for the case of bounded opera
tors to this last case. 3 

The purpose of this paper is to explore and to state 
some further properties of the moment method, more 
particularly keeping in mind the case of semibounded 
operators. 

In this work, we consider a generic semibounded self
adjoint operator H and we want to explore the properties 
of R .. (A) in the region of the discrete spectrum. The re
solvant having a very violent behaviour in this region, 
we completely smooth it out, by considering systemati
cally the properly well-defined arctangent of it. We 
build up for arctan AR", ('A) a monotonic sequence of 
bounds, which, as a consequence, allows to construct 
a monotonically decreasing sequence of upper bounds 
for the distinct eigenvalues of H. 

The tool of our investigation is the Pade approxima
tion technique, which has been extensively analyzed in 
the recent literature 0 4-7 

We give now a brief description of the content of our 
work: 

In Sec 0 LA, we fix our notations and definitions 0 

In Sec. I. B, we show a simple property of monotoni
city in the parameter A for the arctan AR",(A) as well as 
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for arctan X [N -1/ NJ, where we have considered the 
Pad~ approximant [N -1/ N] to Rf/>(X) built up from the 
first 2Nmoments (cpIH"lcp) (n=O,ooo,2N-1)o Further
more, one proves that the sequence {arctan X[N -1/ N]} 
is monotonic in the index N. 

In Sec. I.e, we show that arctan X[N-1/N] is bound
ed from above (or from belOW, according to the proper
ties of H) by arctan X Rf/>(X), Here we also discuss the 
possibility of more general monotonic approximations to 
arctan XR,,(X), using the variational method of Rayleigh
Ritz. It is well known that the Pad~ approximants are 
particular versions of the Ritz methodo 2,4,6 

In Seco LD, we state the convergence of arctan x[N 
-l/N] as N- 00. When the moment problem is determi
nate, the limit is the correct function arctan XR,,(X). In 
this case we have, as a by-product, that the poles of the 
Pade approximants converge to the corresponding exact 
poles of the resolvent of H (the distinct inverse eigen
values of H). 

In Sec. 1. E, we consider and discuss what analogous 
results can be expected from the variational Ritz 
method. 

With respect to the- general variational procedure (the 
Ritz method), the Pade approximants enjoy some useful 
advantages, such as the control of the convergence and 
the possibility of obtaining further important informa
tion on the spectral function of R,,(X). Therefore, in Ap
pendix H, we recall the connection of the Pade approxi
mants with the tridiagonalization method of Jacobi1,8 and 
the Lanczoz method. 2,9 Then, in Appendix I, we discuss 
how one can obtain bounds on the residues of the poles 
of Rf/>(X) and, furthermore, how one can localize the dis
crete spectrum embedded in the continuous spectrum. 

In the second part of this work, we are faced with the 
difficulties of the type (ii) for the method of moments. 
In this case, one cannot expand Rf/>(X) in a power series 
of X with coefficients given by (cpIH"lcp). We give a pro
cedure to overcome this difficulty. One introduces a 
suitable regularization of the operator H, as a family of 
operators H(E) for which the moments (cp I H"(E) I cp) exist 
and the moment problem is determinate. If the regulari
zation parameter E is chosen in an appropriate way, one 
can show that absolute maxima, as a function of E, of the 
arctan X[N -1/ N] exist which give monotonic converging 
approximations to arctan XRf/>(X), 

The usefulness of such a procedure, which extends the 
Pade-Ritz variational principle to include cutoff param
eters, has been proven to be very efficient in computing 
physical quantities (phase shifts which appear as the 
arctan of the resolvant of a symmetric operator) in the 
theory of singular interactions. 10 A possible application 
of the method could be to consider, variational proper
ties of the phase shifts in field theory as function of the 
regulators. 

We conclude this work with a brief discussion of the 
applications to quantum mechanical problems 0 In partic
ular' we consider the R-dimensional anharmonic 
oscillator. 

The method developed here, enables one to consider 
new perturbative variational expansions in quantum 
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mechanisms, where the expansion parameter is not a 
coupling constant, but the inverse of the energy, which 
allows consideration of the case of strong couplingo 
Starting with a trial vector I cp) which may depend on a 
certain number of variational parameters {PI}' one com
putes a given Pade approximation. Then the poles of this 
approximation which form ordered sequences, approxi
mating the exact ones, can always be optimized by ex
ploiting their variational properties with respect to the 
{Pi}' obtaining upper bounds for the discrete distinct 
eigenvalues of H (excited states). Such procedure can 
give very rapidly converging approximations as has been 
shown in the particular context of potential scattering 
theory for operators of the Hilbert-Schmidt type. 11 

For the R-dimensional anharmonic oscillator, whose 
Hamiltonian is an arbitrary polynomial in R variables, 
we show that, by conveniently choosing the trial vector 
I cp), it is possible to render the calculation, at any or
der purely algebraic, avoiding any of the difficulties 
connected with the calculation of multiple integrals. 

I. 

A. The class of operators-notations and definitions 

In this paper, we consider self-adjoint Hilbert space 
operators H, having the positive part of their essential 
spectrum reduced to a point: the origino This means that 
their continuous spectrum must be nonpositive, while the 
positive part of the spectrum must be discrete with only 
one point of accumulation, the origin (some other type of 
operators are briefly discussed). Such operators can be 
compact, bounded or semibounded o 

Our aim is to compute approximations to the mean val
ue of the resolvent of H in the positive region, and in 
particular of the positive discrete spectrum (isolated 
poles of the resolvent). 

Let I cp) be a vector in Hilbert space, such that it be
longs to the domain of any power of H, and consider the 
mean value of the resolvent of H 

R,,(X) = (cp \ [1 - XH]-l\ cp) 

and fJ. K be the Kth moment 

fJ.K=(cp\HK \ cp). 

(1. Ao 1) 

(10 Ao 2) 

Due to the hypothesis on the vector I cp) all the fJ. K are 
finite. The case where some or all fJ. K do not exist, but 
admit finite regularizations will be the object of the sec
ond part of this paper. 

Using the spectral representation for H, 
write (LA.1) 

we can re-

r+~ dP t f.+~ dfJ. 
R,,(X)=(cp\ J~ 1-xt !cp)= _~ 1-xt (1. Ao 3) 

with 

dfJ. =(cp!dPt ! cp» 0, (10 A. 4) 

where dfJ. is a positive measure. By expanding (LAo 3) in 
power of X, we obtain formally 

Rf/>(X) =£ X" f-:~ t" dfJ. =.B X "(cp \ H"! cp) =.B X "fJ.". 
"=0 "=0 "=0 

(LA.5) 
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We see that R.,(X) is an extended Stieltjes function. 

The problem of computing R.,(X), knowing the Iln' is 
equivalent to the "moment problem, " of constructing a 
positive measure dll from the knowledge of the moments: 

with Pi> 0 and Xi> O. We can, therefore, rewrite 
(I.B.1): 

(I.B.3) 

(I. A. 6) We see that for Re X> 0, XR.,(X) is meromorphic in x. It 
is trivial to check that 

It is known that if the series 

"" ~ [1l
2

K]-1/2k (I.A.7) 
k=1 

diverges, the moment problem is determinate (I. A. 6 
has a unique solution) and one can reconstruct unambi
guously R.,(X) for complex value of X, from the ilK' using 
the [N -1/ N] Pad~ approximations to R., (X). These Pad~ 
approximations converge uniformly in X, in any compact 
region of the upper or lower X half complex plane, to the 
resolvent R.,(X). 

Condition (I. A. 7) is roughly equivalent to III K I ~ K!. 
In fact, in our case, condition (LA. 7) can be replaced 
by the much less stringent condition that the series 

tI IlK I-l/2K (I.A.8) 
hI 

diverges. The reason is that we deal here, with opera
tors H which can, by a finite translation, be changed into 
negative operators fl. This translation induces an homo
graphical transformation on the variable X of xR(x), 
transformation for which the Pad~ approximations are 
covariant. 

Furthermore, it is not difficult to show that when 
(I. A. 8) is verified the translated moments fulfill the 
Carlemen condition for the Stieltjes case, and therefore 
the moment problem is determinate for iI. 

Combining those two results, we see that (I. A. 8) is 
sufficient to have, in our case, the moment problem 
determinate, 

We want now to explore the properties of the resolvent 
and its Pad~ approximations on the real axis among the 
singularities, 

B. Some preliminary theorems 

To analyse the properties of the resolvent on the semi
positive axis where we have as a function of X only iso
lated poles accumulating at infini ty, we shall introduce 
systematically the arctan of X times the resolvent. This 
function has very remarkable properties of monotonicity 
in X, and, furthermore, is holomorphic in X for real X 
positive; the poles have been changed into pOints of holo
morphy and therefore it is now easier to obtain bounds 
for the resolvent and for the position of the poles. 

1. A property of the arctangent of A times the resolvent 
of an operator H 

Let us consider the function 

(LB. 1) 

For t positive, we have by hypothesis only isolated poles 

(I.B.2) 
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! [~RIJ)(~)] <0 (I.B.4) 

for X> 0 and X *Xl' 

Therefore, (d/ dA)[XR.,(X)] is for X > 0, and *X p always 
positive. 

Defining the positive inverse spectrum of H by the 
equation 

(I.B.5) 

we shall therefore consider two cases: 

(A) If the positive inverse spectrum accumulates at 
+ 00, we write 

(I.B.6) 

where we have classified only the distinct inverse-eigen
values such that I cp) has nonzero projection on the re
spective eigenspaces, and we define the quantity 

OA(X) = arctan XR(X) for X ?o O. (I. B. 7) 

R(O+) being equal to Ilo is finite, and we define the arctan 
by continuity, starting from the value 

(LB. 8) 

We see that 

~ OA(X) = 1 + X;R~(X) ~ [XR.,(X)] > 0 (LB. 9) 

for X> O. Furthermore, AReA) being meromorphic for 
Re X> 0, we see that (d/ dA)[OA(X)] is holomorphic for 
X> 0 and therefore OA(X) is also holomorphic in the vici
nity of the semipositive axis. 

Finally, OA(X), which is a monotonic increasing func
tion of X, passes through the value (2k -1H7T for X =x k 

and tends to + 00, for X - + 00, if there are infinitely 
many discrete states, or tends to a finite limit OA(+ 00), 
with 

(2N -lH7T < OA(+ 00) < (2N + l)·h 

if there are N finite states. 

(I.B.lO) 

(B) If the discrete positive inverse spectrum accumu
lates at pOint a> 0, then we set 

(LB. 11) 

In such a case, we define the arctangent by normaliz
ing it at X = + 00, and following it by continuity down to 
X =a+. 

We set 

OB(+ 00) = arctan lim AReA) (I.B.12) 

with -7T/2 < OB(+ 00) '" +7T/2. (LB. 13) 

We see that oBex) is a monotonously increasing function 
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of X, holomorphic in X in the vicinity of the semipositive 
axis, and tending to - 00 when X -a+. Finally, OB (X) pass
es through the values - (2k -1)-}rr, when X =X ~ • 

If the number of poles is finite and equal p on the posi
tive axis, then it is immediate to relate OA(X) and OB(X): 

(I.B.14) 

2. Properties of mono tonicity in the variable A, and in 
the index N, of the arctangent of the [N·' IN 1 Pade' 
approximant to the resolvent of an operator 

We shall first recall the following fundamental theo
rem, whose demonstration, for completeness will be 
found in Appendix A. 

Theorem 1: Let H be a symmetric operator, and I cp) 
a vector in the field of any power of H. We set 

R,,(x)=(cpl[I-XH]-l! cp), 

Ilk =(cpIHkl cp) < 00. 

(I.B.15) 

(I.B.16) 

The Pade approximation [N -1 / N]R" (X) constructed 
out of the first 2N moments /.L~ (k = 0,1,2, ... ,2N -1) is 
equal to the mean value of the resolvent of the finite 
rank symmetric operator PNHPN: 

[N -1/ N]R,,(X) = (cp I [1 -XPNHPN]-ll cp), (I.B.17) 

where PN is the projector onto the N-dimensional space 
[(N) spanned by the vectors {I cp); H I cp); 1P I cp); 
• •• HN-li cp)}, supposed tobe linearly independent. In the 
accidental case where this set is linearly dependent, 
[N-l/N]R,,(X) is equal to R,,(X) itself. 

We see as a consequence of this theorem and of the 
previous properties that the function 

0N(X) =arctanX [N -1/ N]R (X) =arctan[N/ NL (X) " ~" 
(I.B.18) 

is an holomorphic function of X, for X in a neighbourhood 
of the real axis, monotonically increasing in X. 

In Case A, we define the arctan, as before, by the 
condition 

O~ (0) = 0, 

while in Case B we use the normalization 

o~( + 00) :::::arctan lim [N/ N]>J/ (X). 
~ .. +DO fP 

(I.B.19) 

(I.B.20) 

However, since the number of poles is finite and equal 
to N, these two functions are connected by (I.B.14). 

We shall now state the following theorem, whose de
monstration will be found in Appendix B. 

Theorem II: The function O~+l(X) is, for X >0, always 
greater than 15~(X). If in one point x> 0, Otl (~) = o~(~), 
then all O~+k(X), k?- 0 are identical to o~(x), itself equal 
to I5 A (X). The same extends to X < 0, by changing "great
er than" by "less than." Furthermore, at point X =0, 
O~+l(X) and o~(x) have a contact of order (2N+ 1) in X. 

As a consequence of this theorem, we see that for 
X> 0 the family of functions o~(x) from a monotonically 
increasing set of increasing functions 

(I.B.21) 
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If P is the number of poles located on the positive real 
axis (that is, the number of positive eigenvalues of the 
operator PNHPN), 6~(X) reaches at X = + 00 a value be
tween (2p - Hrr/2 and (2p + Ihr/2 as consequence of 
(I.B.IO). Furthermore, due to the orthogonality proper
ties of the denominators of the [N -1/ N]R (X) Pade ap
proximations,l.2.7 we see that, between ~o poles of the 
[N/ N]>J/ , we have exactly one pole of the [N + 1/ 
N + 1]>J/", except between the two of opposite Sign near
est to the origin of the [N / N]>J/ , for which we have two 
poles of the [N+l/N+l]>J/IP' o~e positive and one nega
tive. Therefore, the number of positive poles of [N + 1/ 
N +1]l.R is either p or p+ 1 depending if the last pole of 
[N + 1/N + 1]>J/ occurs at the right of the rightmost pole 
of [N/ N]>J/ or "at the left of the leftmost pole of [N/ N],~ • 

" ~" Finally, we want to point out that if we order the posi-
tive poles of [N/ N]>J/ and [N + 1/ N + 1]>J/ following the 

" " scheme 

(1.B.22) 

(I.B.23) 

(the last one Xf:ll may not exist), we have, as a conse
quence of (r.B.21), that 

(I.B.24) 

The poles of the [N - 1/ N]R (X) Pade approximant form 
ordered monotonically decr~asing sequences • 

We come now to theorems concerned with the func
tions o~(x). 

Theorem III: If H is a positive operator, then the func
tion O~+l(X) is for real X always smaller than 15~(X). If in 
One point 1 > 0, 15~+l(X)=o~(X), thenallo~+k(X)' k?-O, are 
identical to 15~(X), itself equal to I5 B (X). 

At point X = 0 we have 

(I.B.25) 

When H is positive, all the poles of [N/ N]>J/ are also 
positive (because they are the eigenvalues of PNHP

N 
which is positive), Therefore, applying formula (1.2.14) 
we see that 

= 7T. (r.B.26) 

This proves formula (LB.25), taking into account the 
last part of Theorem II. Furthermore, 6~+l(O) being 
smaller than 15~(O), we see by an argument identical to 
the one of Appendix B that O~+l(X) will remain every
where smaller than o~(X). Now by ordering the poles of 
the Pade approximations from right to left, we find sim
ilarly that they form ordered monotonically increasing 
sequences: 

(1. B. 27) 

C. Bounds provided by the arctangent of the [NIN 1 P.A. 
to the resolvent of an operator H 

We shall consider a more general type of approxima
tion (the so-called variational approximation) to the re-
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solvent of an operator H, than the Pad~ approximation, 
and prove for it a property of bound to the exact resol
vent. We assume that I cp) belongs to D, where D is the 
domain of H. 

Let us consider a sequence of finite-dimensional 
spaces {[ 1;[ 2;[ 3; ... ;[ N;[ N01; ••• } which are sub
spaces of D, such that the (N + l)-dimensional space 
[N01 always contains the N-dimensional space [N: 

[ c~c···c[c[ c··.cH 1 - LQ N N01 • (I.C.1) 

If we introduce the projectors Pu P 2 , .'., PN, PN01 ' ••• 
which project into the corresponding spaces, we see that 
the operators Pi form a monotonic increasing sequence 
of positive operators: 

0<P1 <P
2
<··· <PN<P N01 < .•. <I, (I.C.2) 

We introduce the restriction HN of H to the space [N: 

HN = PNHPN• 

The resolvent R~(A) to H is 

R ~ (A) = ( cp I [1 - AH] I cp). 

(I. C. 3) 

(I. C.4) 

It is interesting to consider the approximate resolvent 
R~(A): 

R~(A) = (cp I [1-APNHPN]-11 cp), (I. C. 5) 

where the vector I cp) is restricted to belong to all spaces 
[N (N=1,2, ••• ), PNlcp)=lcp). 

We have the following theorem whose demonstration 
will be found in Appendix C. 

Theorem IV: If the operator H has a purely discrete 
positive inverse spectrum with only one point of accu
mulation at + 00, then for A '" 0 

arctan AR~ (A) -'S arctan AR ~ (A), (I.C.6) 

where the arctan are followed by continuity from A = 00 

where they are put equal to zero 

A corollary of this theorem is 

Theorem V: The sequence of arctan Ak~(A) is for A'" 0 
a monotonic nondecreasing sequence of increasing 
functions: 

o -'Sarctan AR~(A)-'Sarctan AR~(A) -'S.'. -'Sarctan AR~(A)-'S 

(I.C.7) 

We have seen in LB.1 that the arctan of AR~(A) is an in
creasing function of A, equal to zero at A = O. Further
more, noticing that 

P NH N 01 P N = H N 

and that H N 01 is an H -operator, we see that 

arctan AR~(A) -'S arctan AR~+1(A) 

(I. C. 8) 

(I. C. 9) 

by using Theorem IV applied to the restriction HN of 

HN+l" 

This proves simply Theorem V. 

Remark: We notice that while the bounds (I. C. 7) are 
loose, the bounds on the Pad€! approximations are strict: 
If in one point ~ there is equality, then the equality ex
tends to all values of A and all P.A. of larger order 

466 J. Math. Phys., Vol. 16, No.3, March 1975 

which become identical among themselves and to the ex
act resolvent. It can be shown with explicit examples 
that this is not the case for the variational approxima
tion in general. 

D. Convergence of the [N-l/N 1 Pade' approximation to 
the resolvent of an H operator on the positive semiaxis 
in the determinate case 

For a given value A =X > 0, formula (I. C. 6) shows 
clearly that the arctan [A.[N -1/ N]R (A)] has a limit when 
N- + 00, because they form monotbnically increasing 
sequences of real positive bounded numbers, The limit 
being smaller or equal to arctan AR~(A). 

We shall now show, that when the moment problem is 
determinate, the limit is effectively arctan AR~(A)' For 
A complex this result is well known, 3 and we shall there
fore extend it to the real positive values of A among and 
including the discrete poles of the resolvent, 

We shall first recall that if we order the p positive 
poles of the [N/ N] Pad€! approximation to AR~(A) 

O<A~N) <A~N) < .•. A:N) <A:~i < .•. <A~N>, 

as well as those of the exact function AR~(A), 

0<A1 <A 2 <··· <Ai<Ai+1 <' •. , 

then for a fixed i we have (see formula LB. 24) 

(I.D.1) 

(I. D. 2) 

Ai < •.• <Af+1 <Af < ... <Afo, (I.D.3) 

where No'" i is suffiCiently large for the [No! No] Pad€! 
approximation to have i positive poles. The fact that 
such No exists is trivially connected to the fact that when 
N - + 00, the number p of positive poles of [N/ N]XR ~ (A) 
also tends to infinity. This last argument is evident if 
the moment problem is determinate because then the ap
proximated measure of the Pade approximation can be 
shown to tend to the exact measure, which can happen 
only if the number of positive poles of the approxima
tions tends to the number of the positive poles of the re
solvenL If the moment problem is indeterminate, then 
all self -adjoint extensions of the symmetrical operator 
associated with this indeterminate problem1 have the 
same essential spectrum, because the defect index is 
finite. 1 Therefore, an analogous conclusion applies. 

The sequence Af (N=No; No+1; No+2, ••• ), being a 
positive decreasing bounded-from-below sequence, has 
a limit Li for N- + 00 with 

(LD.4) 

and clearly 

(I.D.5) 

also, 

Theorem VI: The Pade approximation IN/ N] to AR~(A) 
converges uniformly to an analytic function of A, holo
morphic in any compact of the A complex plane, in which 
for N> No the sequences of [N/ N]XR (A) have no poles, If 
the moment problem is determinatJ'this analytic func
tion is AR~(A) itself. (See Appendix D for the proof.) 

It is not difficult to show (See Appendix E) the 
following: 
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Theorem VII: Ii the moment problem is determinate, 
then Ai=Lp i=1,2, •••• 

We have shown that the positive poles of the Padtl ap
proximation converge to the poles of the resolvent in the 
determinate case in a monotonic way: the ith pole of the 
approximation being monotonically decreasing in the in
dex N, bound of the ith pole of the resolvent. We now 
extend this result to any point of the real positive axis. 

Theorem Vill: In the determinate case the arctan 
[N!N]AR(/I(A) form, for A> 0, a monotonically increasing 
sequence tending, when N- + 00, to arctan AR",(A). (See 
proof in Appendix F. ) 

Finally, we want to point out that if, for convenience, 
One uses the normalization of the arctan at + 00 (Case B 
of Sec. I. B) nothing is changed in the conclusions of all 
this chapter except that we have decreasing sequences 
instead of increasing ones, and therefore a certain num
ber of inequalities have to be reversed. 

E. Extension of the previous results to the variational 
Rayleigh-Ritz method and comparison of our 
inequalities with the standard variational inequalities 

As consequence of Theorem IV, we can construct a 
monotonically decreasing sequence of upper bounds to 
each of the discrete inverse eigenvalues of H (to be spe
cific, we will consider only Case A). 

We have shown that these upper bounds converge to 
exact values when we use the Pade approximation method 
and the moment problem is determinate. We shall ex
tend now these results to the Ritz variational method. 
We first recall the meaning of the standard variational 
upper bounds (mini -max principle, Poincare 
inequalities). 12 

Let us call Ai (i=1,2, ••• ) the inverse positive dis
crete eigenvalues of H (in general nondistinct) ordered 
in a nondecreasing way, 

(I. E .1) 

corresponding to the orthogonal set of eigenvectors 
~1' ~2' ••• }, c N being an N-dimensional subspace of the 
domain D of H and PH the corresponding projector; we 
consider the operator HN=PNHPN, and its inverse posi
tive eigenvalues ~f (i = 1, 2, 00', M ~ N). 

We have, as a consequence of the mini-max principle, 

(I.E.2) 

It is unfortunately not true that, if we consider the 
distinct inverse positive eigenvalues 'Xi of H and xf of 
HN , 

(I.E.3) 

except for the first inequality which is always true. 

Let us now introduce a subsequence extracted from 
the sequence fxJ in the following way: Given I cp) in the 
Hilbert space we associate with I cp) the sequence 

(I.E.4) 

where A1(CP) is the first term of the sequence fx i } for 
which I cp) has a nonzero projection in the corresponding 
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eigenspace, A2(CP) is the second term of the sequence 
having the same property and so on [obviously the Af(CP) 
are the poles of the resolvent R(/I(A)] 

For an arbitrary projector PN' it is still untrue that 

(I.E.5) 

However, as shown previously, these inequalities be
come true if we choose the special choice of PH associ
ated with the Pade approximation method or even mox'e 
generally if I cp) belongs to aU spaces C N: 

PNlcp)=lcp). (I.E.6) 

We come back now to the problem of convergence of 
arctan AR~(A) to arctan AR(/I(A) when (I. E. 6) is fulfilled. 
Introducing a succession of linear manifolds C N such 
thatD::JC N+1::J C N with C1 ={I cp)}. It is clear that the se
quence generates an infinite-dimensional manifold 
c~CD. 

Let us suppose that (1) C ~ is dense in the H (Hilbert 
space) in which we work; (2) the transforms of c. by 
,H ± iI are dense in H. 

(1) Implies that PN- I for N- + 00 (PN projects on C N)' 
that is, PNHPN - H in C'" but not necessary inLJ (con
vergence in the strong sense). 

If (1) and (2) are fulfilled, then 

(cp![1- AHN]-1!cp)- (cpl[1-AH]-1!cp), 
N~~ 

and the convergence is uniform for A belonging to any 
compact not intersecting the real axis, (See Ref. 8 for 
the proofs.) 

Condition (2) is specifiC of unbounded operators; in 
fact, for bounded operators only condition (1) is neces·· 
sary to prove the convergence of the resolvent (see Ap
pendix G). By analogy with the fact that, for a bounded 
operator, the moment problem is always determinate, 
we can say that condition (2) represents, for the Ritz 
variational prinCiple, the analogous condition of the de
termination for the Pade approximation method. There
fore, when (2) is verified, we shall say that the varia
tional Rayleigh-Ritz method is determinate. 

Introducing the spectral families E(A) and EN(A) asso
ciated to Hand HN , we noW have for the determinate 
problem 

lim (cp! EN (A)! cp) = ('P! E(A)! cp) (I.E.8) 
N-~ 

in any point for which (cp I E(A) I cp) is continuous. B 

From this last inequality, together with the fact that 
the arctan AR~(A) form a monotonically converging in
creasing sequence, we can deduce that 

lim Af(cp) =Ai(CP). (I.E. 9) 
N-dO 

As consequence of this result, and of the Vitali's theo
rem, 13 we get the following: 

Theorem IX: If the Ritz variational problem is deter
minate, then 

lim arctan A(cpl[1- APN HPN ]-1Icp) 
N-~ 

(I.E. 10) 
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II. THE MOMENT PROBLEM WITH DIVERGING 
MOMENTS 

Introduction 

When the moments do exist, the method of Padfl ap
proximations appears to the very useful, giving an ex
plicit and simple way to construct and choose the space 
{N of the variational method, In fact, the Padfl approxi
mation method allows one to obtain rapidly converging 
answers, (For compact operators the spectrum is ap
proached exponentially rapidly2; this feature seems to be 
general,) This convergence can even be improved, ex
ploiting the variational aspects of the method, II Because 
of the systematic feature of the moment method, its ra
pidityof convergence, its possibility to sum up strongly 
diverging series, it is extremely useful to consider the 
extension of the method to the case in which the moments 
themselves are given by diverging algorithms, 14 

To set up the problem, let us suppose the vector I cp) 
does not belong to domains of H". 

This condition is too restrictive, and can be enlarged 
to the case in which the first p moments exist, and only 
the p + 1, p + 2, ' " are infinite, and to the indeterminate 
moment problem. However, for definiteness, we shall 
stick to the first case. To make use of the moment meth 
od, we introduce a sequence of auto-adjoint operators 
H(E) regularizing H and fulfilling 

(II. 1) 

Let us suppose that it is possible to regularize in such 
a way that 

(i) H(E) gives rise to a determinate moment problem 
for E < Eo [for instance, we can choose H(E) to be 
bounded]; 

(ii) lim._.o arctan X (cp I [1 - XH(E)]-ll cp) 
==arctan X(cp I [l-XH]-ll cp) (with the ordinary con
vention on the definition of the arctan); and 

(iii) arctan X (cp 1[1 - XH(E')]-ll cp) > arctan X (cp 1[1 
_AH(E)]-llcp), E<E'<Eo' (n.2) 

That such regularization can be effectively worked out 
is explicitly shown in a rather general example in Ref. 
10, 

When condition (i), (ii), (iii) are fulfilled, we can state 
the following theorem, 

Notation 
B(X, E) ==arctan (cp! ~..[1 -XH(E)]-l! cp), (n.3) 

BN(x, E) ==arctan X[N -1/ N]R(E,A)(X, E). (IT.4) 
We have 

(i) B(X,E) is, for fixed X>O, a monotonically nonde
creasing function of E (for E < Eo) having its maximum val
ue at E == Eo equal to B(X); 

(ii) BN (A, E) is, for fixed A> 0, bounded by 6(X, E) from 
above and by ° from below and has, therefore, an abso
lute maximum 6N(x'€N) (if the absolute maximum is 
achieved in more than one point, we take for EN the 
nearest to Eo); 

(iii) for fixed A and E, the BN(A, E) form a monotonically 
increasing sequence tending to 6(A, E) for E < Eo. 
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As a consequence of (i), (ii), (iii) we have the follow
ing theorem: 

Theorem X: The maxima (;N(A,EN) form a monotonical
ly increasing sequence tending to 6(A) when N- + 00, 
EN - Eo (N- (0), 

The proof of this theorem can be found in Ref. 10. 

Furthermore, the function iSN(A, EN(X» is a monotonical
ly continuous nondecreasing function of A, which pro
vides a lower bound to B(X); therefore, we again can ob
tain an upper bound for each inverse eigenvalue of the 
positive discrete spectrum. 

As can be seen from the previous considerations, the 
extension of the method to the case of the problem of 
moments which diverge consists in a supervariational 
principle. In fact, two variations are used: the first, at 
fixed cutoff E, produces the Padfl approximation in the 
framework of the Ritz-Rayleigh method in which the pro
jectors PN(E) are built up from the iterated vectors 
H"(E) I cp) (n== 0,1, ••• N -1); the second variation exploits 
the dependence of PN(E) on E and its effect on 6N (X,E). 

The explicit construction of proper regularizations for 
the operator H will be the content of future work for 
specific problems where a precise knowledge of H is 
given. 

III. AN APPLICATION TO QUANTUM MECHANICAL 
SYSTEMS 

We shall give here very briefly a direct application of 
the previous theorems to a quantum mechanical system 
whose Hamiltonian is H, We suppose we have an N-body 
Hamiltonian of the form 

H==H(Pl1P2" •• ,PN,Ql1 •• ,QN) (nL1) 

where [Ph' Qj] == - iokj• We suppose H to be self-adjoint 
and bounded from below, with a discrete spectrum to the 
left of the continuous spectrum extending to + 00. Then 
by constructing the moment 

(III. 2) 

for a suitable I cp), such that the /-L k exist for all k and do 
not increase faster than (2k)! (and also that the /J. k are 
easily numerically computable), we can apply the previ
ous technique. 

We first compute /-Ll' /-L2' , •. ,/-L2N-l' Then we construct 
the denominators of the Pad€! approximations to the re
solvent by a recursive algebraic method. 15 Look for the 
classified zeros and obtain in the discrete region of the 
spectrum strict upper bounds for the ith excited state 
provided by the ith zero of the Nth approximation (i < 
N). These upper bounds form a monotonic sequence in 
N decreasing rapidly to the exact ith excited state when 
N tends to infinity. Furthermore, at a given fixed N, it 
is in principle possible to adjust I cp) variationally in 
such way to obtain the exact value by looking for the 
minimum as a function of I cp) of the approximate ith zero 
of the denominator of the approximation. All bounds are 
always strict bounds, if, for any of the bounds, equality 
is achieved at a given step; then the exact solution is 
reached simultaneously for all the eigenvalues. 

Such properties make a large improvement in the vari-
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ational method, because all bounds are strict, as well 
as in the perturbative method, because we can start with 
a series diverging as fast as (2n)! and still achieve a 
rapid convergence (which has been proved to be exponen
tial for the completely continuous case, and very likely 
is the same in the general case). The method can be ex
tended to singular interactions by introducing regular
ized Hamiltonians B(E) for which the moments 

J.l K(E) = (cp I Bk(E) I cp) (m.3) 

exist and the moment problem is determinate. 

Then, as shown previously in the section devoted to 
the infinite moment problem, the arctan of the Pad€! ap
proximation constructed on the resolvent of B(E) have 
absolute maximums in E which provide a lower bound to 
the arctan of the exact resolvent. As a consequence we 
again find upper bounds for the ith excited state which 
converge very rapidly to the expected exact value. See 
Ref. 10 for an example of the application of this method 
to the theory of singular potentials. 

To end we shall propose an explicit and algebraic way 
of treating Hamiltonians which are polynomials in the 
Pi and qp 

The case of polynomial interaction of N particles: Let 
us suppose 

H(puP2,·· .PN, qu···, qN) 

is a polynomial in the variables Pi and qp 

In such a case the moment 

(m.4) 

(m.5) 

can be computed algebraically if one chooses a vector 

I cp) of the form ( ) 

(qH q2"'" qNI cp) = P(qH q2"'" qN) exp \-EYitJ7& 
(m.6) 

where P is a polynomial and Y I> 0 and s> O. We obtain 

.K ~ f dq, dq, ••. dq, POlq" q, ••• q,l "" ~ Ey ;q;1 

XHk(P1P2 ••• PN' qH q2' ••• qN)P(ql ••• qN) exp -.By iq~S 
(m.7) 

with 

. a p.=-t-. 
• 2qi 

The result for J.l K is of the form 

(m.B) 

(m.g) 

if 1i is even. 

(m.10) 

We remark that the calculation necessitates only the 
knowledge of, at most, a finite number of values of r(z) 
for z rational (if we choose s integer): 
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The C(6) can be computed by purely formal algebraical 
manipulations; therefore, the J.lK can be calculated by 
formal languages on computers. 

Still, by algebraical manipulations, we compute the 
denominators of the Pade approximations (using for in
stance recursive algebraic method15

); then, the zero be
ing ordered, and separated by the zeros of the previOUS 
approximation, it is not difficult by standard method to 
compute them. 

We obtain in such a way upper bounds for the ith ex
cited state. Convergence is achieved if the moment 
problem is determinate, for instance, if the J.lK does not 
increase faster than (2k)!. This can be obtained by suit
ably choosing s as a function of the degree of the poly
nomial. (For a complete analysis of this case see Ref. 
16. ) Finally, we point out that this method can be great
ly improved by varying the Y I and the coefficient of the 
polynomial P in front of the exponential in the definition 
of I cp). This is so because 

(m.12) 

where E; is the energy of the ith excited state and Ef is 
the ith eigenvalue of the Mh Pad€! approximation. 
Therefore, 

E; '" inf Ef (cp). (m.13) 
I,,} 

The method is independent of the coupling constant, 
which can be as large as one wants, because the expan
sion is done on the resolvent, that is, in the inverse of 
the energy. At a given fixed I cp) the convergence towards 
the exact eigenvalue is very likely exponential. 

If the interaction is singular but can be approached by 
a family of polynomials, then by combining the previous 
arguments with the method explained for the infinite mo
ment problem one obtains upper bounds for the ith ex
cited state. All the technique extends to the eigenstates 
embedded in the continuum by use of the results of Ap
pendix 1. 

To summarize, we can say that the method allows us 
to construct what would be called the successive approxi
mations of the standard variational method in a regular 
and systematic way avoiding the loose bounds of the gen
eral variational method • 
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APPENDIX A: PROOF OF THE FUNDAMENTAL 
THEOREM I 

We shall first suppose the vectors H; I cp), i=O,l, "', 
N - 1, spanning t (N), linearly independent. In such a 
case it is clear that 
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(A1) 

Instead, if the vectors Hi I cp), i = 0,1, ... ,N -1, are lin
early dependent, then, for any I, HII cp) belongs to the 
space [(P) (P<N) generated by the vectors Hilcp), i=O, 
1, 0 .. , N - 10 It is clear that in such case 

(A2) 

and in this case the moments III of R" (A) are identical 
for any 1 to those Il f of [N -1/ N]R (A) which appears to 
be identical to R,,(A). " 

Let us come back to the case where [(N) effectively 
has N dimension; taking the conjugate of (A1), we get 

(cpl(PNHPN)I'=(cpIHI', 1''if,N-1, (A3) 

and multiplying (A1) by PNHPN once more, we get 

(PNHPN) 1+1 I cp) = PNHI+ll cp), 1 'if, N -1, (A4) 

and combining (A3) and (A4), 

(cp I (PNHPN)I'+I+ll cp)= (cp IHI'+I+ll cp), 1 + I' + 1 'if, 2N-l. 

(A5) 
Therefore, 

IJ-Z=IJ- k for k=0,1,2, •• o,2N-l. (A6) 

Expanding R,,(A) and (cp 11/(1-APNHPN) I cp) as power of A 

R,,(A) =tAK(cp IHk I cp)=tA klJ- k, (A7) 
o 0 

(CP11 ~ HP I cp)=tAk(cpl(PNHPN)kl cp)=tAkll:' 
-A N N 0 0 

(AB) 
We see that 

R,,(A) - (cp 11 _ A~NHP) cp) = O(A 2N). (A9) 

On the other hand, PNHPN is a finite-rank Hermitian 
operator for which a spectral decomposition can be 
written: 

N 

PNHPN=~h~N)P;N) 
i=l 

and 

1 1 
(cp 11 -APNHP

N 
I cp) = (cp I PN 1- AP

N
HPN P

N I cp) 

=(cpl IN _~NpNHPN Icp), 

where IN is the unit operator acting in [(N) • 

Using (A10) we get 

1 N (cpIPlN)lcp) 
(CPI1-APNHPNlcp)=E. 1- Ah;N)' 

(A10) 

(All) 

(A12) 

(A12) shows that (cpI1/(1-APNHPN)1 cp) is a rational frac
tion of degree N at denominator and degree N - 1 at 
numerator, and (A9) shows that it differs from R,,(A) by 
order A2N; it is, therefore, the [N-1/N] Pad~ approxi
mation to R,,(A)o 

APPENDIX B: PROOF OF THEOREM II 

We want to prove here Theorem IL 

We first recall a well-known identity17: 
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_ 2N a(o, N) ;-"<""":1::--~ 
-A a(O, N -1) QN(A)QN+l(A) , (Bl) 

where we have set 

[N -l/N] (,) = PN-l(A) ·th Q (0) 1 
R,," QN(A) WI N =+. (B2) 

PN-l(A) is a polynomial of degree N -1 in A and QN(A) is 
a polynomial of degree N in A [the normalization QN(O) 
= + 1 can always be chosen when the first moment is fin
ite, which is the case here] and 

a(o,N)= (B3) 

It is well known that for a self-adjoint operator all 
a(o, N) are positive, 

If, for some No, a(O,No)=O, then all a(O,No+ k) are 
zero, k;,c 0, and the mean value of the resolvent reduces 
to a rational fraction, identical to its [No -1/ NO]R" (A) 
Pad~ approximant. 18 

Formula (B1) shows clearly that, if there exists a 
X"'O such that O~+l(x)=O~(X), then the determinant 
a(O, N) would be zero and therefore 

(B4) 

and the Pad~ approximant IN -1/ N]R (A) would reduce to 
the exact solutiono " 

Leaving aside this exceptional case, we see that 
O~+l(A) and O~(A) cannot intersect for A "'0, and, there
fore, their relative value in the vicinity of the origin 
will fix their relative position everywhere for real A. 

In fact, we deduce from (B1) that 

OA (A) _ OA(A) - a(O, N) A 2N+l + O(A 2N+2) 
N+l N - a(O, N -1) . 

Therefore, we obtain that for A> ° 
6~(A) < O~+l (A). 

APPENDIX C: PROOF OF THEOREM IV 

To prove Theorem IV, we introduce the linear 
operator 

H(x) = [x + (1 -x)PN]H[x + (1 -x)PN 1 
which interpolates linearly between 

HN = PNHPN=H(O) 

and 

(B6) 

(B7) 

(Cl) 

(C2) 

H =H(l). (C3) 

By conSidering the mean value of the resolvent of 
H(x) , 

R,,(A,X) = (cp I [1 -AH(x)]-ll cp), (C4) 

and also the restriction R N (z) of the resolvent of H, 

R N(Z) = PN[l - ZH]-l PN' (C5) 
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we have the first lemma: 

Lemma I: 

R",(A,x) = (rp I [I(N) - (1 _X2W N(AX2)]-lX~ N(Ax2) I rp). 

(C6) 

This lemma allows us to express the interpolating re
solvent as a rational fraction of the matrix elements of 
an operator of rank N:R. N (Ax2) 

This lemma is a consequence of the identity 

[I -BPN]-l =1 + BPN[I - PNBPN]-lPN• 

In fact, we can write 

R",(A;x) = (rp I [x + (l-x)PN][l -A[x + (1 -x)PN] 

XH[x + (l-x)PN]]-l[X + (1 -x)PN] I rp), 

because 

then using the identities 

A[l -AAHA]-lA =A2[1 _AHA2]-1 = [1 _AA2H]-lA2, 

we obtain 

R",(A; x) = (rp 1[1 -AH[x2 + (1 -X2)PN]]-11 rp) 

= (rp I [1- A[x2 + (1 -X2)PN]H]-11 rp) 

R",(A ;x)=(rpl[1-A(1-x2)(1-Ax2H)"lHPN]-1 

x (1 - AX2H)"11 rp) 

and using identity (C7), we can rewrite 

R",(A; x) = (rp I [1 -XN]-lR. N(Ax2) I rp) 

with 

(C7) 

(C8) 

(C9) 

(C10) 

(Cll) 

(C12) 

(C13) 

R (A'Z)_~(minOroo[B/I-(1-Z/A)R.1j(z)]_1) (C20) 
'" '-A-z detlB jj -(1-z/A)R.1j(z)] 

and therefore 

(a/az)[R",(A ; z)] 
1 +R!(A ;z) 

(C21) 

is a holomorphic function of z for 0 < z ~ A, because 
R",(A ; z) is then real. 

From this result we see that if we want the integral 
(C17) to exist, it is only necessary to see what happens 
to the integrand for z - ()+. 

We shall suppose the elements (i I [1 - zH] -11 j) to be in
definitely derivable at z = 0+. This is certainly the case 
for the Pad~ approximations, if the moments are finite, 
because then the vectors I i) are linear combinations of 
Hkl rp) and 

(C22) 

Therefore, R",(A; z) is the ratio of two C~ functions at 
z = 0 and (C21) is C~ everywhere in the closed interval 
o ~z ~A and the integral (C17) exists. 

Let us show now that 

:z [R",(A ;z)b 0 for O~z ~A. (C23) 

We have, using (Cll), 

R",(A ; z) = (rp I [1- APNH - z(l - PN)H]-ll rp). (C24) 

Using 

d~ [A -ZB]-l=[A -ZB]-lB[A -zB]-t, (C25) 

(C14) we get 

We consider now the expression 

77N (A) = arctan AR",(A) -arctan AR~(A) 

=arctan [AR",(A; 1)] -arctan [AR", (A ; 0)]. 

We see that we can write 

or, introducing the variable z = Ax 2
, 

with 

(C15) 

(C16) 

(C17) 

R", (A ; z) = (rp I [lIN) - (1 - (Z/A)}R. N(Z)]-lzR. N(Z) I rp). 

(C18) 

If we introduce in the space eN an orthonormalized 
basis {I 0),11), .•. , IN -1)} with I rp) = 10), we see that 
R. N (z) is given by an NX N matrix whose elements are 

R.fiz )=(il[l-zH]-llj) (i,j=0,1, ... ,N-1). (C19) 

These matrix elements are, for Rez > 0, meromorphic 
functions of z; therefore, R",(A; z) is also for Rez > 0 a 
meromorphic function of z, because we have 
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o~ R",(A ; z) = (0 1[1 - [z + (A - z)PN]H]-l 

XA(l-PN)H[l-[z+(A -z)PN]H]-llrp)o (C26) 

USing 

H[l - [z + (A - z)PN]H]-l = [1 -H[z + (A - Z)PN]]-lH, 

(C27) 

we have 

o~ R",(A ; z) = (rp I [1 - [z + (A - z)PN]H]-l 

x (1 - PN)[l- H[z + (A - Z)PN]]-lH[z + (A - z)PN] I rp) 

(C28) 

and, finally, 

where 

Il/J(A ;z»=[l -H(z + (A -z)PN)]-ll rp)o 

(C29) proves (C23). 

(C29) 

(C30) 

As consequence of the existence of the integral (C17) 
and of (C23) we see that 77N (A) ~ O. QED 
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APPENDIX D 

We want to prove that the [N/ Nl Pade approximation 
to AR~(A) converges uniformly to an analytic function, 
holomorphic in A, in a compact K of the complex X plane 
in which, for N> No, there are no poles of the approxi
mations 0 For N> No we can write 

~ yi [N/Nl)Jl (X)=X.0 _N __ , 
~ i=ll-Xlli 

where 

and for X E K 

A F K, i = 1, •• 0 , N, 

Therefore, 

IlN/ N];v< w (X) 1 :so im 11/x° -Il i I C(K), 

where C(K) does not depend on N or X but only on K. 

(D1) 

(D2) 

(DS) 

(D4) 

(D5) 

When X is different from a real number, we know that 
the Pade approximation [N/ N];v< (X) converges to an an-

~ 

alytic function in the upper or lower X complex plane. If 
the moment problem is determinate, this function is 
XR~ (X)o Now applying the Vitali's theorem12 to the set of 
uniformly bounded functions [N/ Nl)Jl (X) which converge 

~ 

for complex X to an analytic function, we see that for all 
X, real or complex, [N/Nl)Jl~(x) converges uniformly 
toward this analytic function in all the compact K pro
vided there are no poles of [N/ Nl)Jl (X) entering K, for 

r '" N> 1\00 

APPENDIX E 

We want to show that if the moment problem is deter
minate Xi =L j • 

This result simply derives from the fact that in this 
case the approximate measure tends to the exact mea
sure 0 However, we shall give here an alternative proof. 

We show first that Al =Lp 

Let us suppose Xl < L l , There are no poles of Pade 
approximations in the interval 0 < A < Ll which includes 
AI' Let us apply Cauchy theorem to the function 

R~(X) - [N -1/ NtR~ (X). (E1) 

We have 

(E2) 

where the path integral is a small circuit around Al and 
Yl is the residue of Rw(X) at the A =X1' 

On the other hand, there are no poles of the Pade ap
proximation inside the circuit and by Theorem VI we 
conclude that the left-hand side integral can, for N suf-
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ficiently large, become as small as one would like. The 
hypothesis is absurd. 

In the same way, we prove now that La = Aa, because 
for N sufficiently large we could find otherwise a small 
domain around X2 in which the approximations would have 
no poles, and apply the previous reasoning. The proof 
extends to L j =X j • 

APPENDIX F 

Let us consider the interval Xi <X <X i + l • For N suffi
ciently large there are no poles of the Pade approxima
tion in the interval XI - E < X < X 1+1' Therefore, by Theo
rem VI, in this interval [N/ N];v< (X) converges uniformly 

~ 

to XR",(xL E being arbitrarily small, we see that on the 
open interval Xj < A <XI+l we have uniform convergence. 
We see by Theorem VII that in the closed interval Xi ~ 

X ~Xi+l we have convergence for the arctan of IN/NtR,,,(X) 
to arctan xR~ (X), This being true for any i is true for 
their union: the real positive axis. 

APPENDIX G 

Let us assume that {I <Pn)} is a complete system and H 
a bounded self-adjoint operator. 

If we consider the difference, for Imx *0, 

then we can write 

where 

11Ji/=(l-'5cHr l l<p/, 

From (G2) it follows that 

1)(X) = (cj; 1 (PN -xHPN)(l - XPNHPNrll <p) 

- (1/'1 (1 -XPNHPN)(l -XPNHPNrl! <p) 

= - X(cj; I (J - PN)HPN(l -xPNHPNrl! cp)o 

Then 

where IIHII is the bound of H. We see easily that 

APPENDIX H: CONNECTION OF THE PADE 
APPROXIMATION METHOD WITH THE JACOBI 
TRIDIAGONALIZATION METHOD AND THE 
LANCZOS METHOD 

(G1) 

(G2) 

(G3) 

(G4) 

In the previous section the connection of the Pade ap
proximation with the Rayleigh-Ritz method has been 
fully analyzed, 

We recall here for completeness the connection with 
the Jacobi trigonalization method and the LanczOs 
method. 

In the space [ N spanned by the vectors {I cp> ; HI cp / ; ••• ; 
HN-il cp)}, we construct an orthonormalized basis (by the 
method of orthogonalization of Schmidt): 
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(H1) 

1 N -1) = QN-l (H) 1 '11), 

where the polynomial Q j(p.) is simply related9 to the 
polynomial Qj(X) of the denominator of the Padtl approxi
mation [N -1/ N) to the resolvent RI(I(X) of the operator 
Hby 

Q P) = C(j)tiQ P/ l), (H2) 

the constant C(j) being adjusted in such a way that the 
polynomials Q P) form an orthonormalized set with re
spect to the spectral measure of H associated to 1'11): 

(H3) 

By using the spectral representation of H, it is evident 
that the set (H1) is an orthonormalized set. 

From (H1), one sees immediately that in the basis 
(H1) the operator HN=PNHPN is tridiagonalised: 

Hj:)= (<fJ I Q/H)PNHPNQh(H) I '11)= ('11 I Qj(H)HQk(H) I '11) 

(H4) 

Due to the orthogonality properties of the Q P), we see 
that 

HC:)=O exceptifj=k, or j=k-1, or j=k+1. (H5) 

Furthermore, all elements H~:) are real: The basis 
(H1) enjoys the remarkable property that the restriction 
of H to the space {N appears as a real symmetrical tri
diagonal matrix (Jacobi tridiagonal matrix). 

More particularly, we see that Q P) fulfill the recur
sive relation 

lQ it) == H~, }+1 QJ+l (t) + Hj~]Qj(t) + H~~J-l Qj-l (t) 

with Qo(t) = 1. 

If we expand now the eigenstates 11/!1) of HN 

HNI<?~>=iJ.1!<?1> (i=D,l,oo.,N-l) 

with QN(iJ. t) = 0, on the basis (HI), we obtain 
N-I 

!<?t) =,0 a j(i)Q/H)! '11), 
j=O 

where the a l(i) fulfill the relation 

iJ.ta }(i) =Hj~JJi. l+l(i) +Hj~Ja /i) +Hj~J-Ia ,_lei). 

(H6) 

(H7) 

(H8) 

This relation is precisely the relation (H6) if we set 

a /i)=Q/iJ.1L (H9) 

Therefore, we have 

N-l 

!1/!t>=,0 Q/iJ.1)Qj(H)!<P) (HID) 
j=O 

with Qo = 1 ('11' '11) = 1. 

We see that we reproduce the results of the method of 
Lanczos 9 (method of minimal iterations). 

Recall that we have put this here to point out another 
advantage of the Pad~ approximation method with respect 
to the extraction of the discrete eigenvalues embedded in 
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the continuum, which will be discussed in the next 
section, 

APPENDIX I: BOUNDS FOR THE RESIDUES OF THE 
RESOLVENT OF H IN THE DISCRETE PART OF THE 
SPECTRUM-EXTENSION TO THE DISCRETE POLES 
EMBEDDED IN THE CONTINUUM 

The residue at pole A =A1 of the [N -1/ NJ Padi! ap
proximation to the resolvent of H, 

is 

I _1<<P11/!1W 
YN- <1/!111/!1) 

So, from (HID) we deduce 

N-l 

Y1==1/ 6 Q~(iJ.1). 
}=o 

It is therefore interesting to introduce the function 

(Il) 

(12) 

(13) 

(14) 

The sequence {YN(x)} has very remarkable properties l 

which show another important aspect of the Padi! ap
proximation method. We will consider here only the 
case where the moment problem is determinate, 

Let 
., 

y(x)=1/E Q}(x). 
j.o 

We have 

YN(X) ?-YN+I(X)?- 00 0 >y(x), 

If we put 

(<P!(1-AH)-I!<P)= f~":~~~, 
it can be shown thatl 

)J.(t+O) -)J.(t-O)=y(t). 

From (G6) it follows that 

(15) 

(16) 

(17) 

(18) 

Now let us consider the case A, for definiteness. For 
l> D, iJ. (l) is a nondecreasing function built up of step 
functions. Its discontinuities are related to the residues 
of the poles of ('11 I (1 -AH)-ll '11) for A > 0, It is then clear 
from (18) that one can obtain bounds on these reSidues by 
analyzing the function yNU) in some proper positive in
tervals of t. 

Furthermore, we see from (17) that 

lim YN(t) =0 

for all pOints t which belong to the pure continuous spec
trum. Therefore, if we have an eigenvalue embedded in 
the continuous spectrums, Y N(t) gives us the means to 
pick them out: The sequence Y N (t) will have its maximum 
points in the neighborhood of such eigenvalues. 
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Further, extremal properties of the function Y N(t) are 
discussed fully in Ref. 1. They give the tools, in our 
procedure, to obtain more information on the spectral 
function I-l (t). 
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A general class of solutions of Einstein-Maxwell equations with static cylindrical symmetry is 
obtained. The equations are derived using canonical methods and the fields are shown to satisfy a 
certain Painleve differential equation of the third transcendental type. A particular algebraic solution 
is studied in detail, and is found to have a certain mass and current on the axis and a helical 
magnetic field around it. 

I. INTRODUCTION 

Various classes of solutions of Einstein-Maxwell 
field equations in a cylindrically symmetric static 
spacetime have been discussed in the literature. 1,2 All 
these solutions assume "whole cylinder symmetry, " 
i. e., the solutions are invariant under rotation about 
and translation along a symmetry axis, and under re
flection in any plane containing the symmetry axis or 
perpendicular to iL The consequence of whole cylinder 
symmetry is that for time-dependent, vacuum space
times we obtain the Einstein-Rosen gravitational waves 
with only one polarization state, corresponding to a 
single gravitational potential function ~. By relaxing 
the demand that spacetime be invariant under reflec
tions, one obtains cylindrical gravitational waves with 
two polarization states. 3 Here we study cylindrical 
coupled grativational and electromagnetic systems which 
do not obey the reflection symmetry. Thus, the metric 
will contain two gravitational potential functions Z/J(r, t) 
and a(r, t). The electromagnetic field in a suitably 
chosen gauge will be given in terms of two electro
magnetic vector potential functions Az(r,t) and A<p(r,t). 
(¢ is an azimuthal angle about the symmetry axis and z 
is a coordinate measured along it. ) 

We use the canonical methods developed by Dirac, 4 

Arnowitt, Deser, and Misner5 to cast the Einstein
Maxwell action into Hamiltonian form. The constraints 
in the problem are solved by Kuchar's techniqueB to ob
tain a reduced Hamiltonian. Hamilton's equations then 
give the Einstein-Maxwell equations for the gravita
tional and electromagnetic potentials. Next, we special
ize to the static case with a view towards studying strong 
helical magnetic fields and their influence on the geo
metry of the spacetime. We find that the system of 
coupled Einstein-Maxwell equations can be reduced to 
a single second order differential equation. It turns out 
to be a Painleve differential equation of the third 
transcendental type7 and in general its solution is a new 
type of transcendental function. We take a particular 
algebraic solution of this equation and study its 
properties. 

This particular solution is characterized by a Single 
constant which is related to the presence of both the 
electromagnetic field and the second polarization state 
of the gravitational field. Test particles spiral in this 
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geometry according to the helically symmetric nature of 
the fields. 

II. THE EINSTEIN-MAXWELL EQUATIONS 

To cast the Einstein-Maxwell field equations into 
canonical form we start by splitting the metric tensor of 
spacetime into the spatial metric tensor gik, the lapse 
function N, and the shift function Nj • Specializing these 
quantities according to the requirements of cylindrical 
symmetry but without the "whole cylinder symmetry, " 
we find that the most general line element for our prob
lem can be written in the form 

ds2 = - (~- e2"'-2r Ni) df + 2N1 dt dr + e2r -2" dy2 

+ e2"'(dz + ad¢)2 _ A2e-2", d¢2 (1 ) 

where N, N1 , Y, Z/J, A, and a are functions of t and Y. 

The Einstein action for the gravitational field can then 
be written in the canonical form 

19=J dtd3x(1T"~+1T,,a+1T).~+1T/I+NH~-Nflil (2) 

where dot denotes differentiation with respect to time 
and 1T"" 1T", 1T)., 1Ty are momenta conjugate to Z/J, a, A, and 
Y, respectively. H~ and H~ are the constraints which are 
given by 

HO=e"'~(..!.-.r.-.!.1T1T +~Ae-4"'~+2A" 
If 8A '" 2). y 2 ~ 

- 2A' y' + 2AZ/J,2 + ~e4"'a'2) 
2A ' 

(3) 

(4) 

and we note that the symmetries imposed on this prob
lem result in the trivial satisfaction of the remaining 
constraint equations. Differentiation with respect to r 
is denoted by a prime. The canonical decompOSition for 
the electromagnetic fields compatible with the require
ments of cylindrical symmetry is 

1.=J dtd3X(['Az+[<PA<p-NH~-N1H!) (5) 

where 

H~=e"~UAe-2"([<P2 +A~2) + 2~ e2"'[([, + a[<pf 

+ (A'<p - aA~)2l}, 

H! = e-2r+2"([zA~ + [<pA~. 
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A~, All> and [£, [II> which are canonically conjugate 
variables are the two surviving components of the vector 
potential and the electric field densities, respectively. 

The total action which consists of the sum of Ig and Ie 
is thus cast into canonical form. We now impose the co
ordinate condition A = r and solve the momentum con
straint equation 

H~ +H;= 0 (8) 

for 1T~. Next imposing the extrinsic time coordinate 
condition6 

we solve the Hamiltonian constraint equation 

(9) 

H~ +H~= 0 (10) 

for the reduced Hamiltonian, which turns out to be 2y' 
for the above coordinate condition. It can be shown that 
these coordinate conditions are equivalent to choosing 
the lapse and shift functions as 

(11 ) 

and 

(12) 

Integrating over the surface of cylinder of unit height, 
the action reduces to 

I=21TJ dtdr(1T~~+1T"a+[~Az+[II>A0-H) (13) 

where 

(14) 

and Hamilton's equations correspond to the Einstein
Maxwell field equations for i/J, a, A., and All>' 

III. STATIC SOLUTIONS 

We will now specialize to the static case, Hamilton's 
equations are now ordinary second order differential 
equations for 1jJ, a, A., and All>' They can be integrated 
so that only the following set of four first order ordinary 
differential equations remain to be solved: 

re-2I/lA:= c 1 + c 2 a, 

re2l/>A~ = c 1 ae4
1/> + c2cre4

1/> + c2r, 

(15) 

(16) 

(17) 

(18) 

where c1 , C 2 , C g , c4 are constants of integration. Once 
the integration of these coupled equations is effected, 
the remaining metric component y can be obtained by 
quadrature from 

(19) 

While these constants C 1-C5 are in general arbitrary, 
it can easily be seen that the presence of some of them 
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does not lead to physically distinguishable states of the 
system and hence can be dropped without loss of gener
ality, Alternatively, for c2 * 0 we can use the 
transformations 

iJi=ti!, 
-y=y, 

-
AII>=C~iI>+CIA£, 

(20) 

Az =A z -cg/c 2 , 

which will accomplish the same purpose. Thus in the 
solution c1 can be absorbed by a redefinition of the Kill
ing coordinate directions and this is accounted for in 
the transformation law for Aq,. Furthermore, c g can be 
avoided by choosing the zero of the potential A z and c2 

corresponds to a rescaling of the r coordinate. The 
case c 2 =0 will be treated separately, Now Eqs, (15)
(18) reduce to (dropping the bars) 

2rljJ' = tAil> - aAz + ku (21 ) 

1 (22) -e4"a'=-A, r z 

re-2I/lA~= a, (23) 

re2.A'0 = r + e4l/>cr, (24) 

and 

2ry' =A0 - aA z + k2' (25) 

where we are left with only two arbitrary constants kl 
and k 2 • 

We now define the variables 

(26) 

(27) 

and from Eqs. (21)- (24) obtain the following two coupled 
equations: 

d(1 rl ) x 
dr ry2 dr (xy) = - r ' (28) 

~(~~(a»)-~ 
dr ry2 dr - ry 

(29) 

For convenience we introduce an auxialiary variable j 
defined by the relation 

a=jxy (30) 

and see that j satisfies the differential equation 

df ar ( ) 
dr=XX- 31 

where a is an arbitrary constant. This definition of j 
enables us to express y in the form 

y=x/{f2x2+r2). (32) 

Substituting this form into the Eq. (28) and using Eq. 
(31), we can decouple equations (21 )-(25) and obtain 
the second order differential equation 

1 1 a 2 x2 

x"=_(X,)2_-x' +---, (33) 
x r x 2r 
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This equation is not integrable in terms of classical 
transcendents. In fact, the transformation 

(43) 

z=r/2 

w=x/r1
/
2 

(34) which in our case is trivially separable. So with the 

brings Eq. (33) into the canonical form of Painlev~'s 
equation of the third transcendental type. 

Let us now consider the case c2 = O. In this case Eqs. 
(15)-(18) become 

ryA~=cl> 

A'~ = (TA~, 
a' = C3yy2, 

(35) 

(36) 

(37) 

r(y' /y)= (cJ2)A .. -c3a-c4 (38) 

where y is again given by Eq. (26). From these equa
tions we find that 

1 1 c2 
y"=-(y')2 __ y'+_1 _c;y3 (39) 

y r 2r2 

and letting r = rl/2, Y = rl/2y we see that one again gets 
a Painlev~ equation of the third transcendental type. 

IV. A PARTICULAR SOLUTION 
In the last section we have seen that for our problem 

the solution of the Einstein-Maxwell equations will in 
general be expressed in terms of Painlev~ transcendents 
of the third kind. In this section we shall study a partic
ular solution which can be given in closed form in terms 
of algebraic functions. This solution is obtained by 
noting that Eq. (33) admits 

(40) 

as a particular solution. 8 The metric and the electro
magnetic fields corresponding to this solution are given 
by 
ds2 =ky-4/gea2r2/3(dr _ dt2) + r 4/ 3 dz2 + r/3(d1> + ar /3 dz)2, 

(41) 

where k and a are arbitrary constants. The constant k 
may be absorbed by a coordinate transformation and 
consequently has no physical meaning for static prob
lems. However, for convenience we shall keep it be
cause in time dependent problems this constant will play 
a role in describing gravitational radiation. 9 The con
stant a can be expressed in terms of O! as a = 3(0!/16)1/3 
and it is related both to the fact we have two polariza
tion states and that electromagnetic fields are present. 
Obviously by setting a = 0 one switches off the electro
magnetic fields and one of the polarization states. For 
the particular Einstein-Rosen solution which is obtained 
in this limit we find that Thorne's c-energy is given by 

E(r) = tIny (42) 

and the corresponding Levi-Civita mass is negative. 
The occurrence of negative mass on the axis persists if 
one considers the weak field-low velocity limit when a 
* O. This solution also requires the presence of currents 
on the axis since it is Singular on the axis of symmetry. 

We shall now study the motion of charged and neutral 
test particles in this geometry. For a test particle of 
charge e and mass m we have the Hamilton-Jacobi 
equation for the geodesics 
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ansatz 

s=- aot+ r Q(r')dr' + 0!~1>+ O! .. z, 

we obtain 

Q2(r) = a~ - V(Y) 

where the effective potential VCr) is given by 

V(r)=kea2~/3 

(44) 

(45) 

x (m 1r
8/9 + m 2r

2/9 + m3y-4/9 + m 4r-10 / 9 + m 5r-16 / 9) (46) 

and for the constants m l we have 

m l = e2a4 /2, 
m 2 = 2e2a2 - 12ea3 a ~, 

m3=a2a! + 12ea2a .. - 2{2eaa~ + m 2, 

m 4 = O!! - 2aO!~ a .. , 

m5= a~. 

(47) 

The conditions that waves with nearly identical values 
of a o, a .. , aq, have the same phase S for all times gives 
the first integrals of the motion. Explicitly, we have 

¢=~e.z~/3 (_ ea
3 
r/9+ (0' a2 _ 12ea)r-4/9 

0'0 12 q, 

+ (0' -aO' )r-IO
/
9) (48) q, .. , 

z=~ea2T2/3(ea2 r-4/9 -aO' y-IO/9+ a r-16/9). (49) 
0'0 12 q, .. 

From these equations it follows that in the presence 
of two polarization states and electromagnetic fields a 
charged test particle will always perform helical 
motion, i.e., it will always have a nonzero velocity in 
1> and z directiOns, even when aq, = a .. = O. The presence 
of the constant a puts ,restrictions also on the motion of 
neutral test particles. We see that even for neutral 
particles circular orbits and motions parallel to the 
symmetry axis are not permitted. On the other hand, 
when both O'q, and alf are zero massive neutral particles 
perform radial oscillations around the point y= (~)3/2 
X a-3 and zero rest mass particles behave as free 
particles. 
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A field theory of half-integer spin particles is constructed on a seven-dimensional homogeneous space 
of the Poincare group. The mass spectrum consists of nonparallel linear trajectories. The field theory 
has no spacelike or lightlike solutions. Electromagnetic form factors and structure functions of the 
theory are discussed. 

1. INTRODUCTION 

Field theories on homogeneous spaces of the Poincar~ 
group have been studied by many authors in recent 
years. 1-6 Among them, the theory of the fields defined 
over a seven-dimensional homogeneous space of the 
Poincar~ group5,6 is distinguished by its connection with 
the construction of manifestly covariant quantum me
chanical operators, 6 in particular, position operators, 
which require the introduction of a unit 4-vector 1)". The 
dependence of the field operators on this unit vector, in 
addition to their dependence on space-time points x", 
leads to consideration of the field theories defined on 
the seven-dimensional manifold of (x, 1)) pOints. In Refs. 
5 and 6 the general theory of these fields was developed 
and models of fields transforming as scalars under the 
homogeneous Lorentz group were considered. As a 
result the spectrum of these models consisted of integer 
spin particles only. Moreover, to obtain a reasonable 
mass spectrum, it was necessary to consider field 
equations involving high order derivatives. 

This paper is devoted to the study of spinor fields 
defined on the seven-dimensional homogeneous space of 
the Poincar~ group. It will be seen that a simple field 
equation may be written which yields a reasonable mass 
spectrum coupisting of half integer spin particles. In 
Sec. 2 the field equation is introduced and its mass 
spectrum is investigated. The spectrum consists of a 
set of nonparallel linear trajectories in the mass 
squared spin plane. The only free parameter of the 
theory is that of a mass scale. The spin intercepts are 
independent of this parameter. It is shown that due to 
nonunitarity of the spin representation of the Lorentz 
group, the theory has no spacelike solutions. Similarly, 
no lightlike solutions appear. In Sec. 3 a Lagrangian is 
written from which the generators of the Poincare group 
and a conserved current are constructed. Form factors 
of the ground state are calculated and the structure func
tions are shown to scale in the Bjorken limit and to 
satisfy the Drell-Yan relation. 

2. THE FIELD EQUATION AND ITS SOLUTIONS 

We denote the fields by <J;",(x,1)), where a is the Dirac 
spinor index and 1) is a 4-vector on a unit hyperboloid 
(1)" 1)" = 1 ), on which a unitary repre sentation of the 
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homogeneous Lorentz group may be built, with the inner 
product between two functions f and g defined by 

(f,g)= 1
2

d f(1))g(1)) ~: . (2.1) 

We assume that the fields transform, under the action 
of the Poincare group, as 

U(a)1/!",(x, 1)) U(a)-1= <J;",(x+ a, 1)), 

under space-time translations; and as 

(2.2) 

(2.3) 

under homogeneous Lorentz transformations. S(A) is 
the 4 x 4 Dirac representation of the homogeneous 
Lorentz group. It is trivial then, to verify that the 
generators of the Poincare group behave as 

[<J;(x,1)), P,J = io,,<J;(x,1)), 

[<J; (x, 1)), A'l "vl 
= [i(x "ov - xvo J + i(1)"ov -1)/5...) + ~ Uu vl<J;(x, 1)), 

(2,4) 

(2. 5) 

where u uv = ~ i[y", yvJ and y u are the usual Dirac 
matrices. Here 0u is simply a partial differential opera
tor with respect to the 1) u variable, consistent with the 
restriction 1),,1) U = 1. In calculations, it is sufficient to 
remember that 

o 
0" =(g "v -1)" 1)v) (1)v ' (2.6) 

where 0/ (1) v is simply the partial differential operator 
with respect to 1)v irrespective of the condition 1),,1)" = 1, 

and that in integration by parts 

(2.7) 

for suitably chosen functions f and g, which allow the 
vanishing of the surface integrals. 5 It is obvious from 
(2.7) that i(ou - MJ is an Hermitian operator on L 2(H 3

). 

After these preliminaries we introduce our wave 
equation 
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[io ur u + 10oZ]I/>(x, TJ) = 0, 

where 10 is a parameter and 

(2.8) 

ru=auv(1iv-~V). (2.9) 

We remark in passing that it is easily seen that the vec
tor operator r" together with the generators of Lorentz 
group on the hyperboloid H 3

, 

S"v=i(TJ"Ov-TJvO,J, 

satisfy the Lie algebra of SOC 4. 1).5 

To find solutions of Eq. (2. 8) let us proceed to reduce 
the equation in the manner used to reduce the Dirac 
equation. Performing a Fourier transform on the fields, 

</J(x, TJ) = (2~)2 f ~ (p, TJ) exp( - ip .x) dP4, 

we get for Eq. (2.8) 

(PJ" -lcP2)~ (P, T)) = 0, 

which upon multiplication on the left by the factor 
(P uP' + loIfl), gives 

r(p • r)2 _lo2p4]~(P, T)) =0, 

(2.10) 

(2.11) 

which with a little algebra (see Appendix A), becomes 

[P2Dz _ (p. D)2 + 2a(p) • L(p) _lo2p4]'¢(P, 11) = 0, (2. 12) 

where for brevity we have introduced the notation 

Du=Ou-~u' 

[see Appendix A for the definition of U;'m(e, <p)]. {a, e, <p} 
is the spherical parametrization of the hyperboloid. 
Then Eq. (2.12) will lead to a second order differential 
equation for <p(a). In particular, we have 

(1 - Z2)f" - (21 + 3)Zj' + (II. -l)f = 0, (2.17) 

where 

1 1 
Z=--=-, (2.18) 

cosh a T)o 

1I.=lo2p2+E(j+~)-I, j=I+Et, E=±l. (2.19) 

Equation (2.17) is the differential equation for the ultra
spherical harmonics C~d(Z), 7 where n is a nonnegative 
integer. It is possible to verify directly that for other 
values of n, the Hermitian form 

(2.20) 

It must be understood that the relevant Hilbert space 
of field function is smaller than that defined by the 
Hermitian form (2.20). The requirement of convergence 
of the integrals appearing in the generators of the 
Poincare group imposes further restriction. At this 
point we anticipate the result from the next section and 
write down the metric derived from the Lagrangian, 

(~(v), ~'(P')Jo 1 ~: XlP,T))Jo(P,P',T))x' (P', T)), 

• ~ (2.21) 

au (p) = - iE "VAP T)VOApp, 

L u (P) = - tElL vA.avAp •. 

(2. 13) where 

Jo(P,P',T)) 

Note that the Pauli-Lubanski operator 

W" = - ~E"vApMvApo 

in the representation described by Eq. (2.4) and Eq. 
(2.5) is of the form 

WJP) = a,,(p) + L,,,(p). (2.14) 

Note also that the most general solution of Eq. (2.11), 
when p2 "" 0, can be written as 

(2.15) 

where X(p, TJ) is any solution of Eq. (2.11). To see this 
observe that if ~(P,T)) is a solution of Eq. (2.10), then 

~(P, T)) "" 21~2 r(p . r + loP2) - (P . r - loP2) ]~(P, T)) 

2 1 -
= (p. r+ loP ) 21oP21/>(P,1))' 

which proves the assertion. We will later prove that 
the original equation [Eq. (2.11)] has no acceptable solu
tion for p2 = 0. 

A. Timelike solutions 

In this case we choose PI' = (m, 0, 0, 0), and expand the 
wavefunction ~(p, TJ) in terms of the rotation group basis 
vectors 

(2. 16) 
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= 2loPo(P • r p . r' + lo2p4) + (P . r -loP2)ro<P' .p - loP2
). 

A simple power counting will show that the solutions 
of (2.17) with odd n remain in the space defined by the 
metric 10 , Furthermore, using the form of the operators 
r , it can be shown that solutions with even n, con
tribute divergently to (2.20). To see this, observe that 

where 

~ = daZ·3(1 - Z2)1/2 dZ, 

D =Z(1_Z2)1/2 ~ _ ~ 1.. 
a dZ 2Z' 

D=_r(1_Z2)1/2 d~ +(1_Z2).1/2ZV, 

and r and V are the unit vector and the gradient operator 
on the sphere {e, <p}, and da is the differential element 
corresponding to it. Since, C~+l (Z) is odd or even ac
cording to whether n is odd or e~n, it may be seen that, 
for even n, the terms involving D, make the integral 
(2. 20) divergent. 

Thus we are left with odd n, with the resultant mass 
spectrum 

l02p2=(4N + 3 -e)j + 2(N + 1)(2N + 2 -e), n= 2N + 1, 
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or, 

, E=+I, N=O, 1, 2, •••. 

(2.22) 

This equation relates j and p2 linearly. The j-intercepts 
are at - (N + 1) for € = + 1 and - (N + !) for E = - 1. The 
functions X~.I",.(i=o, 1i) form a complete orthonor
malizable basis for the space L 2 (H3)rg, D, where H3 de
notes the hyperboloid and D the Dirac spinor space, 
and where 

Xi:.l.m(P=O,1))= CPN.l(a)UL",(&, CP). 

The reason is that 

C~:J+1(Z) - Z p~+1/2, 1/2) (2Z2 -1), 

where P N are the Jacobi polynomials which satisfy7 

1~ dx( 1 - x)'" (1 + X)B P~'" ,B)(X) p~"','B)(X) - ° NN" 

B. Spacelike momenta 

When p2 < 0, it is convenient to choose P" = (0,0,0, P3)' 
Then any solution of Eq. (2.12) may be expanded in 
terms of the basis functions of the principle:' series rep
resentation of the 0(2,1) group 

x(1J) = 6 J dl CPLm(a)ULm(b, CP), 
m,' 

where l = - t + ip, p is any real number, and {a, b, CPr is 
the hyperbolic parametrization of the hyperbolid (see 
Appendix A). m = + 1, +t. + %, ... and E = + 1. Then 
Eq. (2.12) may be written as 

(2.23) 

where])2 =D02 -D12 -D22. As in the case of timelike 
solutions, the functions U~ ,m satisfy the eigenvalue 
equation 

(2.24) 

Note that eigenvalues of (2.24) are nonreal for p * O. In 
that case Eq. (2.23) leads to a contradiction since 
l02q2 is real by definition and 1)2 by virtue of (2. 7) is a 
Hermitian operator on L 2(H 3

), in which lies X(1J). Con
sequently. eigenvalue equation (2.23) reduces to 

'lJ2 Xl,m = (1 - iEP -l02q2)xl ,m' 

where XLm=CP:,m(a)UL",(b, CP). which has no solution 
except for p = 0. 

In the case p = 0, the solution contributes divergently 
to the integral (2.20) since U_ 1 / 2 ,,,,(b, CP) corresponds to 
the continuous spectrum of the Casimir operator of 
0(2.1). For a convergent contribution, we would need 
a set of Up, m 's for a continuous range of p to be smeared 
over p. Thus, there are no spacelike solutions to our 
field equations from which conserved quantities may be 
built. 

C. Lightlike momenta 

When p2 = O. it is convenient to work in the frame with 
P" = (Po' 0, 0, Po). Here again the solution of Eq. (2.12) 
may be expanded in terms of the simultaneous eigen
functions U;,m(r, CP) of Wl(p) and S"22(p), where {a, r, cp} is 
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the parabolic parametrization of the hyperboloid H3. It 
is important to note that S"2(p). '[,(p) vanishes on U~,,,,(r, cp) 
(see Appendix A). Therefore, the Eq. (2.12) now reads 

(P .D?X = O. (2.25) 

But as shown in Appendix A, 

P .D=-p tea _0_ + ~ea) 0\' oa 2 ' 

which turns Eq. (2.25) into 

( 
02 0 15 ) 

oa" +4 aa + 4 <pp(a)=O, (2.26) 

where 

x(1J)=~ cp(a) U~.m(r,<p)dp. 

Solutions of Eq. (2.26) are of the form exp[ - (3/2)a] and 
exp[ - (5/2)al. But because of the form of the 
integration measure, 

dij 
- = exp(2a) da rdrdcp, 
1)0 

both of these solutions contribute divergently to the 
expression (2.21). The reason is that fo of Eq. (2.21) 
involves r" to third power, which contributes a factor 
of exp(3a) to the integrand of (2.21), making the solutions 
of (2.26) unacceptable. Again since (2.25) does not in
volve a free parameter. smearing of the solutions for 
the purpose of construction of finite generators of 
Poincare group is not possible. Thus there are no light
like solutions for Eq. (2.12) and consequently for the 
Eq. (2.10). 

Quantization of the field 1jJ(x, 1)) follows the conventional 
approach. The field is expanded in terms of the solutions 
of the field equation (2.8), 

1 f dp3 , 1jJ(x, 1)) = -(2)3:0 p-O- [exp(- tp .x) 
11 N,/,m" N,/,f 

X U' a' (P-) N.I.m N,l,m 

+ exp(ip .x) U~,l.'" b~./.", (p)]' (2.27) 

and coefficients are interpreted as creation and anni
hilation operators with 

[aN,l.m(P)' a~~'l' ,m' rP')L= [b~, I.,,{;), b~"~l' ,,,,,CD)L 
= (27T)30 NN '011' Om",' 0",0(;, P'). 

(2.28) 

with all the other anticommutators vanishing. We con
clude this section with the observation that under parity. 
charge conjugation. and time reversal, field equation 
(2.10) is obviously invariant, with the qualification that 
in order to define time reversal it is necessary to allow 
1)0 - -1)0' As this entials no complications, and has been 
discussed in detail in Ref. 5. we refrain from pursuing 
it any further. 

3. THE LAGRANGIAN AND CURRENTS 

In this section we drive the wave equation (2.8) from 
a variational principle, which in turn yields the con
served quantities of the theory. In particular, energy 
momentum and angular momentum can be constructed 
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and verified to be the generators of the Poincare group. 
In addition, a divergence free 4-vector current operator 
is obtained as a consequence of the invariance of the 
Lagrangian under the gauge transformation of the first 
kind. Finally, the matrix elements of this current 
operator, between the lowest lying states, are evaluated 
and compared with the nucleon form factors. In deriving 
the wave equation from a Lagrangian, we treat the 
hyperplane dependence on the same footing as the posi
tion dependence. and use a variational principle which 
involves variation in both hyperplane variables and 
position variables. 6 The wave equation may not be de
rived from a simple Lagrangian, though. We need to 
use an auxiliary field in our variational principle. 8 

The Lagrangian we use is 

L(x, 7) = a"S)(ir " + loa JI/I + h. c. , 

which leads to 

(ia" r" _lO(2) I/I(x, 7) = 0, 

(ia J" _lo(2) n(x, 7)=0. 

In order to relate n to 1/1, we use the reduced wave
functions X(p, 7) of Eq. (2.15) and define 

The current operator derived from (3.1) is 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

J"(x) = f d7J{- i[loo "n 1/1 + ;J(ir" + l 02")n) + h. c.}, (3. 5) 

which yields for the charge operator 

Q = f dx3J o(x) 

= f dx3d7) [ - ilo(o°S),p + oOiJin) +"ibr on + h. c. J. 

It is straightforward, using expansion (2.27) and 
definition of n (Eq. 3.4), to show that 

(3.6) 

'\' f dp3 - - - -
Q = L.J -Po [a;.l.m(P) aN.l.m(P) + b N.l.m(P) b~.l.m(P»)' 

N,l,m 

(3.7) 

Next we use the anticommutation relations (2.28), and 
discard the vacuum contribution, to obtain the standard 
charge operator 

. . - '\' f dp3 t - - t - -.Q.- L.J -p [aN.l.m(P)aN.l.m(p)+bN.l.m(P)bN.l.m(P»)' 
N.l.m ° 

(3.8) 

The Lagrangian (3.1) will produce generators for the 
Poincare group, which can easily be verified to satisfy 
Eqs. (2.4) and (2.5). 

In the rest of this section we will discuss the elec
tromagnetic form factors and the structure functions of 
the lowest lying state of the spectrum of the spinor field, 
using the local current (3.5). For form factors the 
relevant matrix elements are 

(p' IJ JO) Ip) = U N.l.m(P')J,,(O) U N.l.m(P), 

for N = 0, l = 0, which becomes 
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1 
(7)p)5/2 U(p). 

(3.9) 

Where U(p) is the Dirac wavefunction, and P" =P" + P:, 
and c is the normalization factor. This expression is 
evaluated in Appendix B. The result is 

(P' IJ" (0) /P) = [[(p') (FI(l)Y" + F2(l) iu"v ~) U(P), (3.10) 

with 

F (q2) = ~ (1- Z)3/2 
1 2771 

x [(6 - Z - 8Z2)D(Zl/2) + (3 - 5Z - 4Z2)C(Zl/2»), 

(3.11) 

F (l) = _4_ (1 - Z)3/2 [(-.!.. + 11 - 2Z _ 16Z2) D(Zl/2) 
2 2771 Z 

+ (- ~ + 10 - 10Z - 8Z1 C(Zl/2~ , (3.12) 

where D(Zl/2) and C(Zl/2) are the complete elliptic 
functions (B6) and (B7), and 

It is easily seen that, for large values of - q2, the 
form factors behave as (-lt 3

/
2 multiplied by the 

logarithmic factors originating from the asymptotic be
havior of the elliptic functions. Note that the singularity 
of F2 at Z = ° is only apparent and removable, which can 
be verified by inserting the series expansion of C and 
D, about Z = 0, in (3. 12). USing these expansions, it is 
found that F 2 (0) = 0.49, which corresponds to a magnetic 
dipole moment of j.J. = 1. 98 nucleon magneton, to be 
compared with the observed magnetic moment of the 
proton, j.J.p= 2.79 nucleon magneton. 9 Similarly, the 
slopes of FI and F2 at Z =0 give (r I ) =0. 3F, (r2> =0, 2F, 
for the change and magnetic radius of the particle, 
which may be compared with those of proton. 
(r I )p:::(r2)p:::0.8F. IO 

Finally, we consider the structure functions for the 
ground state, 11 

W"v= B 6[p,2 - m(~1 J (P /J ,,(0) / {n}, P') ( {n}, P' /Jv(O) u» 
(nJ 

(3.13) 

where {n} designates the collection of quantum numbers 
describing the final state in the electroproduction, and 
v=p. q/m, (;= - 92/2mv. Calculation of the structure 
functions WI and W2 in the Bjorken limit is rather in
volved and the detail will be reported elsewhere. Here 
we simply sketch the procedure and comment on the 
results. 

Going}o the frame where p=m(ko.o.o' k n). p' 
=m'(l. 0), we get 
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(3.14) 

Calculations of the Wu and Woo in the Bjorken limit is 
enormously simplified by observing that the matrix 
elements in Eq. (3.13) reduce to matrix elements of the 
current between a state of rest and a state of infinite 
momentum. Utilizing techniques developed earlier, 12 

we find that in the Bjorken limit 

Z2 , )2 
_ o~m k(A) . 

(3. 15) 

Here (n, l) designates the quantum numbers of the 
dominant final state, n == 2N + 1 + I, m,2 == p,2. ko(A) is 
the modified Bessel function of zero order. H, A, and 
JJ. are the quantum numbers of the infinite momentum 
states 

1
. I H== 1m -, 

"0- ~ ko 
1- ~ 

A= lim ~, 
ko- ~ ko 
l-~ 

Then, since the mass spectrum of the final states is 
discrete, we average the structure functionsll 

(3.16) 

with Am'2=2~/lo2. We have used the fact that in 
the Bjorken limit only final states with finite H, A, and 
JJ. contribute. In fact, the contributing states have 
lo2m'2=1l 2k0

2. It is easily seen that 1l=2V3(1- ~). 

The extra variable A in Eq. (3.16), is not in fact in
dependent of Il, because it may be shown that the mass 
spectrum has no mass degeneracy. Therefore, A is a 
function of \;, albeit a very discontinuous one. Finding 
this functional relation is a problem in number theory 
which we do not attempt to solve. 

On the other hand, since in the experimental situation 
states with arbitrary A, but fixed Jl are detected almost 
simultaneously. we make a second average and obtain 

Here we have used the integration measure correspon
ding to the infinite momentum states of the form dHdA. 12 

The final result is 

lim ~ W2 = (6
3

4)2 ~2(1 - ~2)f(~), 
Bi m 11' 

(3.17) 
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where f(~) == Ji" ado It ko(O! Jl) - O!Jlk~(O! Jl) - V3 Jlko( OJJ.))2. 
It is easily seen that for threshold ~ ""1 the function f(~) 
behaves as some power of logarithm of (1 - ~). We see 
therefore that (v/m)W2 scales in this model and its 
threshold behavior (1 - ~)2 (logarithmic terms), com
pared with the (ir3

/
2 (log terms) behavior of the form 

factors [Eq. (3.11), Eq. (3.12)), agrees with the 
Drell-Yan relation. 13 
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APPENDIX A 

In this appendix we gather some of the relations used 
in the text and verify some of the claims made there and 
refer the reader for discussions to more detailed treat
ments. We have designated the hyperboloid by H 3

, and 
the space of square-integrable functions on H3 by L 2(H3

). 

In the case of timelike momenta it is found to be con
venient to parametrize in spherical coordinates: 

1]0 = cosh a, ij = sinh a:Y, (AI) 
1\ == sine coscp, 1-2 = sine sincp, 1-3 == cose. 

In this coordinate system 

3 - a 1-°0 = - sinha -3 ' ° = r cosh a -3 + -'-h- V, a a SlU a 
- a sincp a 
VI = cosB coscp ae - sine ii"¢' 

(A2) 
- . a coscp a 

V 2 = cose SlUCP ae + sine ii"¢' 

- a v =-sine-· 
3 a e 

It is important to note that the 0(3) group generated by 
L=i-1rxV, has, for its Casimir operator, L2=_V2

• 

with spherical harmonics as eigenfunction. 

V2 Y 1, m(B, CP)= -1(1 + 1) Yl,m(e, cpl. 

For P=O, the invariant subgroup of 0(3. 1) as rep
resented on L z(H

3 )0 D has the basis 

u~.m(e. CP)==C ;}+\Em y/2 Y 1.m _1/2(B, CP) (~) 

which satisfies 

- W"'ULm = P;j(j + 1) U~.m' j = 1+ Et 
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12 . 6 u', = [e(j+ t)-l]U', m' ,m , (A5) 

In the case of space like momenta, it is convenient to 
choose the hyperbolic parametrization of H 3

, 

113 = sinh a, 11= cosha r, 
ro = coshb, r 1 = sinhb cost/>, r 2 = sinh b sint/>. 

In this coordinate system 

a 
15 =cosha-, 

- a 1-
15=-1' sinha- + -- v, 

3 ca ca cosha 

_ a 
v =-sinhb-, 

o ab 

- a sint/> a 
v 1 = cosh b cost/> at; - sinhb a;p' 

- a cost/> a 
VI = coshb sint/> a;; + sinhb a;p' 

It can be seen that the 0(2.1) group generated by 
L = i rX V has, for its Casimir operator, 

~=-£2, 

with eigenfunctions, 

Y,.m(b, t/», 

L2 Y',m(b, t/»=[(I + 1) Y,.m(b, t/», 

Lo Y',m(b, t/» =m Yl.m(b, t/». 

(A6) 

(A 7) 

(A B) 

Here Y/,m(b, t/» are simply the analytic continuation of 
0(3) spherical harmonics, with 

1 = - t + ip, P real, (A9) 

forming the principle series unitary representation of 
0(2.1) group on L2(H2

), H2 = {b, t/>}. These functions may 
be used to construct a basis for the representation of 
0(2.1) on L 2(H2 )@D. The construction is identical to the 
case of 0(3) in Eq. (A3). In this connection recall that 
0(3.1) is generated on D by 

where a are the Pauli matrices, and the Casimir 
operator of 0(2. 1), 

(AlO) 

L~-lVi-~=-a2 (A11) 

having the same eigenvectors @ and m as i). For light
like momenta it is convenient to use the parabolic 
parametrization of H 3

, 

170 -Tl3 =exp(a). 11; =exp(a)x;, i= 1,2, 

Xl = r cost/>. x2 = r sint/>. 
(A12) 

with the other coordinate determined by the condition 
7)" 17" := 1. In this coordinate system, 

a °0 + °3 := - exp(a) a;; , 

a 0 
Ii; = TI; -0 - + exp( - a) -a - , 

a X; 
i= 1, 2. 

The invariant subgroup of 0(3. 1) corresponding to 
P" =Po(1, 0, 0.1) is an B(2) group generated by 
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(A13) 

(A14) 

. t. . a cost/> a) 
E2 :=z\smt/> ar + -r- a¢ . 

The Casimir operator of this group is 

(A15) 

with eigenfunction jm(pr) exp(im cp), 

- (a!:2 + C~22) jm(pr) exp(imcp) = p2 jm(pr) exp(imt/», 

(A16) 

which are the Bessel functions of integer order m. 
These functions may be used to construct E(2) rep
resentations on L 2(H3)@D. But the important property, 
for our purposes, lies in the E2 representation on D. 
Here, the Casimir operator vanishes identically as may 
be verified from Eq. (A10). Moreover, 

212 • 6 :::: (L 3 , E 1 , E 2 , L 3 )· (a3 , 02 - ia1 , - ia2 - 010 ( 3 ) 

. E- t 2 . (0 E-) 
=Z a = 1 0 0 ' (A17) 

where E- = E1 - iE2 • Now if 

then A = 0, which proves that eigenvalues of 12 • 2: vanish. 

In the rest of this appendix we will carry out the 
details of the verification of the Eq. (2.12). 

To begin with, notice that, using the definition of the 
Pauli-Lubanski operators for the appropriate space 
Eq. (2.13), it is straightforward to verify that 

(AlB) 

where 

On the other hand, from the definition of r", it is again 
straightforward to obtain 

(p. r)2=p2~_(p.r)2+[pr, p. rJ 

=p2r _ (p. r? - tp2 au,Suv 

+ Su,p" (Ju~P~. 

Comparison of Eq. (A19) and Eq. (A18) results in 
Eq. (2.12). 

APPENDIX B 

(A19) 

In this appendix, the expressions for the form factors 
(3.10) and (3.11) are derived. We start from the equa
tion (3.9) and after some algebra find that 
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+(1+ X~1 - X!2)Y3/2.3/2(X)]. 

where the basic functions Y n' .n are 

k~ = ~ p~, x = k ' k I, 

It is possible to evaluate the above integral for the 
particular cases needed and obtain 

(Bl) 

(B2) 

(B3) 

Y3/2.3/2 (X)=41T(1- Z)3/2D(Z1/2), (B4) 

41T / Y (x)=_(1_Z)52(2D(Z1/2)+C(Zl/2)] (B5) 5/2,5/2 q , 

where Z = (x - 1)/(x + 1), and D and C are the complete 
elliptic functions12 

£
,/2 . 2 

1/2 SIn p 
D(z)= (1- z sin2<p)1/2 d<p, 

o 
(B6) 
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A review of the Schmidt technique and the Sachs technique for assigning boundary points to 
spacetimes is given. A modification of the Sachs process which makes it obviously identical with 
Schmidt's is suggested. Some simple examples are discussed. 

I. INTRODUCTION 

Recently two methods for aSSigning boundaries to 
spacetimes have been proposed, 1,2 both being generali
zations of Geroch' S3 g-boundary technique. The bound
aries defined by the above methods terminate not only 
incomplete geodesics but also inextendible timelike 
curves of bounded acceleration and finite proper length. 

The central idea in both of the new approaches is to 
associate with a spacetime another larger manifold 
which by virtue of its relationship to the spacetime ad
mits a positive-definite metric tensor. The larger mani
fold is then Cauchy completed (an operation undefined 
for spacetimes) to define its boundary. Elements of this 
larger boundary are grouped together by an appropriate 
equivalence relation to define elements of the spacetime 
boundary. 

In this paper we give a brief review of the Schmidt 
process, 1 and discuss in some detail the Sachs process. 2 

In particular, we suggest a natural modification of the 
Sachs technique and show that this modified Sachs pro
cedure agrees with the Schmidt method. Finally, we 
give some simple two-dimensional examples to illus
trate concepts and to demonstrate a potentially useful 
calculational technique. 

In this paper M denotes the spacetime manifold, (as
sumed to be four-dimensional, connected, Hausdorff, 
oriented, and time-oriented), endowed with a C~ metric 
tensor g of signature (+++-). The connection is the 
usual metric and torsion free Levi-Civita connection. 4 

II. THE SCHMIDT COMPLETION PROCESS: THE b
BOUNDARY 

A. Formal considerations 

Let L(M) be the set of all oriented and future-pointing 
orthonormal framess at all points of M. The proper 
homogeneous orthochronous Lorentz group, here de
noted by L, acts on L(M) without fixed points: An ortho
normal frame at a point p of M is denoted 

u=(P;Xh X 2,XS,X4) <e.L(M). 

This u is mapp~d into it = (p; Xl, X2, X3, X4 ) by a member 
A of L, whereXm=LmSXs. with (LmS) being the matrix 
representative of A. This mapping, which preserves the 
point p, is denoted 

u=uA=RAu 
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(both notations will be used). The action of L induces an 
equivalence relation on L(M), and each equivalence 
class in L(M)/L may be identified with a point of M. We 
denote by 

11: L(M)-M 

the canonical proj ection mapping which takes u to the 
point p in M to which it is attached. Thus, 11(uA) = 7T(U) 
=p. The set 7T-1(p) is called the fibre over p. 6 L(M) is 
ten-dimensional. 

L(M) has special properties that a general manifold 
does not possess. First, there is a preferred class of 
curves in L(M) called vertical curves. These are in
tegral curves of vectors tangent to fibres of L(M). At 
each u there is a six-dimensional subspace Vu of T u, the 
full ten-dimensional tangent space, called the vertical 
subspace at u containing the tangents to the above 
curves. Specifically, the vertical vectors correspond to 
elements of the Lie algebra dL of L. An element Z in 
dL generates a one-dimensional subgroup A(t) in L 
passing through the identity. ACt) acts on L(M) to create 
a curve u(t) =u(O)A(t). The tangent to this curve Z* is 
said to be induced by Z and is tangent to th~ fibre 
through u(O). If we pick a particular basis {Z A, A = 1, 
. . " 6} of dL then this basis gives rise to a basis {Z,t} of 
Vu called a fundamental basis. 

Another special property of L(M) is the existence of 
a second preferred class of curves in L(M) called hori
zontal curves. A horizontal curve is defined if we pick 
a curve q(t) in M through some initial point q(O), pick 
an initial orthonormal frame Xj(O) at q(O), and then pa
rallel propagate this frame along q(t). The result is an 
orthonormal frame at each point of the curve and hence 
a curve in L(M). We call this curve a horizontal lift of 
q(t) or Simply a horizontal curve in L(M); the tangent to 
this curve is called the horizontal lift of the tangent to 
q(t). Since parallel propagation is achieved by solving 
first order linear ordinary differential equations with 
well-posed initial conditions, the horizontal lift of a 
given curve is unique. 

The tangent vectors to the family of horizontal curves 
through u determine a four-dimensional subspace Hu of 
the full tangent space Tu. This horizontal subspace is 
dependent on the existence of a connection in M and con
tains no vector (but the zero vector) which is tangent to 
the fibre through u. Moreover, the projection map 7T 

determines a map 11* of vectors such that 7T*(Hu) is just 
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the full tangent space T 7(U) at the point p = 1T(U) in M. 7 

Similarly, the map of tangent vectors RA* determined 
by the map RA on L(M) preserves the property of being 
horizontal since parallel propagation commutes with 
Lorentz transformations on M: HuA = Rt.*(Hu). B 

It is often convenient to choose as basis elements of 
Hu so-called standard horizontal vectors, Bi , i = 1,2, 3, 
4. These vectors are defined as the unique horizontal 
vectors which satisfy 1T*(Bi ) =Xi, where Bi is in the tan
gent space of U = (p; Xl, X 2, X 3, X 4). The integral curve of 
the projection of a standard horizontal vector field is a 
geodesic in M: It is a curve whose tangent vector is pa
rallelly propagated along the curve. Conversely, the 
horizontal lift of any geodesic in M is tbe.integral curve 
of some standard horizontal vector field. 

Consequently, by virtue of the Lorentz group action 
and the Levi-Civita connection on M, it is possible to 
uniquely decompose the full tangent space Tu into a di
rect sum of vertical and horizontal parts 

Tu= Vu +Hu· 

In other words, any vector in Tu can be written uni
quely as the sum of a vertical and horizontal part. 

The fundamental vertical vectors and the standard 
horizontal vectors are used to define a positive-definite 
metric G on L(M): These vectors are taken to be ortho
normaL This metric is, of course, dependent on which 
basis is chosen. In the Schmidt procedure of defining 
the boundary of a spacetime, however, all metrics of 
this kind give the same results. 1 L(M), endowed with 
the Riemannian metric G, is a space with a distance 
function d(u, v), that is, a topological metric space. 9 

L(M) may therefore be Cauchy completed to form 
i(M). 10 The process is very beautifully described by 
Korevaar,l1 and we briefly summarize his treatment. 
A subset {Ui} of L(M) is a Cauchy sequence if for every 
E > 0 there is an integer N such that whenever i, j > N, 
d(u i , Uj) < Eo Two Cauchy sequences {u;}, {Vi} are said to 
be equivalent if the sequence of numbers {d(UI, Vi)} 
tends to zero as i - 00. Each equivalence class of Cauchy 
sequences as defined by this relation either converges 
to a point in L(M) or does not converge to a point in 
L(M). 

Picture an equivalence class as a "spider." If the se
quences in the class converge to a point in L(M), the 
spider has a "heart"; otherwise it is a "heartless spi
der." The set of all equivalence classes, "sp~der 
space, " is i(M). In i(M) a distance function d may be 
defined to agree with d when restricted to L(M), which 
is identified as the subset of spiders with hea£ts. L(M) 
is dense in i(M), and it is easily shown that L(M) is 
complete. 

Schmidt1 has shown that the action of L may be ex
tended uniform continuously to i(M) 0 A generalized 
fibre through a given point is thus defined even for points 
in i(M) which are not in L(M): It is the orbit of L 
through that point. The boundary elements M of the 
spacetime are then defined to be this set of generalized 
fibres of i(M), 

,~1 = !Vi - Al = [i(M) - L(M)]/ L. 
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Schmidt has shown that M is physically interesting: An 
incomplete geodesic or an inextendable timelike curve 
of bounded acceleration and finite proper length each 
determine elements of M via the above construction. 

B. Local expressions 

It is convenient for calculations to have explicit ex~ 
pressions for the fundamental and standard horizontal 
vector fields. It is also convenient to have expressions 
for the 1-forms which are dual to the aforementioned 
vector field basiS, since the 1-forms are used to dis
play the bundle metric tensor. These forms span the 
dual space T: at each u <=. L(M). 

The connection 1-forms {w A
, A = 1, 2, ... , 6} are de

fined by 

verY=wA(Y)El 

where YE. Tu(L(M)), verY represents the vertical part 
of Y, and {E~n are the fundamental vector fields which 
span Vu. The canonical 1-forms are defined by 

1T *(Y)u = ei(Y)Xi' i = 1, .. ·,4, 

where Y is a vector at U and U is the orthonormal frame 
atp, (p;Xt>X2,X3,X4). The canonical and connection 1-
forms obey the duality conditions (where {BJ spans Hu): 

ei(Bj)=oi j , ei (El) =0, 

In this section we will give local expressions for all the 
above quantities. 

Since L(M) is locally UXL where UCM, we may use 
(Xi, c0) as local coordinates on L(M). Here {Xi} are local 
coordinates on U and {(}!A} local coordinates on L. The 
explicit matrix which rotates an orthonormal frame at a 
point into another orthonormal frame at the same point 
is uniquely determined from the six real numbers {c0} 
through the matrix exponential map: 

The MA are the constant matrices in dL which generate 
infinitesimal transformations on L. 

We may take {Xl' a/a(}!A} as a local basis of the tan
gent space at each point of L(M), ({Xi} is the orthonor
mal basis at p Co. M). Then {Wi, dc0} is a local basis of 
the cotangent space at each point of L(M) where 

-i (X) "i -i ( a ) - 0 w j =Uj, W W -

We will first derive the local expression for the hori
zontallift of a vector on M to L(M). Let us choose a 
curve y(r) : {xi(r)} in M and a frame at y(O). We parallel 
propagate the frame along the curve to generate a curve 
ll(r) in L(M). The tangent vector u(r) to this curve is 
the horizontal lift of :;'{r). Locally, we may express 
li(r) as 
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'() r() dc0 a u r = ~ r Xr + dr W 

where (r) are the frame components of r(r), The 
frame at r = 0 is parallel propagated a~ong the curve so 
that the parallel propagated frame is Xj(r) =L:(r)Xs(r), 
{Xs(r)} being the frame at the point y(r). We have that 
(dLm" /dr)(r) = - r~tLmSe where the r~t are the connection 
coefficients on M in the orthonormal frame, 12 Since 

dLm" _ oLm" dO/A 
---a:r- - 0 O/A dr 

and since (oL::.IoO/A) is invertible [inverse being written 
(0 O/A /0£;:')], we find that 

dc0 = _ (lO/A r" L se 
dr oL" m st m ' 

Hence we may write 

'(r) - tSx OO/A rn T t tS 0 
u -s S-oLnm ts'-'m S OO/A' 

If we let 

-x OO/A n t 0 
Ws - s- oL mrtsLm GO/A' 

n 

u(r) ==: ~aWa, 

and thus the {Wa} span HU(T)' 

The standard horizontal vector fields (Br). are linear 
combinations of the Wa so to find their local expressions 
we need only compute the combination coefficients: 
(Br)u = Ar mw m' The definition of (Br)u says that rr *(Br). 
= L';'Xm' But rr*(Br). = rr*(Ar mW m) = Armrr*(W m) =Ar mXm and 
so we have that 

(Br). = L';'W m' 

By making use of the duality relation we may calculate 
expressions for the canonical forms oj: 

ei(L';'Xm ) = L';'Oi(Xm) = Il~ 
and thus 

Oi = (L;) -1 (~7. 

The fundamental vector fields E1 are simply given by 
El = G /a O/A, and we may calculate expressions for the 
connection forms wA by the duality relations wA(Br) = 0 
and wA(E~) = Il~. The connection forms are readily found 
to be 

At this point we give an explicit representation of the 
positive-definite bundle metric tensor which was pre
viously defined to be the function satisfying 

G(BrBs) = Drs, 

G(El, E1) = DAB' 

It is easily checked that the function G is given by13 

G(X, Y) = ei(X)Oi(y) + WA(X)WA(y) 

where X, Y E T.(L(m». 
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III. THE SACHS COMPLETION PROCESS: THE s
BOUNDARY 

The Riemannian manifold which is used in the Schmidt 
process is the ten-dimensional proper homogeneous 
orthochronous Lorentz bundle, L(M). The boundary 
which is assigned to M in this way is called the b
boundary. Instead of using L(M), Sachs2 has given a 
prescription for defining a Riemannian metric H on the 
seven-dimensional tangent sphere bundle T'(M) which 
consists of the set of all unit timelike vectors at all 
points Of14 M, T'(M) is Cauchy completed with respect 
to the distance function induced by H, and an equivalence 
relation is defined on T'(M), The boundary points of M 
are then defined to be equivalence classes of "heartless 
spiders" in T'(M). We will refer to the set of boundary 
points assigned to M by the Sachs method as the s
boundary of M, In this section we give a detailed dis
cussion of the Sachs process. We defer the discussion 
of the relationships between the b-boundary and the s
boundary to the next section where we will suggest a 
natural modification of Sachs' procedure for defining 
equivalence classes. 

Let M be a spacetime with metric tensor g, A unit 
timelike vector at p EM is a member up of Tp(M) satisfy
ing giJului = - L We denote by T'(M) the set of all unit 
timelike vectors at all pOints of M. T'(M) forms a mani
fold and we may label a point in T'(M) by local coordi
nates (Xi, utY.) where Xi are local coordinates on U C M 
and utY. are three independent components of the unit 
timelike vector field with respect to the basis {a/axi} 
(say, the first three components of ui , for convenience 
the fourth components being obtainable from utY. by use 
of the fact that u is unit). The tangent sphere bundle 
may be considered as a sub manifold of the full tangent 
bundle defined by 

f(x i, u l ) = gii(Xk)uiui + 1 = O. 

There is a projection mapping rr: T'(M) -M whereby 
a unit timelike vector at a point is mapped onto the point 
to which it is attached. The set of points rr-1(p) is dif
feomorphic to a hyper surface in R4 defined by 

K =W'!' t 2, t 3
, t 4

) I (t1)2 + (t2)2 + (t3)2 _ (r)2 = - 1}. 

T'(M) is locally diffeomorphic to UXK where U is a 
coordinate neighborhood of M. 

A vector field W in the full tangent bundle T(M) may 
be expressed as 

i a . a 
W= W1 ax! + W2' oui • 

If W is tangent to the sub manifold f(x i
, /) = 0, then we 

may consider it as a differential operator in either T(M) 
or T'(M). The condition that W be tangent to the sub
manifold f(x i 

,/) = 0 is that df( W) = 0 where 

df=31. dxi +~dUi 
axi au l ' 

In terms of local coordinates this condition is Simply 

gij ,auluiW1a + 2glaU i W2
a = 0, 

As in the case of L(M) the existence of the Levi
Civita connection on M enables us to distinguish pre-
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ferred curves in T'(M) called horizontal curves. 15 If we 
take a curve XI(T) on M and parallel propagate an arbi
trary unit timelike vector u l along XI(T) then this defines 
a horizontal curve on T'(M). In terms of local coordi
nates, the tangent V to this curve may be written as 

dx l a du l a dxk D 
V=--+-----

dT axl dT aui - dT dxk ' 

where 

D _ a rl ,a 
dxk - axk - ikU dU! 

and rJk are the connection symbols on M. The D/dxk 

thus span the horizontal subspace and the vector 

dx k D 
V={fT dxk 

is called the horizontal lift of the tangent to Xl (T), As 
can be seen by direct calculation, dj(V) == ° and so V is 
tangent to T'(M). 

If Xi(T) is a timelike geodesic then its tangent vector 
is parallel propagated along the curve and this generates 
a particular type of horizontal vector field L called the 
timelike geodesic spray vector field, In T(M) L may 
thus be written locally as 

. a b a 
L==v'--r- r a v v c -

ax' bc ava 

where Vi is the unit tangent vector to Xi(T), L is, of 
course, tangent to T'(M), 

Since ui are local coordinates on the fibres we may 
use the vectors {a/aui} to span the vertical subspace in 
the full tangent bundle and so the {a/au"} span the verti
cal subspace in T'(M) at each point, Thus taking the 
{D/dx k}, {a/au"'} together, we have a basis for the tan
gent space at each point of T'(M). An arbitrary vector 
Z may then be written as 

Z -Zi D +Z'" a 
- har axr vor au'" . 

Since we have local coordinates (Xi, ui
) in T(M), the 

coordinate vectors (a/ox i , a/aul ) span the tangent space 
at each point, The 1-forms dUk, dxk satisfy the duality 
conditions 

d k(~'-x aui} -- 0, 

If we define Du i = du l + r;kuj dxk, then we may see im
mediately that the 1-forms Du l

, dxj satisfy the duality 
conditions 

Dui(!k) = 0, dXk(!~ = os', 

Du
i (a~j) = 0/, dXS(a~/) = 0, 

Thus the 1-forms (dx', Du S
) cotangent space at each 

point of T(M) and are dual to (D/dxk, a/au i
). The 1-

forms (dx', Du S
) are adapted to the structure induced on 

the tangent space at each point of T(M) by the connection 
anM. 
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It is natural to define a Riemannian metric on T(M) 
by demanding that there exist a positive-definite, bi
linear, symmetric operator H which makes horizontal 
and vertical vectors orthogonal. Just such an operator 
has been defined by Sachs as H = hjj dxl ® dx' + hl,nul 

® nu', where hi} = + gjj + 2ulu" u l = goul , and Dul = du l 

+ rl 'kU' dXk. Direct calculation shows that 

HC~m' d~") = hmn' 

HC~m' a~n) = 0, 

H(a~m' a~n) = hmn' 
and so the expression is manifestly positive-definite. 
The tensor character of H is apparent from its definition 
in terms of the 1-forms dx! and nu i

• It can also be veri
fied that the components of H with respect to (dx!, dUI) 
transform like the components of a covariant tensor 
under a change of coordinates 

. ! f -. -I axi ) 
(x' ,u ) - \X', u = axr uJ 

• 

We note that even though H is positive-definite it direct:.. 
ly carries information about the connection on M 
through the hlj and the 1-forms Du i

• A Riemannian met
ric may now be induced on T'(M) by setting gijUIU

j 
= - 1 

in the expression for H. Of course in this case only 
three of the u i are linearly independent (for example, 
this relation makes one component of u l a function of the 
other three and of xi in H), 

The tangent sphere bundle endowed with the Rieman
nian metric is a metric space with distance function in
duced by the metric. Its Cauchy completion consists of 
the set of all equivalence classes of Cauchy sequences. 
An equivalence relation R may be defined on the set of 
all equivalence classes, both those with "hearts" and 
those "without hearts," and the boundary of the space
time may be defined as M=M - J'vI where 10- = T'(M)/R. 
Of course, when we restrict R to the set of equivalence 
classes of Cauchy sequences which is isometric to 
T'(M) we must recover M. The problem then is to de
fine such an equivalence relation. Sachs has given one 
such relation; we shall give another which is more 
natural. 

Sachs' equivalence relation is: Two equivalence class
es of Cauchy sequences 51 and 52 are R- equivalent if 
there are Cauchy sequences a in 51 and /3 in 52 of the 
form 

a={(Pl, Ul ), (P2, U2), •. ,}, 

/3={(Pb VI), (P2' V2),"'}' 

Two equivalence classes are thus R-equivalent if one 
representative Cauchy sequence in each is formed over 
the same sequence of points in M. R is a true equiva
lence relation. When R is applied to the subset of equi
valence classes of Cauchy sequences which is isometric 
to T'(M), the resulting quotient set may be identified 
with M itself; i. e., T'(M)/R=M. This technique of de
fining an equivalence relation on T'(M), however, in a 
sense violates the" spirit of the game" since we are r e-
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quired to use information about sequences on M in order 
to decide when equivalence classes of Cauchy sequences 
in T'(M) are equivalent. Furthermore, it lacks the ele
gance of Schmidt's technique, which uses a group oper
ation extendable to the boundary of L(M). 

IV. PRINCIPAL BUNDLES AND ASSOCIATED 
BUNDLES 

There is a natural extension of the Schmidt technique 
for completing M which enables us to define "tensor 
spaces" over boundary points of M.16 The extension is 
based upon the general mathematical technique for con
structing an associated bundle from a given principal 
fibre bundle. 17 It turns out that this construction sug
gests a more natural equivalence relation to be imposed 
upon members of the Cauchy completion of the tangent 
sphere bundle than has been proposed initially by Sachs. 

We now briefly outline the technique for constructing 
an associated bundle from an arbitrary principal 
bundle. 17 

A differentiable manifold B is called a principal fibre 
bundle over a manifold M if the following conditions are 
satisfied: 

(a) There exists a Lie group G acting freely on B to 
the right as a Lie transformation group, B x G 
3(b,g)-b.gEB; 

(b) M is the quotient space of B by the equivalence 
relation induced by G, L e., B/G may be identi
fied with M, and there is a map 1T: B-M which is 
differentiable; 

(c) every point p in M has a neighborhood U C M such 
that 1T-1(U) is diffeomorphic with UXG. 

The manifold M is called the base space of B, G is 
called the structure group, 1T is called the canonical pro
jection mapping, and 1T-1 (P) is called the fibre over p. A 
principal fibre bundle is often denoted by B(M, G, 1T) when 
it is desirable to emphasize its composite elements. 
L(M), where M is a spacetime, is an example of a prin
cipal fibre bundle. 

Now let F be a differentiable manifold on which G acts 
differentiably on the left: GXFE (g, t) _g-l. 1;. We wi11 
construct a manifold A which is called the fibre bundle 
associated to B with standard fibre F. 

The group action on both Band F defines a group ac
tion on the set B x F by the rule B x F E (b, 1;) - (b . g, 
g-l, 1;). The action of G on B x F then defines an equiva
lence relation on BXF and we denote the resulting set 
of equivalence classes by A=(BXF)/G: Each equiva
lence class in A consists of elements of the form (b. g, 
g-l. t) where band t are fixed and g varies through G. 
We now define a mapping z/!: BXF-M by (b, t) -1T(b) EM 
where1T is the proj ection map of B. Since 1T(b) = 1T(b • g) 
we see that ljJ(b, t) = ljJ(b . g, g-l. 1;) = 1T(b) EM. If we denote 
the map which takes the pair (b, 1;) into the equivalence 
class conSisting of (b . g, g-1. 1;) where b, I; are fixed and 
K ranges through G by a: BXF-A, then we see that 
there is an induced mapping from A to M, call it 1T., 
whereby each equivalence class goes to a point in M. 
Thus 1Ta is a projection mapping. Then since 1T;I(U) 
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where UCM is locally UXF, we can easily endow A with 
a differentiable structure. 

As explicit examples of the above construction we 
consider the following: 16 

(a) Take B to be a principal fibre bundle and let G 
act on itself by group multiplication. Then A 
=(BXG)/G=B and B is the bundle associated 
with itself with standard fibre G. 

(b) Take B to be the principal fibre bundle L(M) 
where M is a spacetime with signature (+++-). 
Let G be L and let F be R4. Then A= (L(M) XR4)/ 
L is the tangent bundle T(M) of M having a stan
dard fibre which may be identified with the tan
gent space Tp(M) at p EM. This identification is 
simply another way of saying that a tangent vec
tor at a point p E M is a rule that assigns a 4-
tuple of real numbers to a frame u at p such that 
when the frame changes by a Lorentz transforma
tion the numbers change by the inverse of that 
transformation. 

(c) Take B to be L(M), G = L, and F to be the tensor 
product of R4 (s times) and its dual (r times). 
Then A is a tensor bundle over M having a stan
dard fibre over p EM which may be identified 
with the set of all tensors of valence (s, r) over 
p. In other words, a tensor of valence (s, r) at 
point p EM is a rule that assigns 4 S

+1' - tuples of 
real numbers to a frame u at p such that when 
the frame changes by a Lorentz transformation 
the r-numbers change by the same transforma
tion, whereas, the s-numbers change by the in
verse transformation. 

(d) Take B to be L(M), G = L, and let F be the unit 
hyperboloid in R4: K={(1;1, f, 1;3, t4) I + (1;1)2 + (1;2)2 
+ (1;3)2 _ (1;4)2 = _ I}. Then A is the tangent sphere 
bundle of M, T'(M), having a typical fibre which 
may be identified with the set of all unit time
like vectors at a pOint p EM. 

The above general construction may now be used to 
apply the Schmidt process to the tangent bundle, First, 
use the fact that the C3.uchy completion i(M) of L(M) can 
be uniquely defined and that L can be extended to act 
upon it, Now take F= R4 and note that L acts as a mat
rix group: for 1;=(1;1,1;2,1;3, r) ER\ I;m=(Lnmt1I;n, Lnm 

E L. Fo!:m the set i(M) XR4, and introduce a group ac
tion on L(M)xR4 by [(P; Xt.X2,X3,X4), (e, 1;2, 1;3, 1;4)] 
-[(P; XlJ X2,X3,X4), (t1,?, 1;3, f4)] where u={XJ and 
u = {Xm} are in i(M),_ Xm = Lm nXn and 1;1 = (L/)-ll;i. Now 
take the quotient of L(M) xR4 by the induced equivalence 
relation and_denote the resulting set of equivalence 
classes as T(M). 

There exists a mapping ~: i(M) xR4 -NI, (u,l;) 
-1i(u) EM, where !v! denotes the Schmidt completion of 
M and when it is applied to L(M) it maps the fibre over 
a point onto the point itself. Since 1i(u) = iT(u . g) = p (:: M, 
it follows that iP(u, t) = ~(u . K, g-l t) = P CCM, Thus there is 
an induced mapping 1ft : reM) - M whereby each equiva
lence class in L(M) xR4 is associated with a point in M. 
This result may now be interpreted in two ways. Since 
there are as many points in T(M) as there are pOints in 
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JIif, assuming M has been directly constructed by the 
Schmidt completion of Musing L(M), then the existence 
of iit may be interpreted as saying that the Schmidt com
pletion of M by using the tangent bundle is the same as 
the direct Schmidt completion of Musing L(M). 

We may also regard iit -1(jj), fjE-M, as a "tangent 
space" associated with the point fj EO M. We put tangent 
space in quotation marks because it may happen that 
the group extension to i(M) may be degenerate, owing 
to a degenerate configuration of the equivalence classes 
of Cauchy sequences and so the "dimension of the tan
gent space at the boundary" may be different from that 
at an interior point. 

We can of course go back and replace R4 by the unit 
hyperboloid and repeat the above construction to obtain 
the Schmidt completion of the tangent sphere bundle 
j'(M). We then obtain a map 

7T t .: j'(M) = (i(M) xH)IL -lvI. 

Then just as before we may interpret the map as saying 
that the Schmidt completion using the tangent sphere 
bundle is the same as the Schmidt completion using the 
full tangent bundle and that both of these are equivalent 
to the Schmidt completion of M by direct use of L(M). 
We may also consider 7Tt .(ji), jj ICc M, as a "unit tangent 
space" at p. 

The same thing may of course be done for tensors of 
type (s, r). We replace R4 by a tensor product of R4 (s 
times) with its dual (r times). We repeat the above con
struction to obtain the Schmidt completion of the tensor 
bundle fr S(M) of type (s, r). We may also consider 
7TT -1(fi), J5 '=- M, as a "tensor space" at p where iTT: Tr S(M) 
-AI, with the same caution as above concerning its di
mensional interpretation. 

The possibility of attaching tensorial quantities to 
boundary points of a spacetime is rich in potential appli
cations. 19 In particular, the Schmidt completion of the 
tangent sphere bundle suggests a natural way to modify 
the equivalence relation initially proposed by Sachs for 
identifying boundary elements in his completion of the 
tangent sphere bundle. Recall that two equivalence class
es of Cauchy sequences in the Cauchy completion of the 
tangent sphere bundle with respect to the Sachs metric 
are defined to be R-equivalent if one representative 
Cauchy sequence in each class is formed over the same 
sequence of points in the base space. Each R-equiva
lence class which does not correspond to a point in M 
is then defined to be an s-boundary point of M. 

In the Sachs procedure, it is only R- equivalence which 
is cumbersome and it seems desireable to seek an equi
valence relation which is somewhat more natural, Just 
such an equivalence relation is suggested by the Schmidt 
completion of the tangent sphere bundle: We simply de
fine two equivalence classes of Cauchy sequences in the 
Cauchy completion of the tangent sphere bundle based on 
the Sachs metric to be S-equivalent if they arise from 
sequences of unit timelike vectors which have the same 
limit in T'(M), as defined by Schmidt. 

Thus if we keep part of the Sachs technique and only 
change the equivalence relation from R to S, then the 
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.modified s-boundary is in one-to-one correspondence 
with !VI as originally defined by Schmidt. Sachs has 
shown that the s-boundary, as he originally defined it, 
is in one-to-one correspondence with the b-boundary. 2 

V. THE INTERPRETATION OF THE BOUNDARY 
POINTS 

As we have seen in the last section, the boundary 
points of the spacetime M correspond to equivalence 
classes in f'(M). In order to interpret these boundary 
points it is necessary to find a relation between the bun
dle length of a curve containing a Cauchy sequence which 
defines the given boundary point and the affine or proper 
length of the corresponding curve in M. We will show 
that incomplete geodesics, as well as inextendable time
like curves of bounded acceleration and finite proper 
length, generate curves in T'(M) with finite bundle length 
and thus determine boundary points of M. 

First, consider the case of geodesics. Let Xi (T) be a 
geodesic in M of finite affine length where T is an affine 
parameter, with Vi the affine tangent vector. Then Dv i I 
dT=O by the definition of a geodesic. Once Xi(T) is given 
we can always choose a unit timelike vector urn which is 
parallel propagated along Xi(T) so that Dum jdT = 0 by con
struction. Then both vmvm and vmum are constant along 
Xi(T}. Now consider the curve (Xi(T), ui(T)), The tangent 
vector to this curve is thus 

i a du! a 
W=v (T) axi + dT QUi' 

The length squared of W is given by 

H(W, W) = hijViV
j = + ViVi + 2(U i Vi)2 = const. 

Thus the bundle length of the curve (Xi(T), Ui(T)) is finite 
since the affine length of Xi (T) is assumed to be finite. 

Second, let Xi(T) be an inextendible timelike curve of 
finite proper length and bounded acceleration in M with 
unit velocity Vi. The curve (Xi(S), vi(s)) is a curve in 
T'(M) with tangent vector 

i il dv i a 
W=v (s) axi +Ts ilvi 

having length squared 

.' Dv i Dvj 

H(W, W) = hijV'Vl + hjjds ds' 

Using the fact that vi(Dv i Ids) = 0, we find that H(W, W) 
= 1 + gi.;AiA j where Ai = Dv i Ids. Since the acceleration 
of Xi(S) is bounded there is a finite number No such that 
+gi.;AiA j <No. Hence the bundle length of the curve 
(Xi(S), vi(s) is less than s-../ 1 + No where s is the proper 
length of Xi (s). Thus the bundle length is finite. 

The preceeding properties thus imply the following: 
If the bundle metric is complete, then the connection is 
geodesically complete. 

VI. EXAMPLES 

The Schmidt process for assigning a boundary to a 
spacetime involves the formidable task of Cauchy com
pleting the bundle of orthonormal frames, a task which 
is only slightly less formidable in the Sachs procedureo 
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A technique which we have used to gain insight into what 
the boundary should be for simple cases consists of 
solving for the eigenvector corresponding to zero eigen
value, when such exists, of the bundle metric tensor at 
a boundary determined from coordinate limits. The 
Cauchy completion of the bundle then consists of the set 
of all integral curves of this degenerate eigenvector 
(possibly with additional identifications). The boundary 
points of the spacetime are then constructed by identify
ing integral curves under the action of L. 

We first consider a positive-definite example: the 
quadrant of R2 with metric 

2_2 4.x
Z 

d 2 0 0 ds = dx- + (1 + y2)Z y, x >, < y < 00. 

The" structure of the singularity" appears to be a line, 
but this apparent structure is deceptive. The Schmidt 
metric is given by 

dif- = Oi Oi + WAW A , 

where Oi = (L/)-lW i and 

A A ac0 m - n 
W =det +W Lp w m • 

" 
(Here L~ is a rotation matrix.) The w:!, are given by the 
solutions of dw" = - w:!, I\wm with ds2 = Ojiwi Wi. Only one 
parameter is needed for the structure group (rotation 
group in this case) and we denote it by A: 

(
COSA sinAJ (COSA - sinA) 

L"= <_>(L")-l= . 
m _ sinA COSA m sinA coSA 

We write ,;J1=dx, w2=[2x/(1 +y2)]dy and find that 

wf = X-
1W2 = - w~. 

With respect to the basis {dx, dy, dA} we may write the 
Schmidt metric as 

Here det GaS goes to zero as x goes to zero and we thus 
expect the boundary points to lie at the limit x = 0, this 
limit being parameterized by the two variables y, A. 

Consider the reduced matrix G~~) on an x=consL 
hypersurface. 

The eigenvalues 11± of this reduced matrix are given 
by 

u.= +1 [1 + (1 !Y:2)2 (1 +?) ] 

± ~{[ 1 + (1 ~:2)2 (1 +?)] 2 _ (/!:2Z)2f/2 
Note that as x - 0, 11_ - 0, while 11+ remains finite for 
all values of x. The eigenvector on the" x = 0 hyper sur
face" corresponding to the zero eigenvalue of G~g) cor
responds to a degenerate direction. Two Cauchy se
quences approaching this "x = 0 hypersurface" which 
have their separation vector coincide with this degener-
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ate direction will determine the same boundary point. 

The eigenvector V(O) corresponding to the zero eigen
vector is given by 

(0) a 4a a 
v =aay-l +y""Z aA' a arbitrary. 

The integral curve rIO) : (y('r), A(T» of v(O) is given by 

A= - 4tan-1y + const. 

The" singularity structure" of the bundle is thus one
dimensional. To project to the base space we identify 
equivalence classes with different values of A. 

Thus the b-boundary of this space is simply a point. 
The transformation 

x=r, y =tan(e/2) 

shows that this example is Simply the plane in polar co
ordinates r, 0 with the r= 0 point missing. 

For another example, we consider a two-dimensional 
Friedmann-Robertson-Walker (FRW) type spacetime 
with local coordinates (x, t), t > 0, - 00 < x < 00. The met
ric tensor is given by ds 2 = + a2(t) dx2 - dt2, where a(t) 
- 0 as t - 0 and a/(t) = da(t)/dt - 00 as t - O. We again use 
A as a coordinate on L, 

G
OShA SinhA) (COShA - SinhA) 

(L ")= <->(L "t1 = . 
m sinhA coshA m _ sinhA COShA 

We choose w1 = a(t) dx, WZ = dt and find that the only 
nonzero wm" are wf = w~ = [a'(t) / a(t) ]w1

• In the basis 
{dx, dt, dA} the determinant of the Schmidt metric Gas is 
a2(t) and so goes to zero with t. It can be shown (e. g., 
by calculating bundle curvature invariants) that this ap
parent singular behavior is not simply a coordinate ef
fect and we thus expect the boundary to be the "t = 0 
hypersurface. " 

To determine the structure of the boundary, we solve 
for the eigenvalues of the reduced metric G~g) on a t 
= canst hypersurface as t goes to zero. The eigenvalues 
of the reduced metric are given by 

11. = + HI + a2 cosh2A + 4(a')2] 

± 1{[1 + a2 cosh2A + 4(a')2]2 _ 4a2 cosh2A}1 12. 

Thus one eigenvalue goes to zero and one to infinity as 
t goes to zero (assuming COShA < 00). The integral curves 
of the eigenvector corresponding to the zero eigenvalue 
are given for this case by lines "parallel" to the A axis. 
We thus conclude that the singularity structure of L(M) 
is one-dimensional and that of M also one-dimensional. 

The Sachs metric on T'(M) is dcr = hi! dxi dxj 

+ hijDui Duj where hij = go + 2u iu j, ui = giiui ,Dui = dUk 

+ r~kui dxk, and it is understood that du i is to be ex
pressed in terms of dA and dt. For the FRW-type metric 
the Sachs metric becomes identical to the Schmidt met
ric if t - 2t in the Schmidt expression. 

VII. CONCLUSIONS 

It is possible to assign boundary points to a spacetime 
by aSSOCiating with the spacetime a higher-dimensional 
Riemannian manifold, Cauchy completing this Rieman-
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nian manifold, and then "projecting" to define the bound
ary points of the spacetime. Two such techniques for 
aSSigning boundary points to a spacetime are currently 
available: one due to Schmidt using the proper homo
geneous orthochronous Lorentz bundle L(M) over a 
spacetime, and one due to Sachs using the tangent 
sphere bundle T'(M). We introduced a natural modifica
tion of the proj ection method in the Sachs technique 
which makes it agree rather easily with the Schmidt 
technique. The original Sachs technique projection is 
somewhat cumbersome although Sachs has shown that 
his original scheme gives to the same results as 
Schmidt's. 

Both the Schmidt process and the Sachs process are 
more general than the g-boundary technique formulated 
by Gerocho Geroch' s method of assigning boundary 
points to a spacetime uses only incomplete geodesics 
whereas both the Sachs method and the Schmidt method 
include not only incomplete geodesics but also other 
curves, such as inextendible timelike curves of finite 
proper length and bounded acceleration. This is an im
portant advantage in principle but both of the new tech
niques are far more difficult to apply than Geroch' so It 
is a formidable task to calculate either the b-boundary 
or the s-boundary for even the simplest spacetime 
models whereas Geroch' s technique is relatively 
straightforward in these simple cases. 

We note in passing that more complex versions of the 
Sachs and Schmidt ideas for aSSigning boundary points 
to a spacetime have been given. Bri1l2o described a pro
cess whereby long sequences of successively higher
dimensional manifolds may be defined, each but the 
most complicated having indefinite metrics, and only 
the last being Riemannian. The singularity structure of 
the last manifold is determined by grouping Cauchy se
quences into equivalence classes. The sequence is then 
followed back down to arrive at the singularity struc
ture of the original manifold Mo The major unanswered 
question with this procedure is when or if all of the pro
cesses suggested by Brill lead to the same singularity 
structure for M. 

*Based in part on a Ph. D. dissertation submitted to the Uni
versity of Texas graduate faculty. 

tSupported in part by NSF GP-43844-X and NSF GP-34639-X. 
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We consider the Marsden-Fischer conditions for linearization stability applied to vacuum spacetimes 
with compact Cauchy hypersurfaces. We show that if a vacuum spacetime S admits a Killing vector 
field, then the Marsden-Fischer criterion fails to be satisfied at any Cauchy surface for S. We also 
show that if the Marsden-Fischer criterion fails to hold on an initial surface, then there is a Cauchy 
development of this intial data which admits one or more Killing vectors. The number of 
independent Killing fields present is shown to equal the dimension of the kernel of the linear map 
defined by Marsden and Fischer. 

I. INTRODUCTION 

Fischer and Marsden1 ,2 have recently proven an im
portant theorem concerning the applicability of linear 
perturbation theory to problems in general relativity. 
They establish conditions upon an exact solution of the 
vacuum Einstein equations which are sufficient to ensure 
that all solutions to the corresponding linearized equa
tions approximate (i. e., are tangent to) curves of exact 
solutions passing through the given one. If all solutions 
of the linearized equations do indeed approximate curves 
of exact solutions, then the given solution is said to be 
linearization stable. The importance of this idea is en
hanced by examples due to BriU3 and Brill and Deser4 

of vacuum spacetimes which are not linearization stable. 
For these examples some solutions of the pertUrbation 
equations are spurious and should be discarded. 

In this paper we consider the Fischer-Marsden con
ditions for vacuum spacetimes determined by Cauchy 
data prescribed on a 3-manifold M which is compact 
and without boundary. The conditions for linearization 
stability (reviewed here in Sec. TIl) are expressed in 
terms of a system of linear partial differential equations 
defined on any Cauchy surface for the spacetime. Lin
earization stability holds if these equations admit only 
the trivial solution (i. e., the associated linear map has 
trivial kernel). We shall show that if a Cauchy develop
ment of the initial data admits one or more Killing vec
tor fields then the Fischer-Marsden criterion for lin
earization stability fails to hold at any Cauchy surface 
of this development. Conversely, we shall also show 
that if the Fischer-Marsden conditions fail to hold on 
an initial surface, then there is a Cauchy development 
of the initial data which admits one or more Killing 
vector fields. The number of independent Killing vectors 
which occur is shown to equal the dimension of the 
kernel of the linear map mentioned above. As a corol
lary we obtain the natural result that the Fischer
Marsden criterion is independent of the choice of Cauchy 
surface to which it is applied and depends only upon the 
presence or absence of isometries of the enveloping 
spacetime. 

When the Fischer-Marsden conditions fail to hold one 
can derive additional restrictions upon the perturbations 
which are necessary to exclude spurious solutions of the 
linearized equations. Special cases of these restrictions 
have been discussed by Brill and Deser4 and by Fischer 
and Marsden who outlined a general method for deriving 
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such constraints. 2 In a subsequent paper we shall dis
cuss these additional constraints which are necessary 
(according to the arguments given here) whenever the 
background spacetime admits Killing vector fields. We 
shall show that they require that the conserved quantity 
associated with each independent Killing vector field 
must be constrained to vanish. This restriction upon the 
perturbations is independent of the choice of initial 
hypersurface at which it is imposed and is essential to 
exclude spurious solutions. 

For the case in which M is noncompact and the space
time asymptotically flat the Fischer-Marsden conditions 
are less restrictive. Nonvanishing solutions to the 
corresponding Fischer-Marsden equations do not vio
late linearization stability unless they have suitable 
asymptotic behavior. Thus Killing vectors (which al
ways induce solutions to these equations) would be al
lowed provided they did not vanish asymptotically. In 
particular, as shown by Fischer and Marsden1

•
2 and in

dependently by Choquet-Bruhat and Deser, 5 Minkowski 
space is linearization stable. However, since the de
tails of the general linearization stability theorem for 
noncompact M have not yet been published, we shall 
confine our attention to the compact case. 

A different approach to the study of linearization 
stability has recently been published by O'Murchadha 
and York. 6 They consider both compact Cauchy surfaces 
and noncompact Cauchy surfaces with asymptotically 
flat initial data. In the latter case they conclude that 
any asymptotically flat initial data set for which the 
trace of the second fundamental form vanishes is 
linearization stable. 

II. NOTATION AND BASIC EQUATIONS 

We consider vacuum spacetimes determined by suit
able Cauchy data prescribed on a compact 3-mainfold 
M which is orientable and without boundary. The Ein
stein equations determine a Lorentzian metric (4}g 
(Signature - + + +) on (41 V = (- E, E) xM which is unique 
up to diffeomorphisms that leave the Cauchy data fixed. 
In coordinates for which the hypersurfaces X O = t = const 
are spacelike, we express the components of (41g as7 

(41gjj =gjj, (4)goj=N
j

, (4)goo=_~+giiNiNj (2.1) 

where gii is the inverse of the Riemannian metric gij" 

Nand N j are called the lapse function and shift vector, 
respectively. The metric (4)g induces on each spacelike 
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hypersurface a second fundamental form k. In terms of 
k and g we define the gravitational momentum rr 

rriJ = (detg)l/2 (g Ij trk - kii) (2.2) 

where det g is the determinant of glj and tr k = k lj gij 
is the trace of k. Covariant differentiation with respect 
to (4lg of tensor fields defined on «4 lV, (4lg ) is signified 
by a semicolon. Thus if (4lX is a vector field defined 
over (4l V, we write 

(L (4l) (4lX + (4lX 
(4)X gtJ,v== tJ,:V V;tt' (2.3) 

where L(4l
X 

is the Lie derivative with respect to (4lX. 
Covariant differentiation with respect to g of tensor 
fields defined over a hypersurface (M, g) is signified by 
a vertical bar. Thus we write 

(6rr)i = rr iJ
l j (2.4) 

where 6rr is the divergence of rr. 

The various function spaces used in the Fischer
Marsden analysis are spaces of C~ tensor fields over 
M (in the technical proofs Sobolev spaces are used 
instead). Define 

52( S n = space of symmetric covariant second rank 
tensors (tensor densities) over M, 

5 2( 5~) = space of symmetric contravariant second rank 
tensors (tensor densities) over M, 

iJ1 = space of Riemannian metrics of M, 

C~ (c;) = space of scalar functions (scalar densities) 
over M. 

Kl (X n = space of covariant vector fields (densities) 
over ,'\1, 

Kl( X~) = space of contravariant vector fields (densities) 
over M. 

In addition, write T *iJ1 "" iJ1 x 5! for the cotangent bundle 
of /J1. 

As is well known, Cauchy data (g, rr) induced upon a 
spacelike hypersurface of a Ricci-flat spacetime satisfy 
the constraint equations H (g, rr) = 6(g, rr) = 0, where 

H(g, rr) = (detgt1 /2(rr ij rr iJ - 1/2(tr rr?) 

- (detg)1/2 R, (2.5) 

6(g, rr)= 2rrljlj (2.6) 

and R is the scalar of curvature of g. These constraints 
define a subset C of T* iJ1: 

C = {(g, rr) I H(g, rr) = 6(g, rr) = o}. (2.7) 

The Einstein evolution equations which propagate the 
Cauchy data to determine a metric (4lg on (- E, E) xM are 
given by 
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agi/at = 2N(detgt1/ 2 (rr iJ - (1/2)giJ tr rr) 

(2.8) 

iJrriJ fat = - N(detg)1/2(Rjj - (1/2)giiR) 

+ (1/2) N( detg)-1 /2 g ij( rrklrr kl _ (1/2)(trrr )2) 

- 2N(detgt1/2(rr lkrr/ - (1/2)rr ij trrr) 
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+ (detgl/ 2 (N1 ij _ g ijN1 k1k) 

+ (rrijNk)lk-Nllk rrkj -Njlk rrki 

where Rij is the Ricci tensor of g. 

(2.9) 

We shall need some standard theorems on existence 
and (with suitable coordinate conditions) uniqueness of 
solutions of the Einstein equations and of the linearized 
Einstein equations. These results have been obtained by 
Choquet-Bruhat8 who established the strict hyperbolicity 
of the Einstein equations in harmonic coordinates and by 
Fischer and Marsden9 who reexpressed the equations in 
first order symmetric hyperbolic form. The hyper
bOlicity of the corresponding linearized equations may 
be deduced from these results provided the background 
exact solution is properly Lorentzian. For our purposes 
it will be convenient, in Secs. V and VI, to impose 
Gaussian normal coordinate conditions «4lgoo = - 1. 
(4lgoi = 0) on the exact solutions and Gaussian gauge con
ditions (i. e., vanishing perturbations of (4lgoo and (4lgoi ) 
on the perturbation solutions. This specialization 
simplifies a number of the computations but limits 
the conclusions of these sections to those Cauchy de
velopments on which Gaussian coordinates exist. 

III. FISCHER-MARSDEN CONDITIONS FOR 
LINEARIZATION STABILITY 

Following Fischer and Marsden1.2 we define 

<I>: T* Ih -C; x X;, (g, rr) t- (H(g, rr), 6(g, rr)) (3.1) 

and compute the derivative D<I>(g, rr) of <I> at points 
(g, rr) E: ( = <I>-1(0). If (h, w) E: 52 X 5~ = T (g •• l/J1 x 5~, then 

D<I>(g, rr) .(h, w)={DI-/(g, rr) .(h, w), D6(g, rr) .(h, w)} 

={(detg)-1/2[-1/2(rr .rr-1/2(trrr)2)trh 

+2(rr .w-ttrrr .trw)+2(rr X rr-t(trrr)rr) .h] 

- (detg)1/2[ 66h - .:l(trh) 

- (Ric(g) -1/2gR(g)) .hj; 

(3.2) 

where. signifies contraction (e. g., rr· h = rrijh i ) and tr 
signifies trace (trh=giJh i). Also, rrXrr=rrikrr/, Mh 
=hijlij, .:l(trh)=(trh)li 1i and Ric(g) is the Ricci tensor 
of g. Our notation, except for some sign conventions, 
is essentially that of Ref. 2. However. our function 
6(g, rr) has been defined, for convenience, to be minus 
twice that of Ref. 2. 

From the implicit function theorem one knows that if 
D<I>( • ) is surjective at (g, rr) E: C, then 

(i) C is a smooth submanifold of T*iJ1 in a neighbor
hood of (g, rr) and 

(ii) all solutions (h, w) of D<I>(g, rr) • (h, w) = 0 are 
tangent to C at (g, rr). 

Using elliptic theory Fischer and Marsden prove that 
D<I>(g, rr) is surjective if and only if the adjoint map 
D<I>(g, rr)* is injective (i. e., has trivial kernel). The 
adjoint, computed from (3.2) using the standard L2 inner 
product, is given explicitly by 
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D<f>(g, 11)*: C~ x Xl - S!X .)2; (C,X) 

1- {(detg)-l /2( - t(11 .11 - t(tr11)2)g-lC 

+ 2(11 X 11 - t11(trn»C J- (detg)1/2 [(HessC)-l 

- tl.C g -1 - (Ric(g) - tg R)-lC] + L x11; 

2C(detg)-1/2(7T * - t(tr7T)g) - L xg} (3.3) 

where 7TX11=7Tlk7Tki, Hess C=C 1li , Lx=Lie derivative 
with respect to X, and where we have used 6(g, 11) = 0 
for (g, 7T) E C. Also 7T * = 7T Ii' the covariant form of 7T 
and -1 indicates the contravariant form of a tensor. 

The problem is thus to characterize those points 
(g 11) E C for which D<f>(g, 7T)* has trivial kernel. In 
S~c. IV we show that if a Cauchy development «4)V, <4lg) 
of (M, g, 11) admits a Killing vector field (4)X, then (4)X 
induces upon each Cauchy hypersurface (M, g' , 7T') of 
«4)V, (4)g) a nontrivial solution (C ' .X') of 
D<f>(g', 11')* . (C' ,X') =0. The scalar C' and vector X' are 
then the normal and tangential projections of !4lX. To 
prove the converse, we assume in Sec. V that the ad
joint map D<f>(g, 7T)* admits a nontrivial kernel (C, X) 
and integrate four of Killing's equations to define a vec
tor field <4lX on a Cauchy development «4)V, (4)g) of 
(M,g, 'IT). We then show in Sec. VI that !4lX satisfies 
the remaining six Killing equations on (4)V, (4)g). With 
these results we shall be able to conclude that D<f>(g, 7T) 
is surjective if and only if the spacetime determined by 
the Cauchy data (g,7T) admits no Killing vector fields. 

By working directly with Eqs. (3.3) Fischer and 
Marsden derived two necessary conditions for the ad
joint map to be injective: 

(i) If 7T =0, g is not flat; 

(ii) there are no nonzero vector fields X such that 
Lxg=O and L x7T=O. 

However, these conditions were not sufficient without 
the additional, and overly restrictive, constraint: 

(iii) trk is constant on M. 

Our results show that necessary and sufficient conditions 
for D<I>( • ) to be surjective are most simply expressed 
in terms of the 4-geometry rather than in terms of the 
geometry of some arbitrarily chosen hypersurface. In 
particular, we obtain the natural result that the dimen
sion of the kernel of the adjoint map is independent of 
the choice of hypersurface at which it is evaluated, 
being in fact equal to the number of independent Killing 
vector fields of the spacetime. 

IV. KILLING VECTORS AND THE KERNEL OF 
THE ADJOINT MAP 

In this section we show that the dimension of the 
kernel of D<I>(g, 7T)* is at least as large as the number of 
independent Killing vectors of «4)V, (4)g). Let (4)X be an 
arbitrary. smooth vector field on «4)V, (4)g) and let 
rf>( e) [with e E ( - C/. C/)] be the one parameter family of 
diffeomorphisms generated by (4)X [with rf>(0) = identity J. 
Write (4\g(e) = rf>*(e) (4)g for the induced family of 
metrics isometric to (4)g(0) = (4)g generated by the 
natural action of this family of diffeomorphisms. Then, 
as is well known, 

495 J. Math. Phys .• Vol. 16, No.3, March 1975 

(4)h 4!.f 0 (4)g(e)/oe I - L (4)g 
- e=O- (4)X . (4.1) 

For convenience choose coordinates such that the hyper
surface (M, g, 7T) of intere st occurs as an X

O = t = const 
surface and define the tensor hE S z on each t = const 
hypersurface by 

(4.2) 

Reexpress h by writing out the covariant derivatives ex
plicitly and using Eqs. (2.8) to eliminate the time 
derivatives of g which occur in the connection com
ponents. After a short computation the result may be 
written as 

h jj = - 2C(detg)-1/2(7T jj - 1/2 gli tr7T) + Xiii + XJ 1 i' 

where 

C = (4)X", n'" =N-1( (4)X
O 

_ gUN
I 

(4)X
j
), 

the projection of (4)X along the unit normal n of the 
t = const hypersurface, and where 

(4.3) 

(4.4) 

(4.5) 

the projections of (4)X along the three independent vec
tor fields t(j) = Br%x'" tangent to the t= const hyper
surface. 

The gravitational momentum 7T may be expressed in 
terms of (4)g and its first derivatives by solving for 7T 
in Eq. (2.8). The result is equivalent to 

7T li = (_ det (4) g)1/2 (glm gin _ g Ijgmn)r~n (4.6) 

where r~r are the connection components of (4)g. The 
family rf>(e) of diffeomorphisms generated by (4)X there
fore induces a family 11(e) obtained by evaluating Eq. 
(4.6) on (4)g(e). Define PE S! on each t=const hyper
surface by 

(4.7) 

and compute p explicitly using expression (4.6) and 
o(4)g(e)/oe1e=0=L(4)x (4)g. The resulting expression in
volves second derivatives of both (4)g and (4)X. Eliminate 
the first time derivatives of g using Eqs. (2. 8) and the 
first time derivatives of 7T (which arise through second 
time derivatives of g) using Eqs. (2.9). After a rather 
lengthy computation one finds that the time derivatives 
of the lapse function N and shift vector N

j 
and of (4)X 

cancel leaving 

pli={C[(detg)1/2(Rlj -1/2gljR) 

-1/2(detg)-1/z g/}(7Tmn 7T",n- 1/ 2(tr7T)2) 

+ 2(detg)-1/2(7T lk 7T/ -1/27T jj tr7T)] 

- (detg)1/2(c l Ii _ g liC Iklk) 

+ (XknIJ) _XI 7Tki_Xi 11k!} 
1 k Ik Ik (4.8) 

with C and Xi=gl~i given, as before, by Eqs. (4.4) 
and (4.5). 

Evaluating (h, p) on the t = const hypersurface (M, g, 7T) 
one sees, by comparing Eqs. (4.3) and (4.8) with Eq. 
(3.3), that 

(P, - h)(r •• ) =D<I>(g, 7T)* . (C,X), (4.9) 

where C and X are the normal and tangential projections 
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of (4)X. Now suppose that (4)X is a Killing vector field 
of (4)g. Then from the definitions of hand p in terms of 
o(4)g(e)/oe 1.=o=L(4, x (4lg =O one sees that hand p vanish 
on every I=; const hyper surface. However, since any 
Cauchy hypersurface of « 4l V, <4lg) can be taken as the 
initial (I = 0) surface with a suitable choice of co
ordinates. we obtain 

Lemma 4. 1: A Killing vector (4lX of (4lg induces upon 
every Cauchy hyper surface (M,g,7T) of « 4l V, (4lg) a 
solution (C, X) of D<I>(g, rr)*. (C, X) = O. C and X are the 
projections of (4)X normal and tangential to the hyper
surface, respectively. 

To complete the argument we must show that Killing 
vectors on (<4lV, (4)g) are linearly independent if and 
only if their normal and tangential projections on any 
Cauchy surface are linearly independent. We first prove 

Lemma 4.2: If (4lX is a Killing vector of « 4l V, (4lg ) 

and (4lX vanishes on a Cauchy surface 5, then (4lX 

vanishes on ('4lV, (4l g ). 

Proof: Let y be any timelike geodesic of «4)V, (4)g) 

and let t (ta =dxex/ds) be the tangent to y parametrized 
by proper time s. Then from Killing's equations for 
(
4lX and the geodesic equations for t one eaSily shows 

that 

~(t .(4)X)=.E:..- (t C4lXa)=0 
ds ds a 

along y. Let p be any point of (4)V not contained in 5. 
Since 5 is a Cauchy surface each timelike geodesic 
through p intersects 5 precisely once. Let y be any 
timelike geodesic through p and let t be the tangent to y. 
Then (t . (4lX)p vanishes since t. (4)X is conserved along 
y and vanishes at the point at which y intersects 5 
(since (4)X vanishes there). Thus (4)Xp must be orthog
onal to every time like vector at p and this can happen 
only if C4lX vanishes at p. Thus (4)X vanishes on 
C4l V, (4)g). 

Now suppose (4)X(al (a=l, ... ,n) are linearly indepen
dent Killing vectors on ('41 V, (41 g). If ca are any real 
constants (not all zero). then (4)y = &aCaC41X(a 1 is a 
Killing vector on C41 v, (4)g). Clearly, (4ly cannot vanish 
on a Cauchy surface 5 since, by Lemma 4.2, it would 
therefore vanish globally, contradicting the assumption 
of linear independence of the C41X(al' Thus linearly in
dependent Killing vectors induce linearly independent 
projections (C(al'X Ca ») on each Cauchy surface of 
« 41 V. (4)g). The converse is obviously also true. 

Combining the results of these lemmas we obtain 

Theorem 4. 1: If (M, g, rr) is a Cauchy surface for a 
vacuum spacetime «'lV, (4lg), then the dimension of 
ker D<I>(g, 7T)*, the kernel of the adjoint map at (l",I, g, 1T), 
is at least as large as the number of linearly independent 
Killing vector fields of ('41 V, (4lg ). 

V. INTEGRATION OF KILLING'S EQUATIONS 

Assume that (C, X) E ( 00 X Xl is an element of 
ker D<I>(g,1T)*. We wish to show eventually that there is 
a Cauchy development of (M, g, 7T) and a Killing vector on 
this development which induces (C, X) on the initial 
hypersurface (M, g, 1T) as normal and tangential projec-
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tions. To do this we integrate four of Killing's equations 
to define a vector field on a tubular neighborhood (4)V 

=(-E, dXM of the initial hypersurface. Since this vec
tor field is uniquely determined from (C, X), it is the 
only candidate for a Killing field with the given initial 
data. In the next section we shall show that the re
maining six Killing equations are also satisfied on 
«4lV, C41g ). 

For simplicity we now specialize to Gaussian normal 
coordinates on a tubular neighborhood of the initial 
(/ = 0) hyper surface (M, g, rr). In these coordinates (4lgoo 

= - 1 and C41goi = 0, so that the line element is given by 

ds2=-dI2+gijdxidxi. (5.1) 

In Gaussian coordinates four of the components of 
L (4 ) (41g are given by 

x 

(L(4'x (4)g)oo=2C. 1 =2oC/ot, 

(L C41x C41g )Oi=gjj (X j
.1 + C1kg"j), (5.2) 

where C and Xl =giJXj=gii(4lX j are the normal and 
tangential components of C41X defined by Eqs. (4.4) and 
(4.5) and evaluated in Gaussian coordinates. 

Given (C, X) E ker D<I>(g, rr)* we construct Gaussian 
coordinates on a tubular neighborhood of the initial 
(t = 0) surface (M, g, rr) and define a vector field (41X on 
(-~, E)X M by requiring (L(41X (4)g)oo = (L(41 x C41g )OI =0. 

The components of (4)X are thus defined on 
C41 V=(-E,E)xM, (4lg) by integrating 

C . t = Xi. 1 + gi kC I k = O. ( 5. 3) 

These equations determine (41X uniquely from the initial 
data (C, X)t=o' Furthermore, the remaining six Killing 
equations h u =(L(4lX C41g )jj=0 are satisfied at the initial 
surface since, by assumption, (C, X) E kerD<I>(g, rr)*. This 
gives, in addition, pU = 0 at the initial surface. In the 
next section we shall show that (h,p)(t) obey a system of 
evolution equations which, for vanishing initial data, 
have only the trivial solution h(t) = pel) = 0 for - E < 1< E. 

With this result we shall have hjj=(Lc4lX(4lg)Jj=O on 
(- E, E)xM and thus that L(4lX (4lg =0 on this Cauchy 
development of (M,g, rr). 

VI. PROPAGATION EQUATIONS 

In this section we suppose that the adjoint map evalu
ated at a hyper surface (M, g, rr) has nontrivial kernel. 
We show that for each non-zero element of the kernel 
one may define a vector field on a Cauchy development 
of (AI, g, 1T) which is. in fact, a Killing vector field. 
Linearly independent elements of the kernel correspond 
to linearly independent Killing fields. Combining this 
result with that of Sec. IV, we shall conclude that the 
dimension of ker D<I>(g, rr)* is equal to the number of 
independent Killing fields existing on (- E, E) x M. 

From Cauchy data (M, g, rr) E C, the Einstein equations 
(2. 8), (2. 9) restricted to Gaussian coordinates 
(N= 1, Nj=O) uniquely determine a metric {4}g on (41V 
=(-E,E)XM. If (C,X) EkerD<I>(g,rr)* we integrate Eqs. 
(5.3) to define a vector field (41X on « 4IV, (4lg ) and use 
Eqs. (4. 3) and (4. 8) to define h(t) and p(t) for - E < I < f. 
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By assumption hand p vanish at the initial (t = 0) surface 
and (4)X has been defined so that (4)hov =(L(4)X (4)g)ov 

=0 on (4)V. We wish to show that h(t)=O and thus that 
(4)h=L(4)X (4)g=0 on (4)V. The idea is to show that 
(h(t), p(t)) obey a system of evolution equations which, 
for vanishing initial data, have only the trivial solution 
(h(t), P(t)) = o. 

To see why (h, p)(t) should satisfy a system of evolu
tion equations at all recall that, for any vector field (4)X, 

(6.1) 

where Ric(4)g) is the Ricci tensor of (4Jg • But when (4)g 

obeys the Einstein equations, Ric( (4Jg ) = 0, we have 
L(4) Ric«4)g)=0 so that (4)h=L(4) (4)g obeys the 

x x 
linearized Einstein equations 

D RiC«4)g). (4)h=0. (6.2) 

This familiar result is often called the gauge invariance 
of the linearized Einstein equations. Recalling their 
definitions one sees that h(t) and P(t) are the gauge-like 
perturbations of g and 1T induced by the vector field (4)X. 

Therefore, (h, p)(t) should satisfy the perturbed versions 
of Eqs. (2.8), (2.9) and (eI> = 0). The perturbations of 
the lapse and shift functions will be found to vanish since 
this is implied by the equations (4)hov =(L(4) (4)g)ov=0 

which we have already imposed. x 

One may derive the evolution equations for hand p 
directly by differentiating Eqs. (4.3) and (4. 8) with 
respect to t. Using Eqs. (2.8) and (2.9) (restricted to 
Gaussian coordinates) to eliminate the time derivatives 
of g and 1T and Eqs. (5.3) to eliminate the time deriva
tives of C and X one finds, after a lengthy computation, 
that the time derivatives of hand p may be expressed as 

ahij(t)/a 1= {(detg)-1/2 [2(Pij - 1/2 glj trp) 

- trh(1Tii - 1/2gij tr1T) 

+ 2(h ik1Tkj + hik1Tk, - 1/2h ij tr1T 

- 1/2 gij hmn1Tmn) n (t), (6.3) 

apii(t)/at = {(detg)1/2 [-1/2trh(Rii -1/2gii R) 

+ hikR/ + hikRki - 1/2hii R -1/2gli hmnR mn 

+ 1/2«trh)IU + hUI kl k - hki lilk - hkjlll k 

- gi j(trh)1 kl k + gUhm"1 mn) J 

+ (detg)-1/2[ - 1/4 trhg ij(1Tkl1T kl - 1/2(tr1T?) 

+ trh(1T ik 1Tk
j 

- 1/21T ijtn) - 1/2hiJ(1Tkl1T kZ- 1/2(tr1Tf) 

+ gii(hkm 1T\11mn - 1/2 flkZ1Tkl tr11) 

+ gill 11 kl pkl - 1/2 trp tr11) 

- 2h k1 (11 ik11/j -1/211il11kl) 

- 2gkl (pik11 lJ + pU11 ik - 1/2pii rfl 

- 1/21T iJ pkl)l} (t) (6.4) 

with - E< t< E. It may be verified that Eqs. (6.3) and 
(6.4) are the linearized versions of (2.8) and (2.9) 
where the background metric is expressed in Gaussian 
coordinates (N=I, N1=0) and where the perturbations 
of Nand Ni are taken to vanish (Gaussian gauge con
ditions). That the perturbations of the lapse and shift 
functions vanish is equivalent to our requirement that 
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(4J hov =(L(4)X (4Jg )ov=O. Thus (h(t),P(t» satisfy the lin
earized Einstein evolution equations with Gaussian gauge 
conditions. One can also verify directly that they satisfy 
the perturbed constraint equations DeI>(g(t), 11(t»· (h(t), 
P(t»=O [one needs to use the exact equations, 
eI>(g(t), 11(t» = 0, in verifying this J. However, this also 
follows from the observation that the perturbed con
straints are satisfied initially and are conserved by the 
evolution equations (a consequence of the perturbed 
Bianchi identities). 

As discussed in Sec. II the linearized Einstein equa
tions determine solutions uniquely from initial data 
provided suitable gauge conditions are imposed to fix 
the gauge away from the initial surface. In the present 
case the gauge is fixed by the Gaussian gauge conditions 
(4 )l1ov = 0 so that the unique solution for vanishing initial 
data is (hi/t),piJ(t»=O for -E<t<E. The gauge con
ditions together with the vanishing of hu(!) give 

(6. 5) 

and thus that (41X is a Killing field on «4)V, (41g ). From 
this result and those of Sec. IV one sees that linearly 
independent elements of the kernel of DeI>(g, 11) * deter
mine linearly independent vector fields on (4)V which 
are all Killing fields of (4lg . Therefore, the number of 
linearly independent Killing vector fields of «4) V. (4lg ) 
is at least as large as the dimension of the kernel of the 
adjoint map evaluated at the initial hypersurface (M, g, 11). 
However. since the converse of this result was obtained 
in Sec. IV, we obtain the following: 

Theorem 6.1: The dimension of ker DeI>(g, 11)* is equal 
to the number of linearly independent Killing vector 
fields of ('4lV, (4)g), the spacetime determined (in 
Gaussian coordinates) by initial data (M, g, 11). 

VII. DISCUSSION 

According to the results obtained here, the Marsden
Fischer criterion for linearization stability (applied to 
vacuum spacetimes with compact, boundaryless Cauchy 
surfaces) fails to hold on any Cauchy hypersurface when
ever the spacetime admits a Killing vector field. Con
versely, if the criterion fails to hold on an initial hyper
surface then there is a Cauchy development of this hy
persurface which admits one or more Killing vector 
fields. When Killing vectors do occur one can always 
derive additional. nonlinear constraints upon the per
turbations which are necessary to exclude spurious 
solutions which do not approximate any curve of exact 
solutions. In a subsequent paper we shall examine these 
additional constraints and relate them to the conserved 
quantities which exist by virtue of the occurence of 
Killing symmetries of the spacetime. We shall show 
that the additional constraints are equivalent to re
quiring that each conserved quantity must vanish. 

As mentioned in the introduction, the case of open, 
asymptotically flat spacetimes is also covered by the 
Fischer-Marsden theorem though the technical details 
have not yet been published. There one uses function 
spaces with suitable asymptotic conditions. The adjoint 
map fails to be injective only if it admits a nontrivial 
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kernel within the appropriate function space. Killing 
vector fields would again provide solutions (C,X) to 
D<f!(g, 7T)*. (C ~X) = 0 but unless (C, X) has appropriate 
asymptotic behavior it does not count as an element of 
the kernel. Thus Killing fields, such as those of 
Minkowski space, which do not vanish at infinity do not 
contribute to the kernel of the adjoint map and thus do 
not affect the linearization stability of a solution. A 
precise statement of this idea must await the full details 
of the general Fischer-Marsden theorem. 
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This paper constitutes a detailed study of the nine-parameter symmetry group of the time-dependent 
free particle Schrodinger equation in two space dimensions. It is shown that this equation separates 
in exactly 26 coordinate systems and that each system corresponds to an orbit consisting of a 
commuting pair of first- and second-order symmetry operators. The study yields a unified treatment 
of the (attractive and repulsive) harmonic oscillator, linear potential and free particle Hamiltonians in 
a time-dependent formalism. Use of representation theory for the symmetry group permits simple 
derivations of addition and expansion theorems relating various solutions of the SchrOdinger equation, 
many of which are new. 

INTRODUCTION 

This paper is a continuation of a series of articles 
studying the connection between Lie group theory and 
the separation of variables in the principal equations of 
mathematical physics. 1_5 The group theoretic method 
for the description of separation of variables originated 
from the study of the Helmholtz equation 

o 
iJ,,=-~-, 

ox" 
J.L=1,2, (0.1) 

in two variables for spaces of constant (or zero) curva
ture. Much of this original work was done by Winternitz 
and co-workers6

•
7 with a view to describing all possible 

quantum mechanical operators which can be used to 
label bases for the "little groups" of the Poincare group. 
This work used the earlier results of Olevskil, 8 who 
classified all separable coordinate systems for (0.1) in 
two and three dimensions for spaces of constant (non
zero) curvature. In order to correlate separation of 
variables with the underlying symmetry group G of 
(0.1), it is found necessary to require that if! be the 
eigenfunction of an additional basis operator L. This 
operator belongs to the factor space T=S/S n C, where 
C is the center of the universal enveloping algebra U of 
G and S is the set of all symmetric second order ele
ments in U. There is then a one-to-one correspondence 
between equivalence classes of elements of T under the 
action of G and the various distinct orthogonal separable 
coordinate systems for (0.1). It is found that the opera
tor L in many cases does not correspond to the Casimir 
operator of a Lie subgroup of G. The resulting type of 
basis has been termed a non-subgroup basis. 9 We should 
mention here that the case of the Helmholtz equation in 
the pseudo- Euclidean plane is somewhat more compli
cated. The reader is referred to Ref. 10 for further de
tails. The correlation between separation of variables 
and the symmetry group of (0.1) in n dimensions can 
easily be extended from the two-dimensional case. A 
basis is now specified by an (n - l)tuple of mutually 
commuting operators L1> ••• , Ln_1 • In addition to equiva
lence under the group action two such (n - l)tuples, 
{L1, ••• , L n_1}' and {L~, ... , L~_l} are equivalent if 
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n_1 

LI = L; alJLf 
j=l 

with real nonsingular matrix (alJ). 

For the treatment of the Helmholtz equation in a two
dimensional space of positive constant curvature (two
dimensional sphere with symmetry group SO(3)], see 
Refs. 4, 9. The corresponding problem for negative 
constant curvature (upper sheet of two sheeted hyper
boloid with symmetry group SO(2, 1)], see Refs, 4, 11. 
Some investigations have also been made for the 
Helmholtz equation in three dimensions in Euclidean 
space, 12 on the three-dimensional sphere, 13 and on the 
upper sheet of the two sheeted three-dimensional 
hyperboloid. 14 

The present paper is a continuation of Ref. 5 which 
will be referred to as 5 in the following. In that paper 
the problem of the separation of variables for the free
particle time-dependent SchrOdinger equation in one 
space dimension was treated in detail, i. e., the 
equation 

(0.2) 

The corresponding symmetry group G of this equation 
was taken to be that generated by the largest set of 
first-order partial differential operators in the varia
bles t and x [each of which is a symmetry of (0.2)]. 
This group is isomorphic to the semidirect product of 
the three-dimensional Weyl group and SL(2, R). It was 
found in 5 that there is a correspondence between R
separable coordinate systems for (0.2) and equivalence 
classes of elements of the Lie algebra of G. In this 
paper we extend this earlier work to the case of two 
space dimensions. 

We present a detailed study of the free- particle time
dependent Schrooinger equation 

U"l"l +u"z"z + iUt = O. (0.3) 

Boyer15 has classified all equations of the form 

U"l"l + U"2"Z - V(Xl> xz) U + iUt = 0, (0.4) 
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which admit a nontrivial symmetry algebra of first 
order differential operators. He has shown that (1) the 
maximal dimension for a symmetry algebra is nine, (2) 
this maximum occurs only for constant, linear, and at
tractive or repulsive harmonic oscillator potentials, 
and (3) the algebras of maximal dimension are isomor
phic. Furthermore, it is known, e. g., Niederer, 16 that 
the oscillator and linear potential equations are actually 
equivalent to (0.3). In this paper we will examine the 
equivalence explicitly and relate it to separation of vari
ables for (0.3). 

In Sec. 1 we rederive the nine-parameter symmetry 
group G of (0.3). Here G is a semidirect product of the 
five-parameter Weyl group Wand SO(2)0 SL(2, R). We 
determine the global action of G and compute the orbit 
structure of its Lie algebra g (the Schrooinger algebra) 
under the adjoint representation. We also determine the 
second order symmetry operators admitted by (0.3) and 
show that they form a 20-dimensional vector space con
sisting of symmetric quadratic polynomials from ~;. 

(This last computation was carried out in Ref. 17 for 
the equivalent case of the harmonic oscillator, but the 
results are incomplete.) 

In Sec. 2 we classify the 26 possible coordinate sys
tems such that variables separate in (0.3). In Sec. 3 
we show that each such system is characterized by a 
G-orbit of symmetry operators, an element of which 
consists of a commuting pair of symmetries, one first 
order and one second order. Our derivation of possible 
coordinates which permit separation and the relation 
to G-orbits is new. We also show that each of these 
orbits can be naturally associated with exactly one of 
the four Hamiltonians mentioned above. 

In Secs. 4 and 5 we compute the eigenbasis in a two
parameter model for a representative of each G-orbit. 
We also calculate the basis in the three-parameter 
model of functions depending on variables X 1 ,x2 ,t and 
determine overlap functions relating various distinct 
bases. Our knowledge of the G-structure of (0.3) great
ly Simplifies these computations and provides many 
expansion theorems for functions in L 2(R2)' some of 
which are new. 

Among the special functions arising as solutions of 
(0.3) are Bessel, Airy, Hermite, parabolic cylinder, 
Mathieu, Laguerre, and Ince functions. Our group 
theoretic approach provides deep insight into the prob
lem of expanding one of these functions in terms of 
another. Unless otherwise mentioned, all special func
tions are defined as in the Bateman project. 1S 

1. SYMMETRIES OF THE EQUATION iUt + A2 U = 0 

Let X be the partial differential operator 

(1.1) 

acting on the space) of locally Coo functions of the real 
variables x

J
' t. We begin by determining the maximal 

symmetry algebra of the free-particle Schrl5dinger 
equation 

(102) 
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i. e., we compute all linear differential operators 

L=a(xJ,t)oXl +b(xj,t)0X2 +c(xj,t)at+d(xj,t), 

a, .. . ,dE), (1.3) 

such that Lu is a solution of (1.2) whenever u is a 
solution. A necessary and sufficient condition for L to 
be a symmetry is 

(1. 4) 

for some r E) .15,19,20 Equating coefficients of 
aXiXj , Ot' aXj and 1 on both Sides of (1. 4), we obtain a 
system of differential equations for a, ... ,d, r, see 
Refs. 15, 19 for details. Solving these equations, one 
finds that the allowable L form a nine-dimensional 
complex Lie algebra gc with basis 

K2=- fO t - t(X10X1 +X20X2) - t + (i/4)~ + ~), K.2= at, 

Pj=OXj' Bj=-to x . +ix/2, M=X10X2-X20Xl' E=i, 
J 

D=X10X1 +x2aX2 + 2ia t + 1 

(1.5) 

and commutation relations 

[D,K,.z]=± 2K±2' [D,Bj]=Bj , [D,Pj]=-Pj 

[D,M]=O, [M,K±2]=O, [Pj ,M]=(_IY·1Pp 

[B j ,M]=(-1)j+1Bp [K2,K_2]=D, [K2,Bj]==O, 

[K.2,Bj]=-Pj , [K.2,Pj ]=O, [PJ ,K2]=Bj , 

[Pj,BjJ=~E, [Pj.B,]=O, j,Z=1,2, rtz, 
(1.6) 

with E in the center of gc. In the following we will study 
only the real Lie algebra q with basis (1.5), the 
Schrodinger algebra. 

A second useful basis for q is given by the operators 
Bj' P j , E which generate the five-dimensional Weyl 
algebra W , the operator M, and the three operators 
L1'L2 ,L3 , where 

(1.7) 

Here, 

[L1> L 2] = - 2L3 , [L 3 , L 1] = 2L2, [L 2 , LJ = 2L1 (1. 8) 

so that the Lv satisfy the commutation relations of 
sl(2, R). It follows that g is the semidirect product of 
sl(2, R) Ell 0(2) and W. Here 0(2) is the one-dimensional 
Lie algebra spanned by M. 

USing standard results from Lie theory/1 we can ex
ponentiate the differential operators in q to obtain a 
local Lie group G of operators acting on) and mapping 
solutions of (1 .2) into solutions, the Schrodinger group. 
The action of the Weyl group W is given by operators 

T(w, z, a) = exp (w1B 1) exp(z1P1) exp(w2B2) exp(z2P2) 

Xexp(aE), 

w=(W1,W2 ), Z=(Z1,Z2) 

such that 

T(w, z, (X) T(w' ,Z/, a / ) = T(w +w', z + z', a + a' +iw'· z), 

(1. 9) 
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where 

[T(w, z, O')/](x, t) =exp(i/4)(2x-w - t W' w + 4a)] 

X/[x-tw+z,t], IE]. 

The action of 50(2) is given by T(O) = expOM, 

T(O) T(B') = T(O + B'), 

where 

[T(O)/J (x, t) = fixe, t), 

e- ( coso sinB) 
- _ sin8 cosB • (1.10) 

Finally, the action of SL(2, R) is given by operators 

[T (A) I] (x, t) = exp[i,8(x2 + y2)/[ 4(0 + t,B)](o + t,8)-I 

xf[(O+t,8)-I X ,(y+tO')/(o+t,8)J, fE], 

(1.11) 

where 

T(A)T(B)=T(AB), A,BESL(2,R). 

The one-parameter subgroups of SL(2,R) generated by 
K"'2,LI ,Lz ,L3, respectively, are given by expressions 
(1.11) in Ppaer 5. The adjoint actions of SO(2) and 
SL(2,R) on Ware 

T-I(A) T(w, z, 0') T(A) = T(wA, zA, 0"), 

0' ' = 0' + Hw· z - wA • zA) , (1.12) 

T-1(e) T(w, z, 0') T(B)= T(we, ze, 0'). 

These identities define G as a semidirect product of 
SL(2,R)'BSO(2) and W: 

g=(A,B,v)EG, AESL(2,R), BESO(2), 

v = (w, z, 0') E W, (1.13) 

T(g) = T(A) T(B) T(v). 

The group G acts on the Lie algebra q of differential 
operators K via the adjoint representation 

K - Kg = T(g) KrI(g) 

and this action splits q into G-orbits. We will classify 
the orbit structure of the factor algebra q';;; q /{ E}, 
where {E} is the center of q. Let KE q' and let 
Az,Ao,A_z respectively, be the coefficients correspond
ing to Kz,D,K_z in the expansion of K*O in terms of the 
basis (1.5). Setting 0' = AaA_z + Ag, we find that 0' is in
variant under the adjoint representation. 

The following list is a complete set of orbit repre
sentatives in the sense that any K * 0 lies on the same 
G-orbit as a real multiple of exactly one of the operators 
in this list: 

Case 1(0'<0): K_z-K2+,82M, l,al*l, K 2 -K2 +M+-;BI; 

Case 2(0' > 0): D + ,8M; 

Case 3(0'=0): Kz+M, Kz+Pl> K 2, M, PI +B2, Pl' 

(1.14) 

We next consider the problem of determining sym
metries of (1.2) which are differential operators of 
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arbitrary finite order in xl> X 2 , and t. That is, we look 
for linear differential operators S of arbitrary order 
which map solutions of (1.2) into solutions. This is 
equivalent to the requirement that 

[S,X]=RX 

for some linear differential operator R of arbitrary 
finite order in Xl' Xz , and t. Since we will only apply 
S to solutions u of Xu= 0, without loss of generality we 
can require that S contains no derivatives in t. In other 
words, wherever d t appears in S we can replace it by 
i(OXIXI + 0"2%2)' Another way to view this is to note that 
if S is a symmetry operator, then so is Sf =S + QX, 
where Q is an arbitrary differential operator. More
over, S' u = Su for any solution u of (1. 2). There is a 
unique choice of Q such that S' contains no derivatives 
with respect to t. 

With this in mind we see that only the operators 
P j , BJ , E, generating the Weyl algebra and M are first 
order or less in the xJ • The elements K2 = - i(B~ + B~), 
K_2=i(Pf +~), and D= - i(BIPl + PIB! +B2P Z + P2B z) 
are second order. [These equalities are valid modulo 
the replacement of 0t by i(OXIXI + ° "2X ) • J More generally 
we can compute all symmetries S which are second 
order or less in Xl and xz: 

2 

S= ~ afJ (Xl'X2>t)oxx 
I.J.I I j 

2 

+~ bl (XI ,X2 ,t)Ox +c(X l>X2 ,t). 
/=1 I 

A tedious computation shows that such S form a 20-
dimensional vector space. A basis for this space is 
provided by the zeroth-order operator E, the five first
order operators PJ,BJ,M and the three second-order 
operators iK"'2' iD listed above, plus the eleven second
order operators 

B~-B~, BIP1-BzPz , ~-~, BIM+MB1, BaM+MBz, 

P1M+MPl' PzM+MP2 , BIBz , P IP2> B1PZ+BZPl' W. 

(1. 15) 

It follows that all second-order symmetries are sym
metric quadratic forms in Bi' PJ' E, and M. 

2. SEPARATION OF VARIABLES FOR THE EQUATION 
Uxx + U yy + iUt '" 0 

In this section we examine the problem of separation 
of variables for Eq. (1. 2). As with the similar problem 
for one space dimension treated in 5, we proceed di
rectly. Let us first make the transformation of 
coordinates 

x=G(Vl'VZ,v3) y=H(vl>v2,vS ), t=F(v1,vZ'vS ) (2.1) 

with G, H, and F real functions of v. (i=1,2,3). Then 
we have for the partial derivatives • 

0x=Blld l +BZIOZ+BsI03' 

d,=B12d1 + Bzzoz +B3Z a3 , 

at = B 13 a! + Bzsoz + B 3SaS ' 

where BiJ = MfJ/detA, MIJ being the cofactor of the 
matrix 
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(2.3) 

(subscripts on the functions G, H, and F denote differ
entiation with respect to the variables VI). 

Equation (1.2) can then be written in the form 

all all + a 22a22 + a SSa33 + a 12 a12 + alSa lS + ~3a23 

+ al a l + al a2 + asas + i(bl al + b2a2 + baa) = 0 
(2.4) 

We now consider the possible cases for the coefficients 
ali (i < j): 

(i) ali *" 0 for all i < j. In this case the only way to have 
a separable solution is for two of the solutions to be ex
ponentials and all the remaining coefficients to be func
tions of the remaining variable. 

(ii) a12 = 0, alS ' ~s *" O. The only possible separable 
solution is an exponential solution in the variable v3 • 

The coefficients are then functions of vl and v2 • 

(iii) a12 = 0, alS = 0, a2S *" O. The only possible solution 
is an exponential solution in the variable v3 • 

(iv) ajj=O(i<j). 

Let us proceed to evaluate all coordinate systems 
which are of type (iv) and admit a separation of vari
abIes. We shall see that all the coordinate systems of 
interest arise in this case. We shall discuss the evalu
ation of cases (i)-(iii) at the end of this section. For 
the conditions aii = O(j > i) we must have the relations 

BUB 21 + B12B22 = 0, 

B21B31 + B22B 32 = 0, 

BUB 31 +B12B 32 =0. 

(2.5) 

These conditions may be interpreted to mean that the 
vectors b l = (Bu, B 12 ), b2 = (B2l> B 22 ), and bs = (B3l> B 32 ) 
are mutually orthogonal. Therefore, there must exist 
a nontrivial relation of the form 

ab1 + (3b2 + yb3 = 0 (2.6) 

with (a,{3,y)*"(O,O,O). Let us enumerate the possibili
ties for the vector (a, (3, y): 

(i) a, {3, y all nonzero. This case implies Bli (j *" 3) 
are all zero and is hence inadmissable. 

(ii) y=O, {3,a nonzero. This case implies that 
B2l = B31 = B22 = B32 = O. Now, considering the conditions 
B2l = B22 = 0 which can be written 

HlF3 - FlH3 = GlF3 - F I G3 =0, 

we see that, in order to have the partial derivative a2 

appear in (2.4) at all, we must have H1G3- G1Hs*"0. 
This implies Fl = F3 = 0; the other conditions similarly 
imply that F2 = F 3 = O. The matrix A is then singular. 
This case is therefore inadmissable. 

(iii) a, (3 = 0, y nonzero. This case implies by reason
ing as in case (ii) that Fl=F2=0, so that F=F(v3) and 
F *" const. Accordingly we can define F(v3) = v 3• For this 
case detA = G1H2 - Hl G2 and we have the simplifications 
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M ll =H2, M 12 =-G2, M21=-Hp M 22 =Gl" The only non
trivial constraint arising from conditions (2.5) is 

(*) H I H2 +G1G2=0. 

There are two possible types of separation. 

(1) There is an exponential solution in the variable 
v1 and B 12 =0. The conditions of separation then also 
require B21 = O. For a nonsingular choice of coordinates 
these conditions imply Hl = 0, G2 = O. The condition 
al (H2/ Gl ) = 0 implies that G = h(v3) v l + j(v3). In particular 
the condition al (B3l)=0 requires h=const. We can, by 
suitably redefining the variable vp take 1= O. The cor
responding problem then is equivalent to finding all 
separable coordinate systems for the equation A 2 + U yy 

+ iUt = O. The only new coordinate system is then 

(2.7) 

If we remove the requirement B12 = 0, then the coordi
nates which have exponential solutions will appear in 
separable systems of the second type (see below). 

(2) These are coordinate systems for which all 
BIl' (i,j=1,2) are nonzero. 

The conditions for separation for the second deriva
ti ve terms are 

B~l + B~2 = I(v l , v 2)/h2(vs) 

B~l + B~2 = g(vp v2)/h
2

(V 3) 
(2.8) 

Now for functions G=Gh, H=Hh, the corresponding re
duced functions Bli (i,j = 1,2) satisfy the constraints 
(2.8) without the h2 (V 3) term on the right-hand side. The 
conditions for separation in V l , v2 satisfied by the BIJ 
are then exactly those conditions satisfied for separation 
of variables in the two-dimensional Helmholtz equation 
in orthogonal coordinates. Therefore, to within a 
Euclidean motion G, H, assume one of the four standard 
separable forms of the Helmholtz equation in two space 
dimensions. We can thus write 

G = h[cosQl 7 i - sinQl Hi] + T, (2.9) 

H=h[sina 7; +cosa H;] + U, 

where QI, T, and U can be functions of va. The standard 
separable forms will be taken as: 

1) Cartesian coordinates: 

2) polar coordinates: 

72=V1COSV2, H2=vl sinv2; 

3) parabolic coordinates: 

73=Hvi - v~), H3=V1V 2; 

4) elliptic coordinates: 

74= coshVl COSV2, H 4 = sinhvl sinv2• 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

The remaining conditions for separability then become 

(2.14) 

The form of the functions I and f( is determined by the 
choice of? I and Hi. It follows from the general form 
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(2.4) that the functions h, (jI, T, and V have the general 
form 

h= 1Tiii;+C, (jI =Kln(bvs + C), 
(2.15) 

T=avs, U=bvs' 

We shall now summarize our results. In each case we 
give the form of the functions f and g in Eqs. (2.14) and 
the corresponding coordinates in reduced form. 

1) Cartesian coordinates. In this case f= fiv 1 ), 

g= g(vz), and K = O. The contributions of T and U may 
be transformed away by using the Vs translation prop
erties of the Weyl group action. This process does not 
affect separability. The resulting coordinate systems 
are then 

(2.16) 

(2.17) 

2) Polar coordinates. In this case f=f(v1) , g=g(v1), 
and T and V are both zero. In particular for b *- 0 we 
have K*-O. The resulting coordinate systems are 

(i) x = V~/2Vl cos (vz + K lnvs) , t = vs' 

y = V~/ZVl sin(vz + Klnvs), 

(2.18) 

(ii) x= VI cosvz, y = VI sinvz, t= vS. (2.19) 

3) Parabolic coordinates. In this case j=l(v~)j 
(v~+v~) andg=g(v2)/(v~+~). This implies thatK, V, 
T, and b are all zero. We thus have only one coordinate 
system, viz., 

(2.20) 

4) Elliptic coordinates. In this case j= J(v1 )/ (sinh2v1 
+ COSZvz ) and g= g (vz)/ (sinh2v1 + COS 2V 2 ). This implies 
that K, U, T are zero. The two resulting coordinate 
systems are 

(i) x=v~/2coshvlsinv2> y=v~/2sinhvlcosvz' t=v3 , 

(2.21 ) 

(2.22) 

This completes the list of separable coordinate sys
tems. In particular we note that we can essentially 
take K = 0 for the angular variable in the system (2.18) 
by redefining the variable v2 • We now seek to classify 
all solutions of (1.2) which admit an R-separable solu
tion, i.e., a solution of the form u=expQ(vl'v2,VS ) 

XA(v1) B(v2) C(vs), where Q is not expressible as a sum 
of functions of each of the individual variables Vi nor is 
it a constant. If we extract the multiplier and write 
down the equation for the product, we obtain an equation 
of the form (2.4) with new coefficients iii and an addi
tional constant term ao on the left-hand side. The possi
ble types of R-separation can then be classified in the 
same manner, i. e., types (1) and (2). For solutions of 
type (1) we have the R-separable solutions for the cor
responding equation in one space dimension found pre
viously in Paper 5. They are: 

(i) X=V1, y=vzvs+b/vs , t=vs, 

S = tv~vs - bvJ2vs; 

(ii) X=V1, y=vz+b~, f=v 3, 
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(2.23) 

S == bV2V 3 ; 

(iii) X=v1, y=vz(1 +v;)1/2, t=v3, 

S=tV~V3; 

(iv) x=vl' y=vz(1-v;)1/2, t=v3 (Iv31 <1), 

S= -t~V3 

x=v1 ' y=vz(v;-l)l/Z, t=v3 (Iv31 >1), 

S = tV~V3' 

(2.24) 

(2.25 ) 

(2.26) 

Here we have written the multiplier function Q =R + is 
and R =0 in each case. For R-separable solutions of 
type (2) we again require that G and H have the form 
given in (2.9) with (jI = O. The coefficients of the partial 
derivatives a1 and az are then 

C1 = 2allR l + a1 + i(2au Sl + b1), 

c2 = 2~zR2 + ~ + i(2~zSz + bz), 

respectively. 

(2.27) 

The requirement of separability implies that R is at 
most a sum of functions of the individual variables. We 
may therefore take R = O. We give an outline of the 
method for the case? = vI> H = v2 and then list the re
sults for the remaining coordinate systems. From the 
requirement that c1 = j(v l ) , Cz = g(vz) we find that Scan 
be written in the form 

S=thh'(vi+v~)+th(T'VI +V'vz)' 

Then from the constraint 

ao = au (- S~ + iSll) + ~2(- S~ + iS2Z ) 

+ ia1S1 + iazS2 - b1S1 - bzSz - b3S3 

(2.28) 

= (p(V1) + q(vz»/hz + s(vs) (2.29) 

we obtain the following set of coordinate systems: 

(i) x=v1vS+a/vs, y=v2vs +b/vs, f=v 3, a,b>--O, 

S = Hv~ + v~) V3 - (1/2v3)(av1 + bv2 ); 

(ii) x=v1 +av;, y=vz+bv;, t=v3 , a,b>--O, 

S = (av1 + bv2 ) v 3 ; 

(iii) x = VI (1 + v~)l/Z, y=vz(l +v~)l/Z, t=v3 , 

S = Hv~ + v~) v3 ; 

(iv) X= VI (1 - V;)l/Z, y=vz(l-v;)l/z, t=v3 , 

S=-H~+V~)V3' 

X= VI (V; _l)l/Z, y=v2(v;-1)1/z, t=vs, 

S=Hvi+v~)vs' 

(2.30) 

(2.31) 

(2.32) 

I v3 1 < 1, 

(2.33) 

I v31 > 1, 

In the remaining three types of coordinate systems we 
have the follOwing possibilities: 

Polar coordinates: 

(i) X= (1 + V~)l/Z VI COSV2, Y = (1 + v;)l/Z VI sinvz, t = V3, 

S = t~V3; (2.34) 

(ii) x = (1 - V;)l/ z VI cosvz , Y = (1 - VVI /2 VI sinvz, 

t=vs , IV31 <1, 

s= -tv~vs; 
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X== (V~ _1)1/2 V1 COSV2, Y = (V~ _1)1/2 V1 sinv2, 

t == V3 , I v31 > 1, 

s= ~VrV3; (2,35) 

(iii) x = V3l\ cosv2, Y = V 3V 1 sinv2 , t = V3 

S=~V~V3. (2.36) 

Parabolic coordinates: 

s = fa(v~ + V~)2V3 - (a/4v3)(v~ - v~); 

(ii) x=i(vi-~)+av~, Y==V1V2 , t=v3 , 

(2.37) 

S==ta(v~-v~)V3. (2.38) 

Elliptic coordinates: 

s = iv3 (sinh2v1 + COS 2
V 2 ); (2.39) 

(ii) x == (1 - V~)1/2 coshv1 cosv2 ' Y = (1 - V~)1 /2 SinhV1 sinv1, 

t = v3 ' I vsl < 1 , 

S = - ivs(sinh2v1 + COS2
V2); 

x = (v; _1)1/2 coshvl COSVa, Y = (v; _1)1/2 sinhv1 sinv2, 

t = v3 ' I v 3 1 > 1, 

S = iv
3
(sinh2 v1 + COS2V 2 ); (2.40) 

(iii) x = V3 coshv1 sinv2 , y = V3 sinhv1 cosv2 , t = vs' 

S = iv3 (sinh2 v1 + COS2V2). (2.41) 

This completes the list of R-separable solutions of (1. 2). 

At this point we comment on the separable solutions of 
types (i)-(iii). In defining a separable coordinate sys
tem we require that in addition to admitting a separable 
solution, the equation in question be equivalent to three 
ordinary differential equations, one in each of the sepa
ration variables. For solutions of type (i)- (iii) this is 
not the case as we have proven. Separable solutions of 
types (i)-(iii) actually correspond to a change of 
coordinates 

x = a l } v j , Y = Gaj v 1 ' t = a3j v j , 

det(a.)*O, all constants. 

We accordingly make no further comment on these 
cases. 

(2.42) 

The general features of the separable systems we 
have classified are evident from our explicit procedure. 
Corresponding to each system there is always a first 
order operator K and a second-order operator S defin
ing the coordinate system in question, These two opera
tors are also symmetries of (1,2), mapping solutions 
into solutions. The operators K and S can accordingly 
be expressed as first- and second-order operators, re
spectively, in the generators of the Lie algebra 9-. The 
form of these basis defining operators is discussed in 
the next section, The notation for the coordinate sys
tems we have introduced in Table I requires some com
ment. The capital letter corresponds to the type of 
Hamiltonian, Le., F- free particle, L- stark ef
fect (linear potential), 0 - harmonic oscillator, and 
R - repulsive harmonic oscillator. The small letters 
indicate the type of coordinates used in each of these 
Hamiltonians, L e., c - Cartesian, r - radial (polar) 
coordinates, p - parabolic, and e - elliptic coordi
nates. The superscript (i) determines the coordinate 

TABLE 1. Separable coordinate systems for the equation Uxx + Uyy+iUt = 0 (E = sgn (1 - "i)). 
Coordinate system 

1) Fc U ) 
2) Fc Cl ) 
8) Fr(l) 
4) Fr(Z) 
5) Fp(1) 
6) Fp(2) 
7) Fe(1) 
8) Fe('1) 
9) LC(I) 

10) Lc\'1J 
11) Lp(1) 

12) Lp(Z) 

13) Oc 
14) Or 
15) Oe 
16) Rc(l) 
17) Rc lZ ) 
18) Rr(l) 
19) Rr(2) 
20) Re(l) 
21) Re lZ ) 
22) Ll 
23) L2 
24) 01 
25) Rl 
26) R2 

Coordinates 

X~V1V3' Y= vzv 3 
x= VI' Y =vz 
X=V 1v3 cosvz, y=vlv3sinv2 
x ~ VI cosv2, Y = VI sinvz 
x=v3(vI-v~)/2, y=VjV2V3 
X= (vl- vi)/2, Y = vl v2 
X= v3 coshvi cosv2, Y =v3 sinhvi sinvz 
x = coshvl cosvz. sinhvi sinv2 
x = VI u3 + a/ v3, Y = vZv3 + b/ v3 
X 7 VI +avl, y =vz +bv§ 
X=v3(Vr -vi)/2+a/v3' y=vI VZV 3 

x=(vl-vl)/2+avj, y=vlvz 
x = VI (1 + v})1I2, Y = v2 (1 + vj!)lIZ 
x = (1 + vi)1 IZ V1 cosvz, Y = (1 i- vj)I/Z VI sinvz 
x = (1 + vj)lIZ COShV) cosvz, Y = (1 + vj)1 /z sinhvl sinvz 
x=vl v:1 12 , y=vzv:1 z 
x=v1 (I v

2 -11 )1/2, Y=V2(1 vj-l1 )1/2 

x ~ VI vol /* COSV2, Y = vzvl /2 sinvz 
X= (I vj-11 )1/2vl cosvz, y =( Iv~-l [)I/ZV\ sinv2 
x = v311Z coshvl cosVz, Y = vl /2, Y = vi /Z sinhv1 sinv2 
X= (I vl-ll )1/2 coshVj cosV2' y= (Iv~-ll)l!2 sinhv i sinv2 
X=Vl, Y =V2 V3 +b/V3 
X = VI' Y = V2 + avj 
x=vl , Y=V2(1+vj!)1I 2 

x = vl , Y = v2V31 /2 
x=v1, y=vz(1 vj -11 )I/Z 
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Multiplier eiS 

s= (vl +Vl)V3/4 
o 
vlv3/4 
o 
(VI + v~)2 v3/16 
o 
(sinh2vI +COSZV2)V3/4 

o 
(VIZ +vi)v3/4 - (1/2v3)(avl +bvz) 
(avi + bVZ)V3 
H + v~j2 v3/16 - (a/ 4v3)(vI- v~) 
av

i
(vl -vl )/2 

(VI +vi)vs/4 
vf v3/4 
(sinhZvI + cos2vZ)V3/ 4 
o 
f (vP + vi )v3/ 4 
o 
EV[V3/4 
o 
dsinhzvI +coszvz)v3/4 
v3vl/4 - bV2/2v3 

aVz v3 

V3V[ /4 
o 
E-ulV3/4 
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system which is the simpler of two which lie on the 
same orbit from the point of view of the spectral analy
sis in a given basis. 

3. THE OPERATOR CHARACTERIZATION OF 
VARIABLE SEPARATION 

From the method of the preceding section we see that 
corresponding to every separation of variables for Eq. 
(1.2) we can find a pair of commuting differential opera
tors K,5 such that: 

1) K and 5 are symmetries of (1.2); 

2) K is first order in xl>x2 , t and contains a term in il t 

(except for the subgroup coordinates); 

3) 5 is second order in Xl' X2 and contains no terms 
in il t • 

The separation of variables is then characterized by 
the simultaneous equations 

Xu=O, Ku=ix.u, 5u= !J.U. (3.1) 

In particular, the eigenvalues x., !J. are the usual separa
tion constants. 

It fOllows from the results of Sec. 1 that K lies in 
the symmetry algebra g' while 5 can be expressed as a 
symmetric quadratic form in BJ , PJ , E, and M. Thus 
the possible coordinate systems in which (1.2) separates 
can always be characterized by eigenfunction equations 
for operators at most second order in the enveloping 
algebra of g. From the results of Sec. 2 it is straight
forward to determine the operators K,5 associated with 
each coordinate system. This information is listed in 
Table II. 

TABLE II. Symmetry operators associated with variable 
separation 

Coordinate 
system 

1) Fe(l) 

2) Feel) 

3) FrO) 
4) Fr(2) 

fi) Fp(!) 

6) Fpel) 
7) Fe(l) 

R) Feel) 
9) Le(1) 

10) Lc(2) 

11) Lp(1) 
12) Lp(2) 

13) Dc 
14) Or 
1fi) Ql 
16) Rc(1) 
17) Reel) 

18) Rr(!) 

19) Rrel) 
20) Re(l) 

21) Reel) 

22) L1 
23) L2 
24) 01 
2fi) R1 
26) R2 

1st-order 
symmetry K 

K2 
K_2 
K2 
K_2 
K2 
K_z 
K2 
K_2 
Kz + 2aPI + 2b Pz 
K_2 - 2aBI - 2bB2 
Kz +aPI 
K_z +2aB1 
K_z - Kz 
K_z - Kz 
K_2 -Kz 
D 
K_2 +K2 
D 
K_z +K2 
D 
K_2 +K2 
PI 
PI 
PI 
PI 
PI 

2nd-order 
symmetry S 
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The above 26 coordinate systems were classified up 
to equivalence under the Gallilean group G(2) c G. How
ever, from another point of view we can regard two co
ordinate systems as equivalent if the first can be trans
formed to the second under the action of some gE G. In 
terms of operators, the system described by K,5 is 
equivalent to the system described by K' ,5' if, under 
the adjoint action of G on the enveloping algebra of g, 
the two-dimensional space spanned by K, 5 can be 
mapped onto the two-dimensional space spanned by 
K' ,5'. Under this more general equivalence relation not 
all of the above coordinate systems are inequivalent, In
deed the systems denoted Ab(1) and Ab ca ) lie on the 
same two-dimensional orbits so that there are only 17 
equivalence classes of orbits. 

We can describe these equivalences in terms of the 
operator J = exph(K2 - K 2): 

Jf(x, t) = [ ,f"2" / (1 + t)] exp[ti(1 + t)-l X· x] 

Xf["'2(1 +t)-l x ,(t-1)/(1 +t)], IE]. 

Note that J2 = exp~7T(K2 - K_2 ) , and 

J2 fix, t) = r1 exp[ (i/ 4t) x· x]f(t-1 x, - ( 1), 

J4f(x, t) = - fe-x, t), 

J8 fix, t) = f(x, t). 

(3.2) 

(3.3) 

It is easy to show that J(K_2 +K2)J-1=D, and, checking 
the adjoint action of J on second-order operators, we 

. can verify that the three coordinate systems Rc (2), Rr(2), 
Re ca) are equivalent under J to the three systems Rc (1), 
Rr (1), Re (1) respectively. 

Denoting the adjoint action of J2 on KEg by K' 
=J2KJ-2

, we find Pj=-B j , Bj=Pj , K~2=-K2' K~ 
= -K_2' D' = - D, M' =M, E' =E so that the six pairs 
of the form Fa(l), Fa(2) or La(1), La(2) are equivalent 
under J 2 • 

4. TWO- AND THREE-VARIABLE MODELS 

We next demonstrate that the operators (1.5) can be 
interpreted as a Lie algebra of skew-Hermitian opera
tors on the Hilbert space L 2 (R 2 ) of complex-valued 
Lebesgue square-integrable functions on the real line. 
This is accomplished by considering t as a fixed param
eter and replacing il t by i(il x x + ax x ) in expressions 

1 1 2 2 
(1.5). It is then clear that the resulting operators mul-
tiplied by i and restricted to the domain of C ~ -functions 
on R2 with compact support are essentially self-adjoint. 
In fact these operators are real linear combinations of 
the operators 

1<2=h(~+~), t(_2=i(a'lX1 + aX2'2) , Pj=?x
j

) 

Bj=-hxj , !11 =x1ilx2-X2ox ' C=i, (4.1) 
1 

which are well known to be essentially skew-adjoint. 
Note that when the parameter t = 0 the operators (1.5) 
reduce to (4.1). Thus the script operators (4.1) satisfy 
the same commutation relations (1.6) as do the block 
operators (1. 5). More specifically we have the identities 
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(exptl< ~2) PJ [exp( - t I< -2)] = PJ , 

(exptl< _2)8 J [exp(- tl< -2)] = BJ , 

(4.2) 

with similar expressions relating the other script and 
block operators 0 

If fE L2(R2) , then u(t) = (exptl< -2) f satisfies Ut =1< _2U 
or iUt =: - ~2U (for almost every t) wherever f is in the 
domain of 1<-2' and u(O) = f. Also the unitary operators 
expaK =: exp(tl< _2)(expa 1<) exp(- tl< -2) map u into 11 

= (expaK) u which also satisfies 1It = I< _2V for each linear 
combination I< of the operators (4.1). Thus the opera
tors expaK are symmetries of (1.2). 

We will see later that the operators (4.1) generate a 
global unitary irreducible representation of the group 
G on L 2 (R2L Assuming this here, we let U(g), gE G, be 
the corresponding unitary operators and set T(g) 
= (exptl< -2) u( g) [exp(- t I< -2) J. It is then easy to show 
that the T(g) are unitary symmetries of (1.2) with as
sociated infinitesimal operators K = (exptl< -2) I< 
x [exp(- tl<_2)]' 

Next consider the operator L 3 = I< -2 -1<2 = i(~2 - H~ 
+~»E q. IffEL2(R2)' then u(t) = (exptL3)fsatisfies 
ut =L 3u or 

iUt=-~2u+H~+~)u (4.3) 

and u(O) = f. Similarly the unitary operators V( g) 
= (exptL 3) U(g)[exp(-tL)] are symmetries of (4.3), 
the Schrodinger equation for the harmonic oscillator, 
and the associated infinitesimal operators 
(exptL)1< [exp(- tL 3)] can be expressed as first-order 
differential operators in t and x. Analogous statements 
hold for the operator L 2 = 1<-2 + 1<2 = i(~2 + 'H~ +~» 
with associated equation ut =L2U, 

(4.4) 

(Schrodinger equation for the repulsive oscillator) and 
the operator K -2 - 8 1 = i(~2 - x/2) with associated equa
tion ut = (I< -2 - 8 1 ) u, 

(4.5) 

(linear potential). 

These remarks show explicitly the equivalence of 
equations (1.2), (4.3)-(4.5). Through we have chosen 
to start with Eq. (1. 2) in this paper, an analysis of any 
of the other equations would have led us to the same 
results. 

From Table II we see that, except for the subgroup 
coordinates (22)-(26) which were essentially discussed 
in 5, every separable coordinate system corresponds 
to a G-orbit which contains exactly one of the Hamil
tonian operators il<_2' iL3' iL2' or i(1<_2-8rl. Thus 
each coordinate system is naturally associated with one 
of these four Hamiltonians c 

ConSider a pair of commuting self-adjoint operators 
il< ,5, where I< E q and 5 is a symmetric quadratic 
operator in the enveloping algebra of q. These opera
tors have a common spectral resolution, i. e., there is 
a complete set of (generalized) eigenvectors f x." (x) in 
L2(R2) with 
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il< fA." = >..fA." , 5fx." = IlfA." , {fx." , fx"tJ.·) =: 0n.otJ.tJ." 

(4.6) 

where 

(h p h2)= Jj h1 (x)h
2
(x)dx1 dx2, h

j
E L2(R2). (4.7) 

Now suppose iI<' , 5' are another pair of commuting 
self-adjoint operators on the same G-orbit as il< ,5. 
Then by renormalizing these operators if necessary, it 
follows that there is a gr- G such that 

1<'=U(g)I<U(g-l), 5'=U(g)5U(go1). 

Thus the spectral resolution of the primed pair is identi
cal to that for the unprimed pair. Indeed for f' A. tJ. 
= U(g)fx.tJ. we have 

il<'f'x.,,=>"f'A.tJ.' 5'f'x,,,=lJ.f'A.,, 

(f\,tJ.' f\',tJ..)=6 n .6"". (4.8) 
and the f' A." form a complete ON set in L 2 (R 2 ). 

In the following we will frequently need the spectral 
resolution of a pair il< ,5, where il< is one of the four 
Hamiltonians listed above. However, in many cases we 
will be able to use the unitary symmetry operators U(g) 
to construct an equivalent pair iI<' , 5' whose spectral 
resolution is much simpler to compute. This informa
tion will then provide the spectral resolution of the 
original pair. 

As a special case of these remarks consider the 
operator I< -2 = i~2' If {fA.,,} is the basis (4.6) of gen
eralized eigenvectors for the pair 1<, 5, then {f~." (tl 
= [exp(tl< - 2)JfJ is the corresponding basis of general
ized eigenvectors for the block operators 

K = (exptl< -2)1< [exp(- tK2)], S = (exptl<_2)S[exp(- tK -2) J 
and the f' A." (t) satisfy Eq. (1. 2). Similar remarks hold 
for the other Hamiltonians. This clarifies the relation
ship between the two- and three-variable models of q. 

We now explicitly compute the spectral resolutions of 
the pairs of commuting operators listed in Table II. We 
being with the Oc orbit, i 0 e., by determining the spec
tral resolution of the pair L 3 = I< -2 -I< 2,P1

2 + 8 i. Equa
tions (4.6) are 

[-~2+H~+~)]f=>..f, (oxx -}~)f=llf, 
1 1 

and the well-known normalized eigenfunctions are 

f x." = oCn .", (x) = (2171+"11'1 ! m ! )-1/2 exp[ - (xi + ~) / 4] 

x Hn (x/12) H",(xJ 12), 

IJ.=-n-~, >"+Il=m+~. 

where Hn(x) is a Hermite polynomial. 

(4.9) 

A t this point one can easily show in a manner analo
gous to that presented in 5, Sec. 3, that the operators 
(4.1) exponentiate to yield a global unitary irreducible 
representation of G. Indeed from the known recurrence 
formulas for the Hermite polynomials one can see that 
the operators L u L 2' L 3 acting on the oc-basis define 
a unitary representation of sl(2,R) which is a direct sum 
of representations from the discrete series, and the 
W -operators define a unitary irreducible representation 
of W. As fo Hows from the wo rk of Bargmann, 22 .23 this 
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Lie algebra representation extends to a global represen
tation of G, irreducible since its restriction to Wis al
ready irreducible. 

We now compute the unitary operators U(g) on L2(R2L 
The operators 

U(w, z, a) = exp(wlB) exp(zlPl) exp(w2B 2) exp(z2P2) 

Xexp(a [} 

defining the irreducible representation of Ware 

[U(w, z, a) j](x) = exp[i(a + ~ w· x) j(x + Z)], jE L2(R2). 

(4.10) 

The operator U(I~) = exp(9i!7) is 

[U(9) j](x) = j(xe) 

where 8 is given by (1.10). The operators U(A), 
AESL(2,R), are more difficult. From Ref. 24, we find 

(expal<_2)j(x) = 1. i.~. 411'~a 

xf jexp[ - (x - y)2/4ia] j(y) dYl dY2. (4.11) 

(In the following ~~ will drop the 1. i. m. symbol.) 

Also 

(expb I< 2) j(x) = exp(ib X· x/4) j(x) , 

(expci)j(x)=ecj(ecx). (4.12) 

Using group multiplication in SL(2,R), we find 

exp¢ L 2 = exp (tanh ¢I< 2) exp(sinh¢ cosh¢K -2) 

x exp[ - In(cosh¢)1< 3] 

so that 

(e .l-.L )j(x) = exp(i c~t~¢x. x/4) ff"" 
XP'l" 2 411'tsmh¢ 

x exp i ( __ ._2_ x. Y + cosh¢y. y) 
4 smh¢ 

xj(y)dyl dY2. (4.13) 

Similar computations yield 

( 9L )j( ) = exp(i cot9x' x/4) 
exp 3 x 411'i sinB 

xff~ expi (- ~x.y+cotBy.y) 
4 smB 

-~ 

(4.14) 

(I< + B )I+;( ) • (apx/2 - ~p3/12) 
expp -2 a 1:J X = expt 47Ti 

x I] exp 4~ [(Xl - ap2 - Yl)2 

-~ (4.15) 
+ (x2 - Y2)2] j(y) dYl dY2. 

From (4.11) it follows that the basis functions 
oCn• m (x) map to the ON basis functions Ocn.m(x, t) 
=exptl<_2) oCn.",(x) or 

Ocn.", (X, t) = (2m+n+17Tn! m! )-1/2 exp[i1T(m + n -1)/2] 
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where 

(

V +i) (m+n)/2 
X exp[ - Hvi + ~)(1 - iv3 )] _3_. 

V3 -t 

Xl =vl (l +VVl / 2, x2=v2(1 +V~)1/2, t=v3. 

The functions (4.16) are those corresponding to the 
separable coordinate system,Oc in Table I. 

Next we compute the spectral resolution for the sys
tem Or: 

The basis of eigenvectors is 

or+ (x) = [m! /2m7T(n + m) 1]1/2 exp(- r 2/4) r'" Lnm(~r2) n.m 

XcosmB, 

or;.m(x)=tanmBor~.m(x), (4.17) 

where m ~ 1, n ~ 0 and Xl = rcosB, x2 = rsinB. The eigen
values A, J.l are related to m, n via J.l= - m 2

, A = 
2n + m + 1. For m = 0 we get 

or;.o(x) = (2/ 7Tnl )1/2 exp(- r 2
/ 4) Ln(~r2), 

where L:(r) is a generalized Laguerre polynomial. The 
orthogonality relations are 

The three-variable basis functions Or n.m (x, t) 
= (exptl< -2) or n.m (x) are 

+ _ ( ml ) 1/2 (_I)m+n (V3 +i)m/ 2+n 

Orn.m(x,t)-K 7T32m(n+m)1 22m (V
3

_i)m/ 2 +n+1 

X exp[tvi{it -l)JL~(~vi> cosmv2, 

Or;.m(x,t) =tanmv2 Or;.m(x, t), m~I 

(4,18) 

for m = 0, K = /2; otherwise K = 1. Also Xl 

= (1 + V~)1/2 VI cosv2 , X 2 = (1 + ~)1/2 VI sinv2 , t = v3. 

For the system Oe, 

i(1< -2 -1(2) j= Aj, (/fl2 - Pi - Bi) j= J.l j, 

we obtain the ON basis 

oe~.m (x) = (1/ 11') hc;(i~,~) hC;(1) , ~), 

oe;.m (x) = (1/11') hs;(i ~,t) hS;(1) , t), 
where 

hc; (1) , ~) = exp(- cos21)/8) e>; (1) , t), 
hS;(1), t) = exp(- cos21)/8) S';(1), t), 

(4.19) 

o ~ m ~ p < 00 , (- 1 )m-/> = 1 , 

Xl = cosh~ cos1) , x2 = sinh~ sin1). 

The eigenvalues A and J.l are related to p and m 

via A=p+1, J.l=h+a;(~) or J.l=h+b;(t). 

The orthogonality relations are 

The functions C; (1), ~), S; (1), ~) are Ince polynomials. 25.26 

They are polynomial solutions of period 211' of the 
Whittaker-Hill equation. This equation has been investi-
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gated in detail by Arscott, 26 and it is his notation for 
the solutions and eigenvalues that we use. The three
variable basis functions Oen ... (X, t) = (exptf( -2) oen .". (x) 
are 

Oe~.m (X, t) == (X;'+/7T) exp[ (i/4) v3 (sinh2vl + COS2V2)] 

x (v3 - {)PI 2+l (v3 + i)-1>/2 hc;(ivl , i) hc;,(v2, i) 
where (4.20) 

Xl = (1 + v;)1/2 coshvl cosv2, x2 == (1 + v;)1/2 

x sinhvl sinv2, t = v3 • 

The expression for Oe~.m(x, t) is as above except that 
we now have a new constant of modulus unity x;- and 
the functions hC;(1J,~) are replaced by hS;(1J,~). The 
constants X;~ are in principle calculable from a know
ledge of the explicit form of the Ince polynomials. They 
can always be calculated by inserting special values of 
the parameters VI' Accordingly we make no further 
comment on their determination. 

In the remaining cases there are always two coordi
nate systems associated with each orbit. For simpliCity 
we shall always treat the coordinate system with super
script (1). The corresponding results for system (2) 
follow immediately upon application of the operators 
J or J2, (3.2), (3.3). 

The Fc system is defined by equations 

if<. zf = - hi! /, BJ == iiI' cosO' / 

and has a basis of generalized eigenvectors 

fc,..a (x) == [0 (r - 1')/ rr] 0 (e - 0'), (fcy• a' fcy' .a') 

=o(y-y')o(a -a'), 

(4.21) 

The basis functions Fcy.a(x, t) = (exptK2)fcy ... (x) are 

Fcy ... (x, t) = 4V;it exp 4it [(Xl - I' cosO' )2 + (X2 - I' sinO' )2] • 

The Fr system is defined by 

if<. 2/= - ty2 /, i/J1 /= - mj 

with basis 

fr (x) = 0 (r - 1') exp(im e) (f f ) 
Y.m rr ..J'I7T' r y•m, rY'.m' 

(4.22) 

(4.23) 

Here 0,,; 1', m = 0, ± 1, ... , and r, e are polar coordi
nates. The three-variable basis functions are 

Fr,.m(x,t)= (2;) 1/2 expit (r2+y2) i;~l 

xexp(ime)J .. (-;;r) , 
where Jm(z) is a Bessel function. 

The Fp system is determined by equations 

with basis 

fp;,,, (x) 
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(4.24) 

= (1/v'2iT)(1 + cos 8)11£ 12-1/4 (1- cos 8)11£ 12-l/4 

X[o(r-y)/rr] , -7T"; 8<0, 

0, o,,;e";7T, 

fp;." (x) = fp;,,, (r, e) = fp;.1£ (r, - e). (4.25) 

Here r, e are polar coordinates, 0,,; 1', - 00 < J.I. < 00, and 
the spectrum is continuous of multiplicity two. 1 The 
orthogonality relations are 

(fp~'!L,f~"",)=o(y-y')o(J.I.- J.l.1), 

(f~." ,fp~"",) = O. 

The three-variable basis functions are 

F' (x t) i-/Yexp(iy/4t)e (2... (t2 + 2)2) 
P,....., 237Ttcos(ip.1T) xp 16t" 1/ 

X [D_1U 12-1/2 (;;) 

XD i "/2-1/2 (Ji) + D_I" 12-1/2 (1t9D-1,,/2.l/2 (-;) ] ' 

(4.26) 

where a=exp(i7T/4).fY and ~,1j are parabOlic coordinates 

2Xl = ~2 - 1J 2 , X2 = ~1J. 
The Fe system is defined by equations 

if<.2/ = - 1'2 j, (/112 + 4B~ - 4/3i)j= - Il/, 

[equivalent to (7) in Table II]. The basis functions are 

fe (x) = o(r-y) {cen (8,y2{2), n=0,1,2, .•. , (4.27) 
"n ffl se_n(e,y /2), n=-I,-2, •.• , 

0,,; 1', (fey.n,fe,..,n,)=o(y-y')onn" 

where cen(e,q),sen(e,q) are the periodic Mathieu func
tions of integral order and r, e are polar coordinates. 
The eigenvalues J.J. == J.J.n are discrete and all of multipli· 
city one. The basis functions 

are 

Fe,. (x, t) = A4 , •• n (r) 1/2 exp[i7"(cos2a+ sinh2p + 1'2)] 
.n 1TZT 1T 

x )cen(a,y2/2)Cen{p,y2/2), n==0,1,2, ... , 
lse.,,(a,y2/2)Sen{p,y2/2), n== -1 ,- 2, ... , 

(4.28) 

where A,.. n is a normalization constant, Sen (p, q) and 
Cen{p,q) are modified Mathieu functions, and 

Xl=-2TCOshpcosa, x2 =-27"sinhpsina, t=7". 

The Lc system (transformed so that b = 0) can be 
defined by equations 

i(f( 2 + aPr> j == Aj, B~j== - tp2 j 

with basis functions 

(x) 0(X2 - p) [i ( p2 x~)J 
lcA,p' = "27Tlal exp -;; AX1+"4Xl+12 ' 

(lcx,p,lc~.,p,)=O(A-A')O(p_p'), _<Xl<X,p<oo. (4.29) 
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The three-variable basis functions are 

where Ai(z) is an Airy function. Here, 

The Lp system is defined by 

i(f<'2 + aP) j= Aj, (B 21f1 + If1 B 2 + aPi)j= IJ.j 

with basis functions 

lPA.n(x) = (1/~) hn(x2) exp[- (i/a)(AX1 +tXIX~ + -{; xV], 

_00 <A <oo,n=0,1,2, ... , 

(lp~.n' lPA' .n' )=O(A - A')Onn" 

Here hn(x) is a solution of 

h" - (-alJ. + AX2 +~) h = 0 
a2 4a2 

such that 

(4.31 ) 

(4.32) 

(4033) 

The eigenvalues IJ.= J1.n of (4.32) subject to condition 
(4.33) are discrete, 27 with multiplicity one, and we as
sume them ordered so that J1.o < J1.1 < J1.2 < ", . Here hn(x) 
is either even or odd for each value of n. 

Denote a general solution of (4.32) by hl".~ •• (x). Then 
it is straightforward to show that the basis functions 
LP>..n(x, t) = (exptl< ~2)lP~.n(x) are 

C 
LPA. (x, t) = ~ 

n V3 

x exp ~ (vi + V~)2 :~ - 4~3 (vi - v;) 1~~ - ~)] 
x hz"n. A.a / 2(V 1) h2"n. A•a /2(iv2), (4.34) 

where the two h functions have the same parity as hn(x) 
and C~.n is a normalization constant. Also 

The Rc system is defined by the equations 

LJj=pf, (B1P1 + P1B 1 )j= J1.j 

with basis functions 

where 

X A= {x~, x> 0 
• 0, x<O ' A=P-J1., (4035) 

and similarly for x~. The orthogonality relations are 

(rc~~·". ,rci~) = 0,.0, .• , ° (A' - A) Ii (J1.' - J1.). 
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The three-variable basis functions are 

Rc" = _1_. _ [exp(i1T/4)/2ii: ]-1 (A+I")+l r(- iA + 4) r(- iJ1. + 4) 
AI" 81T2ZV3 3 

x exp[i(vi + v~)/8 ]Dn -1/ 2(- v/,f'l[) D1I"_1/2(- vim), 
(4.36a) 

wherexl=v~/21!1> X1=V~/2V2' [=v3 • The remaining 
three-variable basis functions are given by 

RC~~(1!I' v2 )= (_1)1-i (A''')Rc~~ (- vI> - v2 ) 

= (_1)1/2-lA Rc~: (- VI' v2 ) 

= (-1 )1/2-1 I" Rc~~ (VI> - v2 ). 

The Rr system is defined by the equations 

fJj=pj, If1j=imj. 

The eigenfunctions are then 

rrp", (x) = (1/21T) r 1p
-

1 exp(im8), 

satisfying the orthogonality relations 

(rrp'''''' rrp",) = om'''' o(p' - pl. 

The three variable basis functions are 

Rr (x 0=-. _2_(2v'7V:)1+lp r(m/2+(I+iP)/2) 
pm' Z1T -.fila 3 m ! 

(4.36b) 

(4.37) 

X V;:l exp(ivi/8) MIP/2.",/2(ivi/ 4) exp(imV2) ' 

(4.38) 

where Mv,I"(z) is a solution of Whittaker's equation and 
X1=V~/2V1COSV2' x2=v~/2v1sinv2' [=v3 • 

The Re system is defined by the equations 

fJj= iAj, [1f12 + HBzP2 + P2B2)]j= IJ.j. 

The orthonormalized eigenfunctions are then 

re;", (x) = (1/ v'21T) rlA-lGc",(O,~, - A), 

re;". (x) = (1/.J27T) rn-1Gs", (If, t - A), 
(4.39) 

Xl =rcos8, x2 =rsin8. Here we have introduced the 
notation 

GCm (8, ~,- A) = exp[i cos(20)/16] gCm (0, t, - A), 

GSm (8, t, - A) = exp[i cos(28)/16] gSm(8, t, - A). 
(4.40) 

The functions gCm(8,ll,{3) and gSm(O,a,f3) are nonpoly
nomial solutions of the Whittaker-Hill equation and the 
subscript m (the number of zeros in the interval [0,21T]) 
labels the discrete eigenvalues of the operator 1f12 
+4(B2P2+P2B2 ), Leo, 1J.=J1.m • This notation is due to 
Arscott and Urwin.38 Each of the solutions Gc",(8, ll, /3) 
or GSm (8, (}' ,13) can be written as an infinite series in 
trignometric functions which converges for the discrete 
eigenvalues J1."" For further details see Ref. 28. The 
three-variable basiS functions are 

where 
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The constants K!; are in principle calculable by choos
ing special values of the parameters Vj' In fact in the 
process of calculating the functions Re" we get relations 
which to our knowledge are new, viz., 

K~+ Gc(ivu t, -;\.) Gc(vz, t, - A) 

= exp[-}i(sinh2v, + cos2VZ)J J r de GCm (e, t, - A) -. 
x exp[ - h(coshv, cosv2 cos e + sinhv, sinvz sine)2] 

XD IH (- (coshv, cosv2 cos8 + sinhv, sinv2 sine/ffi) 

with a similar relation holding for the functions 
Gsm(e, t, - A). The constants K;: can be calculated for 
particular values of the arguments vi' e.g., 
GCm (e, t, - A) = L: ;=0 A; cos2rB. Then 

KA+ _ 27TDp _1 (0) A8' 
01 - Gcm(h, t, - A) Gcm(O, t, - A) . 

Similar expressions may be obtained for the other con
stants. Passage to the three-variable model in this 
basis allows us to derive a set of orthogonal basis func
tions as products of two Gc or Gs functions from a 
knowledge of the orthogonality of single functions. 

5. OVERLAP FUNCTIONS 

Exactly as in Sec. 3 of 5 one can show that our re
sults lead to a number of Hilbert space expansion theo
rems. Indeed if {fA,,} is an ON basis for L 2(R2) , then 
{U(g}fA,,} for any gEG is also an ON basis. In particu
lar, each of the three-variable models constructued in 
Sec. 4 provides a basis for L 2(R2). Furthermore, ex
actly as in (3.21) of Paper 5 we can derive discrete and 
continuous generating functions for each of our bases. 

Now we compute overlap functions (AaA" , Bb>., ",) which 
allow us to expand eigenfunctions AaA" in terms of eigen
functions Bb>., ,," The utility of these formulas is that 
they are invariant under the action of G so the same 
expressions allow us to expand U(g)Aa>." in terms of 
U(g)Bbx' ,,', where the results may be much less ob
vious. In the following we use the two-variable bases 
to compute some overlaps of interest. Because of G
invariance, identical results hold for the three-variable 
bases. 

In the present paper we omit the overlaps between the 
three discrete bases Oc, Or, Oe, which will be treated in 
a forthcoming work. (However, the Oc-Or overlap is 
well-known. 29

• 30 For most of the other bases we give an 
overlap with either of the discrete bases Oc or Or. The 
principle behind these computations is obvious and the 
interested reader can derive for himself any of the 
other overlaps: 

(5.1) 

° if p*"± m, 

if + and p = ± m *" 0, 

(fr r.p' orn•m) = (p/ m)i [m! y/2m+'(n + m) !)'/2 e-r2 /4ym L,;:(h2) 

if-andP=±m*"O, 

(4y/n! )'/2 e-r2 / 4 L (tyZ) 
n 

ifp=m=O, (5.2) 

510 J. Math. Phys., Vol. 16, No.3, March 1975 

(fp;, " ,or~.m) 

= [m! y/2m7T(n + m)1 p/2 exp(- y2/4)ym L;;'(h2) 

Xexp[-7Ti(h 1)/4](am± a_m), 

where 

X F tJ..L+2",m+2" 
(

. 1 1 

2' iJ..L+m+l 1

-1) - ir(-iJ..L+t) 
r{-ip.+m+l) 

x F (-iJ..L+t,m+t I )' 
2, -ip.+m+l -1, 

(fe,.n' ,or~n)= e(n') {Y/7T)1/2Hl + (_I)m-n')An' 
01 

(5.3) 

(5.4) 

X [m! /2m 7T{n + m)! ]'/2 exp{- y2/4) ym L;;'(h2) , (5.5) 

where B{x) = 1 for x'" 0, and zero otherwise. A similar 
expression for (fe,.n" or~n) can be obtained by replacing 
B(n') by e{- n') and A::: by :sr:,' in the above equation. 
A:::, B:!: are the coefficeints in the trigonometric expan
sions of the even and odd Mathieu functions, respec
tively. All other overlaps are zero. Also, 

(I ) exp(- p2/4) (/ r.::) 
cx •• ,ocn• m = (2m~17Tm! )1/2 HOI P Y 2 Cn , 

where 

and we have normalized so that a= -1, 

( ) 1 - (A - p.) 
lc>.,p,IP",n = 27T1 al hn{p) 15 -a- , 

(rc~:,ocnm)= 7T-2(2m+n+3n!m!)-1/2 L~L~ 

where 

L ~ = 2m+;1-1 / 2 r(iA/2 + t) r«m + 1)/2) 

x 2 F, (- m/2, iA/2 + tt2) 
for m even, 

(5.6) 

(5.7) 

(5.8) 

= 2m+
1+i>. r (iA/2 + t) r (m/2) 2F, «1 - 111)/2, iA/2 + t;i;2) 

for m odd. 

The remaining overlaps for rc+-, rc", and rc-- can be 
calculated by using relations (4.36b): 

(rr~m' ornm.) = I5 mm• (2/n! )m/ 2
-1>. 

X[(m +n)!/m!]' /2 r«m +1-iA)/2) 

x 2F 1 (- n, (m + 1- iA)/2; m + 1 ;2), 

(rr~o' orn ... ) = 00..' (2-1
/

2
- n / m!) r«1 - iA)/2) 

x 2F,(- n, (1- iA)/2;1;2). 

For the basis Re we have 

(re;"', or~m') = HI + (_I)m-m') 11:;:. v'2iT (rr~m' ,orn ... ) 
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(5.11) 
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(re;,.,or;;"..) =H1 + (_l)m-m') 

XB;::. ,f'l;5 i(_l)sgn m' (rr;,.., ornm.) (5.13) 

where Am, and Bm, are the coefficients for the expansion 
of the f~ctions GCm(e, t, - X) and Gsm(e, t, - X), re
spectively, in trigonometric series. 28 
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As a continuation of Paper 6 we study the separable basis eigenfunctions and their relationships for the 
harmonic oscillator Hamiltonian in two space variables with special emphasis on products of Ince 
polynomials, the eigenfunctions obtained when one separates variables in elliptic coordinates. The 
overlaps connecting this basis to the polar and Cartesian coordinate bases are obtained by computing 
in a simpler Bargmann Hilbert space model of the problem. We also show that Ince polynomials are 
intimately connected with the representation theory of S U (2), the group responsible for the 
eigenvalue degeneracy of the oscillator Hamiltonian. 

INTRODUCTION 

In Ref. 1 (hereafter referred to as 6) the authors 
gave a detailed investigation of the nine-parameter 
symmetry group G (the Schrodinger group) of the 
equation 

iUt + t.2U=Oo 

It was found that (*) separates in 26 coordinate systems 
and that with each coordinate system is associated an 
orbit under the action of the Galilean subgroup G(2) C G 
conSisting of a pair of commuting operators (K,S), 
where KEg the Lie algebra of G and S is a second
order element in the universal enveloping algebra of g. 
It was further shown that in all except five cases (which 
are subgroup coordinates) the first-order symmetry 
operator K corresponds to an orbit which can be asso
ciated with one of four types of potentials: the free 
particle, the attractive and repulsive harmonic oscil
lator, and the linear potential. 

The Schrodinger equation for the attractive harmonic 
oscillator in two space variables separates in exactly 
three orthogonal coordinate systems: Cartesian, polar, 
and elliptic. The corresponding eigenfunctions in the 
three systems are a product of two Hermite polynomials, 
a Laguerre polynomial times an exponential function, 
and a product of two Ince polynomials, respectively. 
In this paper we examine these bases and compute the 
overlap functions relating different bases, with special 
emphasis on the Ince polynomial case. Due to the 
equivalence of the free particle Schrodinger equation (*) 
and the (time dependent) harmonic oscillator equation 
we have chosen to present our eigenfunctions as solu
tions of (*). However, all our results translate imme
diately to the harmonic oscillator problem. 

It can be seen from Table II of 6 that to each type of 
potential and corresponding symmetry S except the at
tractive harmonic oscillator there correspond two co
ordinate systems equivalent under G though not under 
G(2), In one of these equivalent coordinate systems 
labeled by superscript (1), the eigenfunctions and cor
responding calculations are quite simple, while the 
other system affords the close connection with one of 
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the physical potentials mentioned above. It was the 
existence of the "simple" systems which made the com
putations in 6 so easy. Now it is a remarkable fact 
that for the attractive harmonic oscillator, the analog 
of the coordinate systems of type (1) is the realization 
of the harmonic oscillator given several years ago by 
Bargmann. 2 Note that although the Bargmann transform 
is not a member of G, it is a member of the complexi
fication GC of G. 3 It is the purpose of this work to ex
plore fully this analogy, especially in the case of el
liptic coordinates where almost all of the developments 
presented are new 0 

It is well known that the eigenvalues of the harmonic 
oscillator Hamiltonian are degenerate and that the group 
responsible for the degeneracy is SU(2). In Sec. 3 we 
discuss the relationship between this group and the el
liptic basis, developing the connection between Ince 
polynomials and the representation theory of SU(2) in 
analogy to the connection between Lame polynomials and 
SU(2) as discussed in Ref, 4, 

1. PRELIMINARIES 

First we give explicitly the Lie algebra g of the 
symmetry group G, as well as the spectral resolutions 
of the pairs corresponding to the oscillator coordinates 
mentioned above, For further details the reader is 
referred to 6. The real Lie algebra g is spanned by the 
differential operators 

K. = - t2at - t(xlaXl + x 2aX2 ) -/ +~·i(xi + x~), K -2 = at> 
p;=ax;,Bj=-lax; +ix/2, i=1,2, M=Xlilx2-X2aXl' 

D=X10Xl + x 2ilx2 + 2tat + 1, E = i. (1.1) 

The coordinate systems related to the attractive 
harmonic oscillator are written as Oc, Or, and Oe [cor
responding to carteSian, radial (polar), and elliptic co
ordinates respectively], and are presented in Table I 
of 6. The associated pairs of operators are (K -2 - K" 
p~ + Bi), (K_2 -K" A-P), and (K_? -K2' ~ -p~ - B~) 
respectively, as listed in Table II of 6. 

The spectral resolutions of these pairs as given in 6 
with L3=K-2 -K2 are 
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Oc: (iL3'P~+ B~) with eigenvalues (A,I1) and basis 
functions 

OCn n (x, t) 
1 2 

= (2n l +n21Tnl! n2 ! >-1/2 exp[ilT(nl + n 2 + 1»)1/2 

(
t + i)(n1+"l!) /2 

exp[ - ~(X~ + ~)(1 - it)] t _ i (1. 2) 

x (t - i)-tH
Ol 

Cx/[2(1 + t2)P/2)Hn2 (x2Hn[2/(1 + t2)]1/2), 

where A=nt +n2 + 1, /l= -nl - i. and Hn(x) are Hermite 
polynomials. 

Or: (iL3'~) with eigenvalues (A, /l) and basis functions 

+ (m! )1/2 (-O"'+n (t+i)n+m/2 
Orn,,,,(x.t)=K 1T32"'(n+m)! 22m (t_i)n+m!2+1 

X exp(r:~: ~ ~) )L~(2(1~ (2») cosmB 
(1. 3) 

Or~,m(x, t)=tanmeOr~,,,,(x, t) m = 1,2, ... , 

where L;:'(r) are Laguerre polynomials, K=V2 for m 
=0 and 1 otherwise, x=rcose, y=rsinB, A=2n+m+1, 
and /l=-m2

• 

Oe: (iL 3 , ~-P~-B;) with eigenvalues (A,/l) and basis 
functions 

X (t - ()P/2+1(t + 1tl>/2 hc;(ivu i) hc;(v2 , i), (1. 4) 

where Xl = (1 + t2 )1/2 coshvl cosv2 , X 2 = (1 + X2
)1/2 

Xsinhv 1 sinv2, A=p+1, /l+=iA+a~(i), and the func
tions hc;'(v, 0 are periodic solutions of the Whittaker
Hills equation and are related to the even-parity Ince 
polynomials through 

(1. 5) 

The numbers ap(~) denote the characteristic values for 
the even Ince polynomials. The functions Oe-(x, t) are 
obtained by replacing the even Ince polynomials by odd
parity Ince polynomials with corresponding character
istic values denoted by b;(~). These functions are thus 
denoted 

(1. 6) 

We mention here that for our purposes it is not con
venient to normalize the Ince polynomials as done by 
Arscott~ 5 A full discussion of our normalization is given 
in Sec. 3, where it is also seen that much information 
about Ince polynomials fOllows from the representation 
theory of SU(2). Once our normalization is fixed the 
constants Ap' can be determined. 

To conclude this section, we give the unitary mapping 
which describes the time evolution of the solutions of 
(*), viz., 

. 1 f~ f exp(tI( -2)j(X) = 1.1. m. 4it _= dy 1dY2 

X exp[ - (x - y)2/4it]f(Y) , 
(1.7) 

where K-z =i(oXIX1 +0"2X2). We note that exp(-tK_z ) ap
plied to any of the basis functions (1. 2), (1. 3), Or (1. 4) 
will give the same functions evaluated at t=O. In the 
next section we compose (1. 7) with Bargmann's trans-
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form to relate the basis states in Bargmann Hilbert 
space to the solutions (1. 2), (1. 3), and (1. 4) of the free 
particle SchrOdinger equation (*). 

2. BARGMANN'S REALIZATION 

Bargmann's transformation2 (we consider only the 
case of two spatial dimensions) is a unitary mapping of 
L 2(R2) onto the Hilbert space] (z) of functions f of two 
complex variables z = (zt> Z2) completed with the norm 
IIJII induced by the inner product 

(2.1) 

with d/l(Z) = 1T-2 exp(- z· z)~Rezd2Imz, and Ilfli = (j,f)l/2. 
The mapping is given by 

f(Z) = (Azp)(z)=LLm.1 d"xA(z,x)zp(x), (2.2) 
R2 

where zp(x) E L 2(R 2 ) and 

A (z, x) = rr-1 / 2 exp[ - i(Z2 + x2
) + V'Iz . xL 

The inverse mapping A -1 is given by 

(2.3) 

I]; (x) = (A-Y-)(x)=l.i.m.1 d/l(Z)A(z,x)g(z) (2.4) 
R4 

for anyaE]2' 

The composition of the two unitary maps exp(tK -2) and 
A -1 will then map entire functions f E ] z onto L2 (R 2 ) 

functions which are solutions of (,d. This mapping is 
given by 

[exp(tK2 )A-1g](x,t)=i diJ.(Z)Kt(z,x)g(z), (2.5) 
R4 

where 

1 (- i(l - 2it)Z2 - ix2 + v2z· x) 
K t (z, x) (1 + 2it):r; exp 1 + 2it • 

(2.6) 

Notice that when t - 0, we recover Bargmann's mapping 
(2.4) as we must. The inverse map Aexp(- t/<..-2) with 
the kernel Kt(z,x) is then obtained by complex conjuga
tion of (2.6), viz., 

[Aexp(-tK2 )zpJ(z>=1 ~x~(z,x)zp(x,t). (2.7) 
R2 

Thus we have established the one-to-one correspondence 
between Bargmann's Hilbert space of entire functions J 2 

with the L 2(R 2 ) solution6 of the free particle Schrodinger 
equation (*). One can also use (2.7) to construct the Lie 
algebra C; in the Bargmann realization; however, it is 
easier to evaluate the generators (1. 1) at t = 0 and make 
the replacement at - - K -2 as done in 6 and then pass to 
Bargmann's realization by replacing the annilihation 
operator ~x i-ox' by its analytiC representation Z i' In 
this way the generators of C; take the form 

L3=-i(Z10. +zzoz +1), 
1 2 

L 2 =i(a •• +ozz +z~+z;), 
"1 1 2 2 

D=Ma •• +oz z -z~-z~), B;=h(z,.+oz), (2 0 8) 
1 1 2 2 i 

Pi=-tcZi-O • .l, !rJ=(Z1a. -Z20.), {=i, 
, 2 1 

where the script letters correspond to the block letters 
in (1.1) and we have used, instead of K-2 and K2 , the 
combinations L3=K_2-K2 and L2=K-2+K2' which take 
a Simpler form in the (Z1>Z2) formalism. Indeed the 
harmOnic oscillator Hamiltonian iL3 now appears as a 
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dilatation operator making its spectral resolution in J 2 

very simple. As well we can give the integrated group 
action of (2. 8) as done in 6. However, as we use only 
(2.5) and (2.7), we omit this. 

Now the second order operator P'f + Bi for the oc 
system takes the form 

P'f+Bi==- (ZloZl + 1) 

and, hence, the normalized eigenfunctions of the pair 
(iLs,P'f+Bi) with eigenvalues (A, /1-) yield Bargmann's 
well-known result 

(2.9) 

where /.1. == - n1 - t, A == n1 + n2 + 1. These functions form 
an ON basis in J 2 and map onto the Oc functions (1. 2) 
via the unitary map (2.5). 

In order to treat the systems or and oe it is expedient 
to introduce the complex polar coordinates 7 

Zl==pcost, O~Rep<oo, -oo<lmp<oo 

z2==psint, -7T<Rel;"<1T, -oo<lml;"<oo. 
(2.10) 

In these coordinates the operators iL3 and!Yl take the 
simple form 

iL3=POP + 1, !Yl =ile, 

and hence the spectral resolution of the pair (iL3!Yl2) 
with eigenvalues (A, /.1.) yields the eigen functions 

gr;, m (z) =K[22n +m-ln ! r(n + m + 1 )]-1/2p2n+m cosmt, 

(2. 11 a) 

gr~,m (z)=tanml;" gr;,m(z), (2.11b) 

where K, n, m are as in (10 3). These basis functions 
form an ON basis in J 2 which map onto the Or functions 
(1. 3) by (2.5). 

For the elliptic system oe we consider the spectral 
resolution of the pair (d 3, !Yl 2 - /1- 8~) with eigenvalues 
(A,I.d. It is easy to see that the second of these opera
tors gives the differential equation for Ince functions in 
the complex variable 1;", which we discuss in more de
tail in the next section. Suffice it now to write down the 
eigenfunctions (S;' is an odd-parity Ince polynomial) 

ge;,m (z) = 2-P/ 2pP C;(I;"), 

ge;,m (z) == 2-P/ 2pP S;'(I;"), 

(2. 12a) 

(2.12b) 

where the notation follows from (1.4) and (1. 5). The 
functions (2.12) form an ON basis in J 2 which map onto 
the functions (1.4) through the unitary map (2.5). 

3. INeE POLYNOMIALS AND SU(2) 

As is well known7 the degeneracy group for the 
harmonic oscillator in two spatial dimensions is SU(2). 
Although SU(2) is not a subgroup of G, a representation 
of its Lie algebra appears as a subalgebra of the 20-
dimensional vector space of second-order elements in 
the enveloping algebra of r:;. Rather than give immedi
ately the representations of the Lie algebra SU(2) in 
terms of these operators, we prefer to develop the 
abstract formalism along the lines presented by Patera 
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and Winternitz4 for Lame polynomials, establishing the 
connection with the preceding section at the end. 

A. The algebraic approach 

Denote by U the universal enveloping algebra of the 
Lie algebra L [here L = SU(2)], C the center of U, U 2 

the symmetric second-order elements of U, and define 
U(2) == L + U 2 • Let Ji> i = 1,2,3, be the standard basis for 
SU(2). Then a general element of U(2) can be written as 
~ (JiJj + JjJj ) + aiJp a lj ,aj E R. Note that for SU(2), 
l c U2 • It suffices to consider only elements of the 
factor algebra U(2) Ie Now an arbitrary element of U(2) I 
C can be brought to the form~ + rJi + ajJj through an 
inner automorphism of SU(2). The symmetric second 
order elements U21Chave been studied by Patera and 
Winternitz,4 and they have shown the one-to-one cor
respondence between the two SU(2) orbits and separa
tion of variables on the sphere S2. In any case a general 
element of U(2) IC describes an eigenvalue problem with 
four free parameters giving rise to special functions 
which have as limiting cases both Lame polynomials and 
polynomials arising from the element J; + aJ2 • which 
we will show to be Ince polynomials. 

The Lie algebra SU(2) with the basis of Hermitian 
generators J j takes the form 

(3.1 ) 

The canonical basis for the representation space is 
defined by 

J±<Pjr=[(j 'fr)(j ±r+ 1)]1/2<Pjr±1 

J3<Pjr = r<p jr 
(3.2) 

with J.=J1 ±iJ2 , where we employ Vilenkin's8 phase 
convention 

exp (irrJ l)<Pir = exp(irrj )<p j "T' 

We are interested in the eigenvalue problem defined by 
the operator 

(3.3) 

with eigenvalue taken for later convenience to be -h7, 
viz. , 

(3.4) 

First we consider some symmetries of E in the group of 
automorphisms of SU(2). Now any such symmetry must 
map J 2 - J 2 and J 3 - ± J s• It is not difficult to see that 
any transformation R of this type necessarily takes one 
of two possible forms: 

(i) R'=a!, CYEa:, !=identityinSU(2), 

(ii) W=={3exp(-irrJ2 ), (3Ea:. 

From the existence of R- and Schur's lemma it is clear 
that the functions <P j " do not completely specify a basis 
for an irreducible representation of SU(2). We can de
fine a complete basis by further specifying the eigen
values of R-. Furthermore, since (R-)2 is a multiple of 
the identity, we can take these eigenvalues to be ± 1 
which then determines i3 to be exp(irrj). We hereafter 
drop the minus supercript on R and write 

(3.5) 
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where R = exp(irrj) exp(- irrJ2). The hermiticity of E and 
R then guarantees the orthogonality conditions 

(3.6) 

where we have properly normalized <Pin' 

The determination of <P~n is then tantamount to the de
termination of the overlap functions (<P j " </!~n)' From 
(3.5) we find 

(l/JjT' <P7n) = ± exp(- irrr )(<PJ -,., <P~n) (3.7) 

and from (3.2), (3.3), and (3.4) we obtain the three
term recursion formula 

- (a/2i)[ ( j - r)(j + r + 1 )]112 (<PjT.It ~n) (3.8) 

+ (a/2i)[ (j + r)(j - r + 1)]I 12 (<Pj r-l , ~o)= (r2 - tr/)(<pjr> </!~n). 

It is now convenient to introduce new coefficients A~ as 

A' - exp[irr(j - r)/2](l/JjT' <Pin) 0 < m ~ j, 
r- v'(j-r)!(i+r)C ' 

(3.9) 
• exp(irrj /2) • 

Ao == 2(j!) (<Pjo, <pjn ), 

while from (3. 7) A~ can be defined for negative r as 

A~=±A~. 

We see immediately that A; = O. Upon substituting 
into (3.8) our recursion formula takes precisely the 
form given by Arscott5 for Ince polynomials with j 

integer, viz., 

~(j + r+ 2)A~+~ + (4r~ + 4 -7))A;+1 + H j - r)A;= 0, r> 0, 

(3. lOa) 

~(j + 2)A~+ (4 - r1lA~+ 2~jA~==0, 

~(j + 1)Ai -7)A~= 0, 

(4l-7))A~ + ~A7-1 =0, 

(3.10b) 

(3.10c) 

(3.10d) 

where ~ = - 2a and we have identified A; and A; with 
Arscott's trigonometric coefficients AT and BT, re
spectively, up to normalization. Notice also that our r 
takes on both integer and half-integer values. Now for 
j half-integer we merely delete Eqs. (3. lOb, c). 
Moreover, Arscott's parameter P is identified with our 
2j (p '" 2j). Thus even p corresponds to integer IR's 
(irreducible representations) of SU(2) and odd p to half
integer IR's. 

Following Arscott, we denote the characteristic 
values 7) by aj(O and bj(~) for w7n respectively. Now 
the dimension of an IR is (2j + 1), and from (3.10) 
we conclude that for integer j there are j + 1 even parity 
characteristic values aj(~) and j odd parity character
istic values bj(~), whereas for half-integer j there are 
(j + t) of each type, 

From the structure of the operator E in (3,3), there 
is a further interesting symmetry property noticed by 
Arscott. Putting a = - 2~ and writing the ~ dependence 
explicity, i.e., E(~)=~-2~J2' we notice that 

(3.11) 

and a similar relation is obtained by replacing J 1 by J 3 • 

It follows from (3.11) that if aj(~) or b'J'<~) are charac
teristic values for E(~), then aj(-O and bj(-~) are 
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also characteristic values for E(~). Furthermore, a 
short computation demonstrates that 

exp(irr AdJ1 )R =R for integer j, 

exp(irr AdJt)R = - R for half-integer j. 
(3,12) 

Hence, it follows that for half-integer j the set {bj(~)} 
is given by the set {aj(- ~)}, whereas for j integer 
aj(-~) E [aj(~)} and bj(-~) E{bj(~)}. 

The expansion of the <P~n basis in terms of the 
canonical basis is readily obtained: 

</!'" =.6v'(j - r)! (j + r)! exp[ - irr(j - r)/2] 
J', ~ . 

XA;(l1)(l/Jir±exp(- irrr)<pj-r)' (3.13) 

where the sum over r runs r == 0, .•. ,j for j integer and 
r= t, t, ... ,j for.j half-integer. From the orthonormal
ization condition (3.6), we find 

____ i __ __ 

4(j! )A~' (11' )A~(11) + 2.6 (j - r)! (j + r) !A;' (11' )A~(7) 
r:::l 

.=on'no", (j=integer) (3.14a) 
J 

2 6 (j - r)! (j + r )!A~ (7)' )A~(7) 
T=1/2 

(3.14b) 

Notice that our normalization for A~(l1) is different from 
that of Arscott. The inverse expansion is easily ob
tained from (3.13): 

4)jT == exp[irr{j - r )/2]v' (j - r }(j + r)! .6A;(7) w;o, r * 0, 
n, € 

</!io=2(j! )exp(irrj/2).6A~(7J)<P;n' (3.15) 
o 

From the orthonormality of the 0j:s we find 

.6A ;(7) 
n. € 

= (j - r)! (j + r)! li
rT

, (r and r not both 0), (3.16a) 

6A~(11)A;(7)= t(j!)2 (3. 16b) 
n 

B. One variable model 

A well-knowns model of SU(2) on the space of poly
nomials of degree 2j in one complex variable is given by 
the realization 

The canonical basis states are then realized as 

<P; r (z) = Zi -r /..; {j - r)! (j + r)! , (3.18) 

In this realization the operator E [Eq. (3.3)] takes the 
form 

E==Zd~2 +(2~ (z2+ 1 )-(2j -1)Z) ~ +j(j+iaz). (3,19) 

However, for our purposes it is more convenient to 
consider another one variable model of SU(2) obtained 
from (3. 17) by a similarity transformation. set z 
=exp(i1T/2)exp(2it) and consider the operators Jj=z-J 
x JiZi, In the new variable /;" the generators J 3, J. take 
the form 

J i d (2' ) (1 d .) 3=2" d/;"' J.=-exp tt 2i d/;" ±] (3.20) 

and the canonical basis states are 
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WJr(t) =exp(irr(j - r)/2) exp( - 2irt);l/(j - r)! (j + r)! .(3.21) 

It is easy to.check that the operators (3.20) satisfy 
the relations (3.2) on the states (3.21). Furthermore, 
the operator E takes the form 

1cfa. d. 
E=4 dl;2 -2"sm2tdt +Jacos2t 

and the eigenvalue equation (3.4) becomes 

I/J" + ~ sinn!jl + (1) - 2j~ cosn)l/J= 0, 

(3.22) 

(3.23) 

which is precisely what Arscott4 calls Ince's equation 
with 2j identified with Arscott's p. 

. We construct a realization for the scalar product 
(3.6) which covers the complex I; plane once and for 
which (3.21) forms an orthonormal basis for each in
teger or half-integer j, viz. 

( ) r(2j+2) i~d!" ( 2 )-2j -2f' -() () j,g j = 22J+lrr _~ b2 cosh 1;2 -v dl;d I; g I; , 

(3.24) 

where I; = 1;1 + it2, tu t2 E R. Writing the expansion 
formula (3.13) explicitly with the state (3.21), we 
obtain 

(3.25a) 

(3.25b) 

. It is readily verified by substitution that the solutions 
(3.24) satisfy the differential equation (3.23) with the 
recursion formulas (3.10). 

It is now a simple task to make the connection of our 
model in this sectiun with the previous section. It can 
be seen that the spectral resolution of the operator /rJ2 
- p;.-B~ of Sec. 2 gives exactly the differential equation 
(3. 23) with the identification p =:\ - 1 = 2j, t - Jl + ~p = 1), 
and~=-~. 

Now the Lie algebra model (3.17) has been integrated 
to the group SU(2) by Vilenkin, 8 and it is a simple task 
to express his representation in terms of our functions 
I/J(I;). In so doing we can express the cross-basis matrix 
elements of exp(- ieJ1 ) in terms of a finite sum of 
Jacobi polynomials. 

4. OVERLAP FUNCTIONS 

In this section we calculate the overlap functions be
tween the bases oc, or, and oe, respectively. However, 
since these functions are invariant under the unitary 
transformations of G as well as Bargmann's transforma
tion A, they also apply to the bases Oc, Or, and Oe in 
Sec. 1. Thus we obtain expansion formulas for each one 
of these functions in terms of the others. Those ex
pansions involving the Oe basis are probably new. 

The overlap function for oc-or systems has been 
calculated for the case of three-dimensions. 9 In the 
two-dimensional case here we find 
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i-m 2F 1(-n1, l-Ctzl +n2 -m)/2;(n2 -nl + m)/2; -1)\ 
± r«nl+n2-m)!2)rl«n2-nl+m)!2) f 

These coefficients allow us to expandlO the Hermite 
functions (1. 2) in terms of the Laguerre functions (1. 3) 
and vice-versa. 

The overlap functions for the system or'-oe' are 
even easier to calculate, viz., 

(gr~.m" ge!, m)= KO p ,2n+m' 2n+(m'-s-l) /2[r(n + m' + 1)n!)1 /2 

xA!.'/2(1)m)' (4.2) 

whereas the overlap between different parity states 
vanishes. These coefficients allow us to expand the 
functions (1. 3) in terms of the functions (1.4) and vice
versa. The composition of (4.1) and (4.2) gives us the 
overlap functions as an infinite series 

(gcn1n2 , ge~.m) 

=~ (gcnln2 , gr~.p_2n)(gr:;.P-2n' ge~m). (4.3) 

Furthermore, we can combine the above results with 
those of 6 to obtain further overlap functions. However, 
we present here only those which can be readily obtained 
in close form and were not given in 6, viz., for the 
free particle radial coordinates and harmonic oscillator 
elliptic coordinates: 

(fr' oe' )=2l-m'/2K2vn'm'! A' (1) }ym'+l / 2 
'Y,m" p,m • m'/2 m 

x exp(- Y /4 )L7';.",,) /2(~y). (4.4) 

These functions allow us to expand the Bessel functions 
given by Eq. (4.24) in 6 in terms of the Ince polynomials 
(1. 4) and conversely to write the functions (1. 4) as an 
integral and sum of Bessel functions. 

Similarly, for the repulsive OSCillator, radial co
ordinates, and the harmonic oscillator, elliptic 
coordinates, 

( 
2 ) (m'-l) /2-i~ 

(rr~m" oe;m)=K
2
A m·/ 2 (1)m) Up -m')/2]1 

x r«m' + 1 - i:\)/2) ~l (_ (p _ m' )/2, (m' + 1- i:\)/2, 
~ 

Xm' + 1; 2), (4.5a) 

whereas for the negative parity solutions we have 

(4.5b) 

Accordingly these coefficients allow us to expand the 
Whittaker functions, Eq. (4. 38) of 6, in terms of the 
Ince polynomials (1. 4) and conversely to express the 
Ince polynomials as an integral and sum over Whittaker 
functions. 
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Stationary electrovacuum spacetimes with bifurcate horizons 
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General features of all stationary electrovacuum solutions of Einstein-Maxwell equations which 
contain regular bifurcate horizons are studied. A certain set of invariant quantities is found in whose 
values the full information about the solutions is recorded. The quantities have a simple physical 
meaning and generalize directly the "local invariants" defined for the axially symmetric case in the 
previous paper [J. Math. Phys. 15, 1554 (1974)]. A necessary condition that the solutions represent a 
neighborhood of a black hole in an asymptotically flat spacetime is given. The condition has the 
form of an inequality which places an upper bound on the magnitudes of the gravimagnetic, electric, 
and magnetic fields at the horizon. In the case of axial symmetry, the inequality reduces to that 
derived in the previous paper. 

1. INTRODUCTION 

Properties of the axisymmetric, stationary, electro
vacuum spacetimes containing bifurcate horizons have 
been studied in Ref. 1. In the present paper, we drop 
the assumption of axial symmetry and generalize most 
of the results of Ref. 1 in the corresponding way. For 
the sake of brevity, let us call these more general 
spaces C -spacetimes (for the exact definition, see 
Sec. 2). 

The characteristic initial data for Einstein-Maxwell 
equations prescribed at the bifurcate horizon of a C
spacetime are symmetric under a transformation group 
acting along the horizon-the so-called '~ollineation 
group C." Z In Sec. 2, we find all solutions of the char
acteristic initial data constraints admitting this type of 
symmetry. We also introduce invariant quantities which 
generalize the "local invariants" of Ref. 1. The found 
solutions can be classified by the values of these quan
tities. Moreover, we show that the metric and. electro
magnetic field of the C-spacetime in which such a 
horizon is embedded is uniquely determined by these 
quantities. 

In Sec. 3, we look for relations between our C-space
times and the Hawking and Ellis' "stationary regular 
predictable spaces" (SRPS). 3 We generalize slightly the 
SRPS to allow for stationary matter shells, rings, and 
disks whose material need not obey "well-behaved 
hyperbolic equations" (gas disks, solid constructions, 
etc. ) and which surround the black hole. Such spacetimes 
provide the simplest possible model for the study of 
black hole reactions to outside influences-the fieldS 
originating in the surrounding matter (cf. Ref. 4). It is, 
therefore, of some use to investigate the C-spacetimes 
contained in SRPS as those neighborhoods of the horizons 
which do not intersect the matter shells, rings, or 
disks. The first step is to look for conditions on a C
spacetime to be a subspace of an SRPS. We use the 
necessary condition proved by Hawking, 3 namely that 
there may not be any outer trapped surfaces in an SRPS. 
In case of C -spacetimes, this condition implies an in
equality for the invariant quantities introduced in Sec. 
2. It should be mentioned that Newman and his col
laborators, in a series of papers on trapped surfaces, 5 

have also obtained some inequality, but this does not 
seem to be invariant. 

518 Journal of Mathematical Physics, Vol. 16, No.3, March 1975 

2. STRUCTURE OF C-SPACETIMES 

Let us introduce some conventions. 

Definition 1 ~ (fi1 ~g, F) ~is an electrovacuum spacetime 
with metric gl~ and electromagnetic field Fli' if 

(1) gij is a symmetric covariant tensor field on fi1 of 
signature - 2 such that the spacetime (fi1 ,g) is 
time-orientable; 

(2) F;. is an antisymmetric covariant tensor field on 
111.

3 

, 
(3) glj and F jj satisfy the Einstein-Maxwell equations 

R;j - (1/2)gjjR = - 2 (F;kF; + (1/4)gjj Fkl yl), 

F!ij;kl=O, 

Fh;j =0, 

everywhere in 111. Rij is the Ricci tensor and R the Ricci 
scalar as defined by gij according to conventions written 
down in Ref. 1. 

Our definition of the field FI} as a covariant tensor is 
in agreement with any textbook on general relativity (cL 
Ref. 6). On the other hand, under a Lorentz transforma
tion Aii, Fli transforms as (see, e.g., ReL 7, Sec. 5.4) 

~j = sgn(AoO)A/ Ajl Fk/' 

Such a transformation law cannot be carried over to 
general relativity, where any regular matrix must be 
allowed to replace A/, because the question whether 
such a matrix preserves or changes time orientation 
makes no sense 0 A possible way out of this difficulty is 
to express the fact that the electric field does not change 
sign under time inversion whereas the magnetic field 
does by the rules relating the "physical components" in 
of FIJ (i.e., the components in an orthonormal frame) 
to the electric and magnetic field 3-vectors, and to 
let FI} be a tensor. In 111, a time orientation must be 
chosen as positive and the rules must contain an extra 
minus sign if the frame has negative orientation. 
Accordingly, the isometry of the usual spacetimes must 
be generalized for the electrovacuum spacetimes to the 
so-called (g, F)-map as follows: 

Definition 2: The map cp: (lI1!)gl>F1)- (1I1 2 ,gz,Fz) is 
called (g, F)-map, if 

(1) cp is a diffeomorphism of 1111 onto 111 2 , 

(2) CP*(g1l=gz, 
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(3) cp*(F1 )=±F2 , 

where the plus sign holds when cp maps the time orien
tation of II'! 1 onto the time orientation of II'! 2. the minus 
sign holds in the opposite case and cp* is the differential 
of cp (see, e,g. Ref. 3, p, 24), 

A group of (g, F)-maps cp: (II'! ,g, F) - (II'! ,g, F) is called 
a (g, F)-group of the electrovacuum spacetime (II'! ,g, F). 

Definition 3: Let (II'! ,g,F)be an electrovacuum space
time admitting a one-dimensional (g, F)-group C; and 
containing a perfect horizon H such that 

(1) H is invariant under C; , 
(2) the restriction of C; to H is a collineation sym

metry group on H, 2 

Then, (II'! ,g, F) is called a C-spacetime, 

The group C; and the horizon H need not be uniquely 
determined in a given C-spacetime. A drastic example 
of such a situation is the Robinson-Bertotti spacetime 
[Ref. 8, Eq, (9)], Another example is the Kerr-Newman 
spacetime with m 2 > a2 + e2 (Ref. 9), where the group C; 
is unique, but the horizon H is not: There are two in
tersecting perfect horizons satisfying the conditions of 
Definition 3, The reader will observe that C; is not 
identical with the group generated by a/a t in this case, 
because the latter is spacelike at H. 

Our next task is to find an invariant description of the 
structure of C-spacetimes, which were analogous to, 
or even a direct generalization of, the local invariants 
introduced in Ref, 1 for axisymmetric spacetimes, Let 
us choose an arbitrary C -spacetime (II'! ,g, F) with a 
horizon H and a group C; satisfying the conditions of 
Definition 3, As the first step, we introduce some 
canonical coordinates and tetrad fields along H. 

The points of H invariant under C; form a submanifold 
5, diffeomorphic to the two-sphere (see, e, g, Ref. 10), 
which is embedded in (II'! ,g) as a totally geodesic space
like surface (see Lemma 6 of Ref, 2), Let ll' be an af
fine coordinate along H increaSing in the future direc
tion and equal to zero at 5, ll' is determined up to a 
transformation 

(1 ) 

where 1) is an arbitrary real positive function on H con
stant along the (null) rays, Let XA, A= 1,2, be arbitrary 
coordinates on 5,11 The functions x A can be extended to 
the whole of H by demanding that they be constant along 
the rays. Then, the coordinates yi, i=O,l,2,3, can be 
introduced in a neighborhood of H in II'! such that, at H, 
yO=: ll', yl=X\ y2=X2, y3=O, We will often use such a 
system below, denoting by capital letters the indices 
1,2, if they have to be distinguished from the resL 

Let [i, ni, m i, iii i be a pseudo -orthonormal tetrad 
field along H obeying (2) of Ref, 1 together with the 
relations 

(2) 

and satisfying the following orientation convention. Zi 
has been chosen tangential to the rays and future 
oriented, The relation nili = 1 requires ni to be future 
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oriented, as well, Define e; and ei by 

e~= (1//2) (ll+ nil, e1= (1/-/2)(l1- nl) (3) 

and choose e~, d such that the triad e{, e~, e~ is right
handed. m l is defined by the relation 

mk==(l/-/2)(e~-ie~) (4) 

up to a rotation 

mk_el~mk, 

where cp is an arbitrary real function on H which is con
stant along the rays. 

According to (2), the complex vector field mi is 
tangential to 5. As 5 is totally geodetic, we have 

miumi 15= - rml, iiii;imJ Is= riizl, 

or 

Als=,u 15=0, 

(5) 

where r, ~, A, /J. are the rotation coefficients defined 
by the triad li,m/,iiil and (2) of Ref. 1. 

As the second step, we solve the equations (14)-(16) 
of Ref. 2 (which are implied by Einstein-Maxwell equa
tions and Bianchi identities along H) together with the 
additional conditions which follow from the existence of 
the (g, F)-group C;. Equation (14) of Ref. 2 implies 

ar o~ 
all' = 001 = A = 0, iJ = >¥ 2' 01. (6) 

For the Maxwell and Weyl spinor fields <P a' >¥ a' the C;
symmetry requires that if a frame field l'i, n'i , m", iii I I 
is C; -propagated along H, then the corresponding com
ponents <P~, >¥~ must not depend on 01, Such a frame is, 
e.g., given by 

[Ii == ali, . 1 I n'l=:::-n, 
01 

The transformation rules (28) of Ref. 8 for the com
ponents <P a' >¥ a' yield 

<P2 == OI<P~, >¥ 3 =:: OI>¥~, >¥ 4 = 0I2.y~. 
Substituting this in (14) of Ref. 2, we obtain 

<Po=O, J<P1=o, <P 2== (M<P 1 )' 01, 
001 

>¥O==>¥l=O, il>¥2==O a 01 ' 

>¥s= (M>¥2+ 2;J!lM<P1)' 01, 

>¥4 =:: ((M + r) Ui1>¥2 + 2¥)II<pl) + 2¥1 (M + r)il<PJ' ka\ 

where the differential operator :VI is defined by 

J'vIX==X.itn
i

, 

for any function x onH. With (6) and (7), (14), and (16) 
of Ref. 2 are fulfilled identically, the only independent 
quantities being r, Q, <P1) and >¥2' These must be 
chosen so as to satisfy (15) of Ref, 2, 

Let us write the complex function <PI in terms of two 
real functions E and H as in Ref. 1: 

(8) 
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<PI = (1/2)(E - iH) (9) 

(see Ref. 12). According to this definition, E and Hare 
independent of the choice of canonical coordinates and 
tetrads. On the other hand, using the relations (3) and 
(4), we find that E and Hare e1-components of the elec
tric and magnetic vectors 9 respectively 9 as calculated 
in the frame eO,ell e2 ,c3 , 

Let the line element ds 2 on H be given by 

(10) 

in the canonical coordinates a, XA, and let the metric 
covariant derivative on the Riemann manifold (5, + YAB) 

be denoted by";", We may use the same notation as for 
the derivative on 01 ,gil)' because both affine connec
tions coincide on 5 (5 is totally geodesic). Relation (5) 
implies, then, that r is uniquely determined by rnA and 
Y AB' By means of the Gauss curvature K of (5, y) and 
the functions E and H, the first equation of (15) of Ref. 
2 can be written as follows [see (20) of Ref. 2] 

(11) 

The vector rni is tangential to 5, so its only nonzero 
components at 5 are 111\ Hence, the complex scalar 
field n determines a real vector field nA on 5 by 

(12) 

The direct meaning of nA is clear from the relation [cf. 
(2)ofReL 11 

(13) 

Under the transformation (1), n A behaves, therefore, 
as follows: 

n~ == n A + (lOg7J),A' 

The second equation of (15) of Ref. 2 is equivalent to 
[see (23) of ReL 2] 

(14) 

(15) 

where I y I is the determinant of Y AB' In such a way, the 
vector field n A together with the metric Y AB determines 
Im>¥2 uniquely, On the other hand, nA is not well-de
fined. Equation (14) implies that any two vector fields 
n,A and nA on 5 correspond to the same horizon struc
ture, if they differ by a gradient of a smooth function on 
5. For a given horizon H, we obtain, therefore, a whole 
class of fields nA on 5. If we can choose a representant 
in a unique, invariant way from each such class, a 
great simplification would result. An elegant choice, 
Which will turn out to be advantageous in more aspects 
later, is prOVided by a corollary to the Theorem of 
Hodge (see, eog., Ref. 13, p.152, Corollary 1,4.4.). 
According to it, there is a unique divergenceless vector 
field 

(16) 

in each class given by the relation (14) on any compact 
Riemann manifold without boundary. From now on, we 
allow only such affine coordinates a, for which the 
field nA satisfies (16). Any two such a's are still re
lated by (1), but 7J is a real constant now, 

It is still possible to express the information contained 
in y and n by means of invariant functions, e. g. , the 
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Gauss curvature K of y and Im>¥2' But some of our 
formulas are not expressible by means of K and Im>¥2' 
because the quantities appearing in them can be obtained 
only by solving partial differential equations with co
efficients depending on K and Im>¥2' On the other hand, 
from y and n, everything is obtained by Simple algebra 
and differentiation. In addition, yand n, together with 
E and H, form a quadruple of quantities which enter 
formulas in a nice coherent way, Moreover, we shall 
see that yand n generalize directly the invariants R, 
A(,9), B(.')) which are so useful in the axially symmetric 
case, 1 These are the reasonS leading to the following 
definition, 

Definition 4: A C-structure (Y,n,E,H) consists of a 
Riemann metric Y AB on 5, a divergenceless vector field 
nA on 5, and two real functions E and H on 5, where 5 
is the two-sphere, We have, therefore, proved the 
following. 

Theorem 1: Let 01 ,g, F) be a C -spacetime and H a 
horizon satisfying the conditions of Definition 3, Then, 
a unique C-structure (y,n,E,H) is determined by the 
relations (8), (9), (13), and (16). Let an arbitrary C2 
C-structure (Y,n,E,H) be given. Then, a unique perfect 
horizon H together with Maxwell and Weyl spinor fields 
along it is determined by the relations (5), (6), (2) of 
Ref. 1, (7), (8), (10), (11), and (15). The structures 
along H obtained in such a way satisfy the Eqs, (14)
(16) of Ref. 2 identically and are invariant under a col
lineation group, 

Suppose that the C -spacetime 01 ,g, F) together with 
the horizon H is axisymmetric. Then, a C-structure 
(y,n,E,H) is determined by Theorem 1, and, on the 
other hand, the local invariants R, A(9), B(D), E(.'l) and 
H(,':)) are well defined, too (see Ref. 1). What is the 
relation between the two in such a case? The axial sym
metry allows us to choose the coordinates .'), <p on 5 
such that 

(17) 

In this coordinate system, the rest of the C-structure 
quantities is denoted by nJ (,'l, <p ), nJ (.'1, cp), E (,'1 > cp), 
H(,') ~ <p l. The axial symmetry implies 

~n~(,'l rn)=~n~(,9 <P)=~E(,') CPl==~H('l cp)=O i3<p ,'I"' i3cp , i3cp , ~cp > 0 

Thus, we have 

nA will be divergenceless and at the same time well 
defined at the poles ,,:) == 0, 1T only if 

n~ (,'), <p l== 0
0 

(18) 

The corresponding affine coordinate a is obtained by the 
construction described in Ref. 8, p,63, and is, there
fore, exactly the same as that used in Ref. 8 to define 
B(,'l); so we obtain from (31), (40) of ReL 8 and our 
relation (12) 

(19) 

Up to now, we have found the structure of all possible 
C-horizons. But we can do more: in analogy to Ref. 1, 
we can determine the structure of all possible C-space-
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times. With the same tools as in Ref. 8, one can es
tablish the following lemmas. 

Lemma 1: Let (In ,g, F) be a C-spacetime with a group 
g and a horizon H+ as required by Definition 3. Then, 
there is another perfect horizon, H-, say, in In satisfying 
the conditions of Definition 3 together with g. The in
tersection 5 =H+nH- is identical with the set of all 
points of H+ (and H-) invariant under g. The two C
structures (y*,n±,E±,H") given in a common coordinate 
system x A on 5 are related as fo110WS: 

Definition 5: Two C-structures (y±,n±,E*,H") are 
called conjugate, if there is a diffeomorphism cp: 5 - 5 
such that 

Lemma 2: Let the conditions of Lemma 1 be satisfied. 
Then, the characteristic initial data for Einstein-Max
well equations obeying the corresponding constraints and 
prescribed along the two intersecting null hyper surfaces 
H+ and H- (this all abbreviated by "CID") determines a 
C-structure up to a conjugation. Any C4 C-structure 
determines a unique CID. 

Hence, we have as in Ref. 1: 

Theorem 2: Let (Y,n ,E,H) be a C4 C-structure. Then, 
there is at most one C -spacetime (In ,g, F) determining 
(y,n,E,H) as in the first half of Theorem 1. The uni
queness of (In ,g, F) is understood up to extensions and 
restrictions. Two conjugated C-structures determine 
the same C-spacetime in this way. 

In proving Theorem 2, we have used the method of 
Ref. 14, where the uniqueness of the development of the 
characteristic initial data for Einstein vacuum equations 
has been Shown, under the condition that such a develop
ment exists. The existence remains problematic, but it 
is very likely, at least if some differentiability condi
tions are assumed. We will try to deal with this problem 
in future. On the other hand, only the Einstein vacuum 
equations were considered in Sachs' paper,14 not the 
Einstein-Maxwell equations j and the characteristic 
initial data was defined without using the Newman
Penrose quantities. These two points represent small 
technical difficulties which are easy to overcome, as 
anyone writing down the corresponding Newman
Penrose system of equations can see. 

3. BLACK HOLE C-SPACETIMES 

In Ref. 3, a very general class of stationary space
times containing black holes was investigated, the so
called stationary regular predictable spaces (SRPS). 
Every SRPS contains a perfect horizon (Proposition 
9.3.1 of Ref. 3), but this need not be bifurcate. Either 
it is of C -type but geodesic ally incomplete (some sort 
of directional singularity being present at 5) or it is of 
T-type. 2 The Singularity at 5 is very unlikely and the 
conjecture that the T -horizons (as, e. g., the extreme 
Kerr-Newman) are not interesting for black hole 
physics seems very plausible (cf. Ref. 4). More 
investigations on the singularity and on the T-horizons 
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will, of course, be necessary before one can exclude 
them with some certainty. In any case, the C-space
times are less general thanSRPS in that they can con
tain only bifurcate horizons. 

On the other hand, the C-spacetimes are more gen
eral than SRPS in several aspects. They need not be 
asymptotically flat, can possess Singularities on both 
Sides of their horizons, need not develop from partial 
Cauchy surfaces, etc. But some of these pOints can 
represent mathematical patholOgies rather than physical
ly interesting generalizations, and another of them 
would lead to nonnecessary complications of the theory. 
The only point at which one really wishes to generalize 
the SRPS is the condition (3) on p. 323 of Ref. 3, This 
condition excludes stationary rings, disks, or shells 
surrounding the black hole and conSisting of the ideal 
fluid or of some other material that does not obey a 
"well-behaved hyperbolic equation." The reason for 
such a wish is that stationary systems with black holes 
and nonhyperbolic matter can, firstj be good approxima
tions to some phenomena in astrophysics and, second, 
they provide the Simplest theoretical model of the in
teraction between black holes and some independent out
side agents (cf. Ref. 4, where nonhyperbolic matter was 
allowed in axially symmetric spacetimes that were 
vacuum outside the matter). Let us, therefore, replace 
the condition (3) of Hawking and Ellis by the following 
pOints: 

(3a) The region T in In, where the matter does not 
obey well-behaved hyperbolic equations, has a compact 
spacelike section. 

(3b) The energy-momentum tensor Tij satisfies the 
strong energy condition in T.3 

(3c) /J1- T consists of one or more electrovacuum 
spacetimes. 

The immediate consequence of these conditions is 
that the region T cannot intersect the horizon H, be
cause there are no time like stationary trajectories 
for the matter at H (strong energy condition!). As Tis 
compact, H will have an open electrovacuum neighbor
hood U in /J1, H must admit a symmetry group acting 
along its rays, because /J1 is stationary (see Ref. 3). 
Let H be bifurcate. Then j U is a C-spacetime, 

Definition 6: Such spacetimes U are called black hole 
C-spacetimes. 

The reader will notice that the maximal analytiC ex
tension of a black hole C-spacetime will in general con
tain a singularity outside of the horizon. These singu
larities are not serious in the sense that they can be 
"smoothed up" by some reasonable, stationary matter 
filling. (Here, we suppose that a stationary electrovacu
urn spacetime must be analytic in analogy to vacuum 
stationary spaceUmes. 15) 

Theorem 3: Let (U,g,F) be a black hole C-spacetime 
in a generalized SRPS In. Then, the C-structures 
(y±, n±, E± ,H") corresponding to its bifurcate horizon 
H+ U H-, where H+ is the event horizon in /J1, must 
satisfy the inequality 

P. Haji'fek 
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where n2='Y ABnAnB. 

Proof: Let us choose an arbitrary family of compact 
spacelike sections 5' of the lower half of H- which is 
symmetric under the group q and compute the converg
ence Il of the outside null normals to 5',. Transforma
tions similar to those performed in Ref. 1 lead, now, 
to 

Il= t(w2+ ~2+ O.BmB + n,BmB - rn - rn) 

+ (~,iiiA),BmB - q,AmA 

+ (n + ~'AmA)(U + ~,AmA), (21) 

where '112 , r, and n are the complex quantities cor
responding to H- and to a canonical tetrad along it. ~ is 
a smooth function on 5 such that the family of surfaces 
5' is given by 

Ci' e-~ = const 

for all negative constants and a fixed canonical affine 
coordinate <l. We rewrite the right-hand side of (21) 
from the complex into the component form uSing Eqs. 
(5), (12), and the identity 

0 B = mAmB + mAmB • 

Then, 

n.AmA + n,AmA - rn - rn= nA;A = 0, 

( t -A) B rt A_'!'.ABt _.!.~t 
"',Am ,Bm - "',Am - 2r· "';AB - 2 '" 

(n + ~,AmA)(n + ~,AmA)= tn2 + nA~,A + t(grad02• 

Relation (11) together with (22) yields 

(22) 

j),= t(~~ + 2nA~,A + E2+lJ2+ n 2 -K)+ t(grad02. (23) 

Now, according to a theorem of Hodge, 16 ~ can be 
chosen such that the first term on the right-hand Side of 
(23) is a constant real number, tk, say! 

k = ~~ + 2nA~,A + E2 + lJ2 + ~V -K. (24) 

Integrating this equality on 5, we obtain 

k' Is vTYl if!x= 15 (E2 + lJ2 + n2 
- K)v'!Y1 if!x, (25) 

because 

Is (~~ + WA~'A)v'!Y1 if!x=O, 

as it easily follows from (13). If k ~ 0, then (24) and 
(23) give Il ~ 0 everywhere on 5' and we have an outer 
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trapped surface in 111 (Ref. 3, p.319), which is impos
sible. Thus, k must be negative, in which case (25) im-
plies (20). QED 

In the axially symmetric case, we obtain (11) of Ref. 
1 setting (17), (18), and (19) for YAB , n M E, and H 
into (20). ThUS, (20) is a direct generalization of (11) 
of Ref. 1. The physical meaning of the functions E and 
H is the same as in Ref. 1; in the subsequent paper, it 
will be shown that nA is the gravimagnetic field at the 
horizon. Hence, (20) sets an upper limit on the magni
tudes of the electric, magnetic and gravimagnetic fields 
at the horizon exactly as (11) of Ref. 1 did. 
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We prove a necessary and sufficient condition for a stationary electrovacuum spacetime with a 
bifurcate horizon to be static. The condition is expressed by means of the invariant quantities 

introduced in the preceding paper. 

1. INTRODUCTION 
Properties of stationary electrovacuum spacetimes 

containing regular bifurcate horizons (called C - space
times) have been studied in Ref. 1. It has been shown, 
in particular, that all C-spacetimes can be classified by 
values of four invariant quantities-a symmetric tensor 
field Y AB' a divergenceless vector field nA , and two 
functions E and H, all defined on the two-sphere. The 
tensor YAB is the metric of any spacelike section of the 
horizon. The vector nA is built from two rotation co
efficients in a special tetrad field and is, therefore, a 
part of the specetime affine connection at the horizon. 
The function E is the electric and H the magnetic field 
component as measured by an observer at the point 
where his trajectory cuts the horizon and in the direction 
considered by him as normal to the surface of the 
"black hole. " 

In the present paper. we show that nA =0 and H=O, 
if and only if the corresponding spacetime is static. 
Loosely speaking, this means that the source of the 
gravitational force represented by nA is either some 
stationary matter current or the rotation of the black 
hole, and that ~ embodies the totality of such a force, 
because its vanishing implies nonexistence of stationary 
movements. ~ is, therefore, tentatively called 
gravimagnetic field. 

The plan of the paper is as follows. In Sec. 2, we 
study some discrete symmetries of the characteristic 
initial data for Einstein-Maxwell equations along a pair 
of intersecting horizons. It turns out that each of the 
three fields nA , E, and H possesses "its own" sym
metry-a reflection-like transformation of C-space
times. The transformation keeps "its" field invariant, 
but changes sign of the remaining two. The properties 
of one of these symmetries are used in Sec. 3, where 
the proof of the necessary and sufficient condition for 
staticity of C-spacetimes is given. 

The notation and conventions are taken over from 
Ref. 1. 

2. SYMMETRIES OF BIFURCATE HORIZONS 

Let VJ1, g, F) be a C - spacetime with the group Ci and 
the pair of horizons H+ and H- (see Ref. 1). The subset 
H+ U H- of jJ1 is not a manifold, because no neighborhood 
of any point of S = H+ (I H - is diffeomorphic to R3. We 
describe the status of these points more explicitly. 

Let p ~ S and let P+ and P- be the (null) rays through p 
lying in H+ and H-, respectively. Then, the vector 
spaces T/P+) , Tp(p-) , Tp(S), T/IF) , T/I-n, Tp(jJ1) are 
well defined and satisfy the following relations [T,.(Y) is 
the tangential space to manifold Y in point xl: 
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T ,,(jJ1) = T p(P+)ffi T /p-) (J1 Tp(5), 

T p(H+) = T /P+) (l) T p( S ), 

T p{fn = T ,,(P-) Eli T p(S), 

(1) 

where Ef\ denotes the direct sum of vector spaces. Any 
tensor t on T (jJ1) defines multilinear pairings of the 
spaces T /P+) , T/p-) , T ,,(5), as well as multilinear 
forms on them from which, in turn, t can be recon
structed. The most important example is given by the 
metric g which defines the following structures: 

(a) the bilinear pairing gl: T /P+)0 T /p-)- RI: 

gl(X, y)=giiP)xiyi, x'= T/p+), y,= Tp(P-); (2) 

(b) the bilinear form g2: T p(S)0 TiS)-R l
: 

g2(X,y)=gi/P )X i yj, X'= Tp(S), Y"'" Tp(S)· 

By means of relation (1), T p(jJ1) can be built up from 
T/p+), T/p-), and Tp(S). Let x, y be arbitrary vectors 
from T i/J1). Then, they can be written in a unique way 
as 

x=x l +x2 +x3' Y =Yl + Y2 + Y3' (3) 

where Xl and Yl lie in Tp(P+), x2 and Y2 in Tp(P-), X3 and 
Y3 in Tp(S), Then, 

gjj(P)xiyi = gl (xll Y2) + gl(Yl, x2) + g2(X3 , Y3)' 

The reader will notice that g2 is a metric induced by that 
of H+ or H- being thus a part of the structure of, e. g. , 
It alone, but gl makes sense only on bifurcate horizons. 

We can regard H+u H- as a sort of geometrical space 
equipped with the following structures: 

(i) The subsets fI+ and it of H+ u H - are perfect 
horizons (52 x RI as manifolds, bearing a degenerate 
metric and an affine connection compatible with it, see 
Ref. 2) along which the Weyl and Maxwell spinor fields 
are prescribed. If the C-structure l of H+ is (y, n,E,H), 
then the C-structure of H- is (y, - n, -E, -H). 

(ii) At all pOints p of S =fI+ (I H -, a bilinear pairing 
gl: T p(P+) 0 T p(j}-) - R 1 is given such that 

gl(X, y) > 0, 

if x andy are both future oriented. 

We call such spaces "bifurcate horizons. " A sym
metry of a bifurcate horizon H+ U H- is a map of H+ U H
onto itself which preserves all the structures given 
under (i) and (ii). Let us investigate some of these maps. 

To describe the action of various transformations on 
H+ U H-, it is convenient to introduce coordinates along 
it as follows. Let xA be some coordinates on S and let 
us extend the functions Xl, X2 to the whole of H +u H- by 
demanding them to be constant along rays of both H+ and 
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H-. Let 0'+ be a canonical affine coordinate along H+, 
0'+ an affine coordinate along H-, pi a null vector field 
tangential to H+ and ni a null vector field tangential to 
H- satisfying the conditions 

a',i ZI=1 on H', 
0'- . nl =1 

,I 
on H-, 

gl(Z! n) = 1, (;=0 on S. (4) 

It is easy to show that 0- is canonical along H-( nA ;A = 0, 
see Ref. 1). The functions n+, 0/- are uniquely deter
mined up to a transformation 

(5) 

where 1) is a positive constant. 

Choose a possible pair 0/+, 0/-. Any element !.p+ from 
the component of the identity in the collineation group 
C' of H' defines a positive number k such that, for any 
pc=. H+, we have (cf. Ref. 2) 

O/'(!.p'(p»=kO/+(p), xA(!.p+(p))=xA(p). (6) 

In turn, k determines a unique collineation qr on H- by 

(7) 

for any PE H-. The map!.p: (H+UW)- (H+ U H-) defined 
by 

is a symmetry of the bifurcate horizon H+ U H-, because 
!.p preserves the structures (i) along H+ and along H-
as well as the pairing gl' From (5), it follows that, 
given a fixed pair o'~, a~, then any other possible pair 
0/;, 0/; can be obtained by 

(8) 

for some !.p (for the definition of !.p*, see, e. g., Ref. 3, 
p.22). We observe that the existence of the pairing gl 
restricts essentially the number of symmetries on 
H' U H - which can be constructed from those of H' and 
of H-. 

Useful and intrinsically new types of symmetry which 
can be admitted by a bifurcate horizon are certain trans
formations which "permute" the "branches" of the 
horizon leaving 5 pointwise invariant. The exact de
finitions and properties are as follows. 

The time inversion 7 is defined by the relations 

7*(XA)=XA, A=I,2, 7*(0'-)=-0", 7*(0")=-0'-. 

7 depends on the pair 0'+, 0'- chosen. If a;, o'~ and a;, a; 
are two different pairs related by (8), then the corre
sponding time inversions 71 and 72 satisfy 

7 does not commute with !.p, because (6), (7), and (9) 
imply 

O'-(!.p-l( 7( !.p(p)) = + k 0'-( 7( !.p(p») = - kG +(!.p(P) = - k2
Q '(P). 

But we notice that 

!.po7 o !.p=7 (10) 

for any !.p and 7. From the definition of 7 it follows that 
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5 is pointwise invariant under 7. Let us find 7 : Tp(ftJ) 
- T p(ftJ) at a point pc=. 5 [T p(ftJ) is defined by (1)1 If 
a+, 0'-, 11, and nl satisfy (4), m' and ml are tangential 

to 5, g2(m, m) = - 1, g2(m, m) =0, and 7 is defined by 
(9), then 

7*(Z)=-n, 7*(n)=-I, 7*(m)=m, 7*(m)=m. (11) 

The orthonormal tetrad eo' e1 , e2, e3 associated with 
l,n,m,m is given by 

eo = (l/v2) (1 +n), e1 = (1/v'2"')(1 - n), 

e2=(1/v'2)(m+m), e3 =(1/v2)(m-m). (12) 

Relation (11) and the linearity of 7* yield 

7 *(eo) = - eo, 7 *(e1 ) = e1 , 7 *(e2) = e2, 7 *(e3 ) = e3 • 

The relation (13) justifies the name "time inversion" 
for 7. 

The space reflection P is defined by 

(13) 

P*(XA)=XA, A=1,2, P*(Q-)=O", P*(G')=O'-, (14) 

where 0'+, Q- is an allowed pair of affine coordinates. 
Exactly as for 7, we obtain the following results: There 
is a number of p's, each of them defined by a different 
pair G', G-. Any two PI' P2 are related by 

P2 = !.p-l 0 PI 0 !.p 

for some !.p. In general, p and !.p do not commute, but 
we find 

P=!.popo !.p 

for any !.p and p. 5 is pointwise invariant under p and 
we have 

where eO,eU e2 ,e3 are associated to l,n,m,m by (12) 
and Z,n are related to 0/,0/- used in the definition (14) 
of p by Eq, (4). 

From (9) and (14), we obtain 

p o7=7 o p, 

if both p and 7 are defined by means of the same pair 
a', Q-. Setting 

w=po 7, 

we have 

(15) 

Thus, w restricted to the horizon H+( H-) is the "dis
crete" element of the collineation group of f( (H-) (cf. 2). 
w commutes with any !.p, 

Wo!.p=!.pow, 

hence, w is uniquely determined, independently of the 
pair a', 0'- used in (15). In general 

w'*!.poWo !.p. 

Define 7, p, and w by (9), (14), and (15) using a fixed 
pair 0'+, Q-. Then, 7, p, W commute with each other and 
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Hence, the quadruple {n, T, p, w} forms the well-known 
Abelian group of four roots of identity. We notice that 
n, T, p, and ware the only permutations of the 
branches of the bifurcate horizon H+U H- which, re
stricted to H+ or H-, are diffeomorphisms; they also 
preserve the pairing g" On the other hand, they will 
not, in general, preserve the structures under (i). But 
we have 

Lemma 1: Let H+u H- be a bifurcate horizon. Let the 
c-structure of H' be (y" Q·,E.,H·). Then, the in
variance of H+ U H- under T is equivalent to 

Q'=O, H' =0, 

the invariance of H+ U H - under p is equivalent to 

Q'=O, J<;±=O, 

and the invariance of H+ U H- under w is equivalent to 

E'=O, H*=O. 

Proof: If the C-structures are given, then all of the 
data under (i) can be reconstructed uniquely along 
H+ U H-, and vice versa (see Ref. 1). It is, therefore, 
sufficient, to investigate the transformation properties 
of y AB' QA, E, H. These are, in turn, defined by the 
relations (10), (13), and (8) of Ref. 1 in terms of a 
pseudo -orthonormal tetrad field 1, n, m, iii along S. The 
symmetry under a map I/J means that the quantities calcu
lated according to the rules (10), (13), (8) of Ref. 1 in 
terms of the tetrad !/i*(l), !/i*(n), !/i*(m), and ,p*(m) are 
numerically equal to the original ones. Let I/J = T, p, w 
be defined by a fixed pair a+, a- and let l,n,m,iii be 
chosen so as to satisfy Eq. (4) with a., a-. As S is 
pointwise invariant under any of the maps T, p, W, Y AB is 
always invariant. QA is defined by 

QA =nili;A = -lini ;A' 

Using (11) and the analogous relations for p and w, we 
obtain 

under T: QA - - QA' 

under p: Q A - - QA' 

under w: Q A - QA' 

E and H are defined by 

E = + (1/2)FkI Zkn l , H = - (i/2)Fkl mkiiil, 

if eo is future oriented; otherwise (cf. Ref. 1) 

E = - (1/2)F klZknl, 

The original tetrad is future-oriented, but T and w 
change the time orientation, so we have 

under T: E-E, H--H, 

underp: E--E, H-H, 

under w: E--E, H--H, QED 

We observe that Y AB can be arbitrary for T-, p-, or 
w-symmetric bifurcate horizons. If other reflections 
are admissible as symmetries, YAB must have a special 
form. A typical example is an axially symmetric bi-
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furcate horizon. y AB allows, then, the transformation 
of the axisymmetry group parameter <p - - <p. Under this 
<p-reflection, the quantities go over in (see Ref. 1) 

YAB-YAB ' Q A --QA , E-E, H--H. 

Thus, the axially symmetric bifurcate horizons are al
ways symmetric under <p-reflection times T-the so
called (t, <p)-inversion. ' This is a nontrivial result, if 
combined with the next lemma. It means that in axisym
metric stationary disks, rings, or shells around a black 
hole, there cannot exist any "convective" currents 
(cf. Ref. 4). 

Lemma 2: Let H+ U H - be a bifurcate horizon sym
metric under a map !/i. Let the electrovacuum spacetime 
(;'f}, g, F) contain H+ U H-. Then, there is a unique (g, F)
map !/i': (;JJ, g, F) - (;JJ, g, F) such that 

IjIIH'UH-=!/i· (16) 

The proof is rather trivial. Observe that the bifurcate 
horizon represents a complete characteristic initial 
data for the Einstein-Maxwell equations. 1 The develop
ment of such data is unique. 1 Thus, there is a !/i' satis
fying relation (16). There cannot be two different !/i~, <J!;, 
because !/i" 0 (:jJ2)-1 is a map preserving the hypersur
faces H' and H- and so a pseudo-orthonormal triad field 
along it. But IjI, 0 (!/i~)-l is an isometry, so it preserves 
even a pseudo-orthonormal tetrad field along H' and H-. 
Hence, !/i 1 o(!/i 2f' is the identity. 

3. STATIC C-SPACETIMES 

A stationary-or time-independent-vacuum space
time is usually defined as a spacetime which admits a 
timelike Killing field (infinitesimal isometry) in a neigh
borhood of any of its points (see, e. g., Ref. 5, p. 274). 
One often requires more: There should be a one-dimen
sional isometry group whose trajectories are every
where timelike. Such a spacetime can rather be called 
globally stationary. For example, the portion of Kerr 
spacetime outside the horizon is just stationary but not 
globally stationary. A stationary vacuum spacetime is 
called static, if the "stationarity" Killing field is hy
persurface orthogonal (Ref. 5, p.274). 

There is an analogous difference between the station
ary and static electromagnetic field within the special 
relativity. If an inertial frame exists in which the elec
tric and magnetic fields are time-independent, the field 
is called stationary. If, in addition. the magnetic field 
vanishes in such a frame, the field is static (cf. Ref. 6, 
Chap. 5). A natural generalization of these notions for 
electrovacuum spacetimes is given by 

Definition 1: The electrovacuum spacetime V}J, g, F) 
is called stationary, if it admits a time like infinitesimal 
(g, F)-map in a neighborhood of any of its points [in
finiteSimal (g, F)-map is a vector field ~ such that 

L~g=O, L~F=O, 

where L ~ is the Lie derivative with respect to ~ J. 
The electrovacuum spacetime (;JJ, g, F) is called static, 

if it satisfies the following conditions: 

(a) There is a time like infinitesimal (g, F)-map ~ in 
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a neighborhood of any point of (/11, g, F) which is hyper
surface-orthogonal. 

(b) The magnetic field vanishes in any orthonormal 
frame whose time like vector is directed along ~. 

We show the following 

Theorem: Let Vi1, g, F) be a C - spacetime with group 
C; and the corresponding pair of horizons H+, H-. Then. 
the following two statements are equivalent: 

(a) There is a neighborhood U of H+ U H- in/J1 such 
that the subspace (lj n [+(J-r) n [-(H+), g, F) of (/J1, g, F) is 
stC'.tic. r, 

(b) The C-structure (y, IJ,E,H) of H+ satisfies 

IJA=O, H=O. 

Proof (a)=*(b): The plan of the proof is the following. 
We construct a totally geodesic spacelike hyper surface 
2:: in /J1 which intersects H+ in 5. If such a hypersurface 
exists, then its unit future-directed normal vector field 
e~ is parallelly propagated along any curve in 2::1' in 
particular along any curve of 5. Define still another 
vector e; at any point of 5 by demanding that e; be unit, 
tangential to 2::, orthogonal to 5 and oriented in such a 
way that 

If = (l/ff)(eb + eD 

be tangential to H+. Such a field el is also parallelly 
propa~ated along any curve in 5, because 5 is itself a 
totally geodesic surface in IN. But then, we must have 

ll;A=O. 

Hence, for Q! chosen such that Q!.llI=l, the corre
sponding IJA is zero. As this IJA is already divergence
less, the first part of the statement (b) would follow. 

If, in addition, 2:: is orthogonal to the trajectories of 
C;. then there is no magnetic field in the space 
2:: n qf() n U. As F ii is continuous, the magnetic field 
is zero even at 5, and the second part of (b) would 
follow. 

For the construction of 2::, we need 
Lemma 3: Let the conditions of Lemma 1 in Ref. 1 

be satisfied. Then, any point p of 5 has an open normal 
neighborhood (see. e. g., Ref. 3) V such that 

(1) The set II - (H+l! H-) consists of four components, 
Cl' C 2 • C 3 • C 4 , say. defined as follows: 

C l =f+(H+, V)nf+(H-, V). 

C 2 =J-(;r,V)nJ+(H-, V). 

C 3 =[-(f(, V)n[-(H-, V), 

C 4 =f+(H" V)nI-(H-,V)· 

(2) The trajectories of C; are timelike in C2 and C4 

and space like in C land C 3' 

Proot" of the Lemma: Let ~ be a Killing vector field of 
l{. At any point q ~ 5 n V. ~i(q) = 0, and we obtain sub
sequently 

~iti =0. 

( t j t i) i jXi = 0. 
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(~i ~I )UkXixk = 2e;j ~1;kXiXk 

for any vector Xi at q. ~i ;j(q) is the matrix of a generator 
of the group in T //J1) induced by C;, so it must satisfy 

~i ;j(q)li = Kll, 

e )q)ni = - Knl, 

~i ;j(q)mj =0, (17) 

where K is a nonzero real number. [I is tangential to 
H+, ni to H- and the tetrad ll,nl,ml,ml is pseudo
orthonormal. Writing x' as 

xl=al l +bni+cmi+cm i 

we obtain 

:xi ~I;} =al l - bnl, 

hence 

(~i~i);jkXjxk = - 2K2 ab. 

Clearly, if a>O, b>O or a<O, b<O, then 
(~i~i);jkXjxk<O, if a>O, b<O or a<O, b>O, then 
(~i~Jjkxjxk > 0, proving the lemma. 

Let PES and V be a neighborhood of p with the prop
erties as in Lemma 3. V is convex (any two points of 
V can be joined by a unique geodesic segment lying in 
V). Chose an arbitrary point r E C2 and define r as the 
family of geodesics joining r with all points of V n 5 
and inextendible in V. Let us denote by 2:: the hyper
surface formed by all points which lie on the geodesics 
of r. We show that 2:: is orthogonal to ~ at any of its 
points. 

Let ui be the unit vector field at 2:: tangential to geo
desics of r and pOinting, say, from 5 to r. We have 

Ui~i=O, (18) 

because Ui~i = const along any geodesic and u i ~i = 0 at 
5. Choose an arbitrary Jacobi field 3 Vi of r along a 
geodesic c of r. Thus, Vi must satisfy 

(19) 

Also. 

Vi~i=O at 5 n c and at r. (20) 

~ is a hypersurface-orthogonal Killing field, therefore. 

(21) 

where 11 ilkl is the Levi-Civita tensor. From the last 
relation of (21), it follows that 

Tjiikl ~j~kll1IP",< euT v5 =0'. 

Writing out 11 ijkl 11jbTs and using (18), we obtain 

- 2(~i~i)~k;IUkVl =(eVj)(~i~i).kUk. (22) 

The relations (19), (18), (21), and (22) imply 

(viU.ju j = r(~j~j)-l(~i~).kukJ. (Vi~i)' 

This is an ordinary differential equation for Vi ~ i along 
c which has the integral 

Vi ~/ ~i ~i = canst. 

But ~i~i>O in C2 U C4 and Vi~i=O at rE C 2 • so 

Vi~i=O along c. 
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Now, the claim follows easily, because we can pick out 
two Jacobi fields vf and v~ along c in such a way that 
u l , v~, and v~ are linearly independent showing that ~ is 
orthogonal to 6 along c-that is to say everywhere, 
because c was arbitrary. Such a 6 must be totally 
geodesic. 

Proof (b) .... (a): If (b) holds, then Lemma 1 implies 
that the bifurcate horizon I-(U H- is invariant under T. 

According to Lemma 2, there is a (g,F)-map 
T': (jn, g, F) - (jYJ, g, F) such that 

T' IH+U W =T. 

In particular, T' is an isometry in (;)1, g). We show that 

qJ' 0 T' a qJ' = T' for any qJ' E e;, (23) 

TI(e; (p»= e;(p) for any Pd+(H-)nJ-(H+), (24) 

where e;(p) is the trajectory of the group C; through p. 
Then, the two conditions of Theorem 4 in Ref. 7 are 
satisfied and Sf must be hypersurface-orthogonal. 

Equation (23) follows immediately from Lemma 2 and 
(10). The proof of (24) is performed in two steps. As T' 

is an isometry, it must map the trajectories of e; onto 
trajectories of some one-dimensional isometry group, 
e; l' say. First, we show that e; 1 = e;, second that there 
is a fixed point of T' in any trajectory of e; . 

Let ~ be a Killing vector field of C; and ~1 the Killing 
vector field of [j, which satisfies 

~l =T')O. 
Then, 

But prescribing the value of a Killing field at a point 
together with its first covariant derivatives determines 
the Killing field in a neighborhood of the point uniquely. 
The relations (26) and (27) show, therefore, that 

at all points of;)1 which can be connected to p by an arc. 
It follows that e; 1 = e; . 

Let us consider the geodesic given by the initial data 
(p, e(p», pfC S, ei given by (12). This data is not 
changed by T', because S is pointwise invariant and (13) 
holds. As p moves though S, the corresponding geo
desics span a hypersurface 6, which must be pointwise 
invariant under T', too. In a neighborhood V of p that 
was introduced in Lemma 3, 6 is well defined and space
like; hence, 6 intersects C2 and C 4 , where the trajec
tories of g are timelike. Every such trajectory must 
intersect 6 and contain, in such a way, a fixed point of 
T' 

We have shown that e; is orthogonally transitive in 
Cz and C 4' It remains to be shown that there cannot be 
any magnetic field in a frame whose timelike vector is 
directed along ~. But this is easy, because T' invertes 
the orientation of ~ being, at the same time, a (g, F)
map. In the time-inverted frame, the magnetic field is 
just the opposite of the field in the original frame. In a 
(g,F)-mapped frame, it must be the same, so the only 
allowed value is zero. QED 

(25) ACKNOWLEDGMENT 
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Some algebraic identities among infinitesimal generators of the n -dimensional unitary group U (n) 
have been found. They satisfy a simple quadratic equation for degenerate representations. A 
generalization of Holstein-PrimakofT boson realization for the U (n) group is also given. 

1. SUMMARY OF PRINCIPAL RESULTS 

The n-dimensional unitary group U(n) is very im
portant for studies1 •2 of the SU(3) and SU(6) symmetries 
in the particle physics as well for the nuclear physics. 3 

Louck and Biedenharn4 have established various fun
damental theorems on properties of infinitesimal gen
erators of the U(n) group. However, many of their re
sults are rather involved with content being often impli
cit. The main purpose of the present note is to find 
some explicit identities among these generators by a 
simpler method. We shall see that we can express them 
into surprisingly simple forms which are suitable for 
various physical applications. Also, all vector opera
tors are expressible as a linear combination of powers 
of the generators. 

The infinitesimal generators A~ of the U(n) group 
satisfy the Lie commutation relations 5 

Hereafter, all Greek indices assume n values 

(1.1) 

1,2, ... ,n. In case we are interested in the SU(n) sub
group, we have only to replace A~ by its traceless ten
sor 

1 n 
ElL =AIL - -6 IL .0 A". 

I) l' n v >..=1 ). 

As is well known, 6 irreducible representations of the 
U(n) group are characterized by n integers satisfying 

(1.2) 

It is sometimes more convenient to use 

l" = f" + n - A, n'" A ? 1, (1. 3) 

which satisfy a strictly decreasing inequality 

(1.4) 

Then, the dimension N of the irreducible representation 
(hereafter referred to as IR) characterized by the signa
ture (1,2) is given by the Weyl's formula6 

(1.5) 

Hereafter, we restrict ourselves in the given IR speci
fied by the signature (1,2) so that n2 infinitesimal gen
erators A~ represent their NXN matrix representa
tions, though all results are also valid for more ab
stract vector operators acting on the IR space of the 
signature (1.2). Since any representation of the U(n) 
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group is known to be equivalent to a unitary one, we can 
hereafter impose an additional hermiticity condition 

(1.6) 

without loss of generality. 

Now, NXN matrices T~ (/J., v=1,2, •.• ,n) will be 
called a vector operator, if they satisfy 

(1. 7) 

Comparing (1.7) to (1.1), we see that A ~ itself is a 
vector operator. Although we can define4

•
7 more general 

tensor operators, they are beyond the scope of the 
present note. Suppose that we have two vector operators 
S~ and T~. Then, we can define a product vector opera
torS R~ by 

(1.8) 

We may easily verify that R~ satisfies the required 
commutation relation (1.7) of vector operator. Here
after, we often suppress tensor indices /J. and IJ and 
write (1.8) simply as 

R=ST. (1. 8') 

We notice that a product defined in this way is asso
ciative, i. e., we have 

(ST)U=S(TU) (1. 9) 

for products of three vector operators S~, T~, and U~. 
Moreover, the unit vector operator [is a NXN matrix 

where E is the NXN identity matrix. 

We can define the jth power Aj by the recursion 
relation 

A O =[, Aj+l=AAj. 

These are vector operators. For example, 

(1.10) 

(1.11) 

As we shall prove at the end of this paper that any vec
tor operator is expressible as a linear combination of 
[,A, ... ,An-l. Hence, our vector product is automatical
ly Abelian, i. e., we have 

ST=TS (1.12) 

for any two vector operators, since (1.12) is obvious 
for any linear combinations of AJ. 
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Next, for any vector operator T~, we can assign a 
scalar (T) by the formula 

n 

6 T~=(T)E. 
hI 

(1.13) 

This is so because (1.7) leads to 
n 

[A~, :0 TU =0, 
~=1 

and hence by the Schur's lemma ~~=IT~ is a multiple of 
the unit matrix E. Especially, we set 

M J =(AJ), j=O, 1, 2, .•. , (1.14) 

which are eigenvalues of generalized Casimir operators 
(or Gel'fand invariants) of the U(n) group. Its explicit 
value has been computed by Louck and Biedenharn4 to 
be 

(1.15) 

where the product on vomits the singular point v = A. 
We shall also give an alternative derivation of this 
formula in the next section. We may remark4 that M j is 
a symmetric polynomial of ll' l2' ... , In of the degree j. 
Therefore, n constants M J (j = 1 , 2,3, ... ,n) can be also 
used to characterize the IR instead of the original n 
integers fl .!2' ... .!n . 

Louck and Biedenharn also proved4 that we can ex
press An in terms of a linear combination of 
I, A, ... ,A n-1. For the special case n == 3, this fact is 
well known and basic to derive the SU(3) mass 
formula. 5 We shall show that we can express this linear 
dependence in a very simple form of 

Here, we have set for Simplicity 

A(l) ==A -1I, 

and the product in (1.16) is meant to be the vector 
product defined as in (1.8') and (1.9). 

(1.16) 

(1.17) 

Second, it may happen that two values of flL and fv for 
fJ. '" v may coincide. In such a case, we can have a 
stronger identity. To be more precise, let us suppose 
that we have 

fk > fk+1 = fk+2 == ••• == f k+P > f k+P+1' 

We shall call all factors A(lj) with k + 1"" j < k + P 
redundant factors. Then, our prescription is to omit all 
redundant factors in (1.16). As an illustration, let us 
consider a specific case n = 8 with 

(1.18) 

Now, all factors A (ll)' A (l2)' A (l4)' and A (l7) are re
dundant, and we have a stronger identity 

(1.19) 

instead of (1.16) with n = 8. Of course, the validity of 
(1.19) implies that of (1.16). We shall prove that equa
tions of the type (1.19) are the minimal polynomial 
equations among Ai. 

Let us call an IR degenerate if we have an integer j 
such that 

(1. 20) 
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Then, the above rule implies the validity of 

(A -li)(A -li) =0 

or equivalently of 
n 

6 A~i = (lJ + In)A~ -ljl/j~E. 
Ad 

(1.21) 

(1.22) 

Conversely, we can prove that (1.21) or (1.22) is also 
sufficient for the representation to be degenerate. This 
fact is previously known8

,9 for the special case n = 3 
and answers positively a conjecture stated elsewhere.lO 

Returning to the general case, let us define a 
Hermitian conjugate vector operator S~ of S~ by 

(1. 23) 

It is easy to verify the fact that S is indeed a vector 
operator, because of (1. 7) and (1. 6). Next, we can in
troduce an inner product (S, T) for two vector operators 
by 

(S, T)=(ST). (1.24) 

Then, it is obvious that 

(S,S) ~ 0 (1. 25) 

and, moreover, (S,S)=O if and only if we have S~==O 
identically. Therefore, with this inner product, all 
vector operators form a finite-dimensional Hilbert 
space which we denote by H. Similarly, a linear sub
space of H spanned by all linear combinations of Aj (j 
= 0, 1 ,2, ..• ) form the subHilbert space 1-10, Actually, 
we can prove that 1-1 =1-10' i. e., all vector operators are 
linear combinations of Ai. Also, (1.16) or (1.19) as
sures us that the dimension of 1-1 is at most n. More 
precisely, it is equal to the number of nonredundant 
values of f". We may regard any vector operator S as a 
linear transformation in fI by assigning a mapping of a 
vector operator T into ST. Then, all vector operators 
of the U(n) group form a commutative Hilbert algebra 
with dimension less than or equal to n. We can rephrase 
our identity (1.16) or (1.19) as follows. The linear 
operator A in our Hilbert space can have exactly n in
teger eigenvalues, l" (fJ. == 1,2, ... ,n) if all f" are dis
tinct. However, in case that we have f" = fv for some 
pair, fJ. and v, with J1 '" v, then A can assume only 
those values of l" corresponding to nonredundant values 
of f". 

From (1.24), we have 

(1. 26) 

since the hermiticity condition (1.6) implies A =A. 
Therefore, if cj (j = 0,1,2, •.• ) are arbitrary complex 
numbers, then (1.26) and (1.25) lead to 

Especially, this gives 

M2J ~ 0, M2jM2k ~ (Mj +k)2, 

det(Ai ,Ak) = detMi +k ~ O. 

Now, a linear independence among p operators I, 

(1.27) 

(1. 28) 

A, ... ,AP-1 is equivalent to have nonzero Gram deter
minant detmik",O for pxp matrix, mjk=(Ai,Ak)=Mj +k, 
j, k = 0, 1,2, ... ,p - 1. This quantity has been studied in 
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great detail by Louck and Biedenharn.4 Their result is 
indeed that the maximal number of the linearly indepen
dent operators among Aj is precisely equal to the num
ber of nonredundant f". We shall prove the same fact in 
a different way. 

We have noted that any degenerate representation 
leads to the validity of (1.22). One particularly inter
esting example is that of the completely symmetric 
IR with signature f2 = f3=' •• = fn = O. After setting f1 == f, 
then (1.22) is rewritten as 

t A~ A ~ = {f + n - 1)A ~ . 
~d 

(1. 29) 

An interesting fact is that for completely symmetric 
case, we can have the following additional relations, 11 

(1.30) 

as we shall show in the next section. If we note M1 = f, 
then (1.30) immediately gives (1.29) by setting J.l=f3 and 
summing over J.l. Other identities of this kind can be 
found in Ref. 10. One simple wayll proving the 
validity of (1.30) is to utilize n creation (a:) and annihi
lation (a,,) boson operators satisfying the standard 
canonical commutation relations: 

(1. 31) 
[a", aJ = [a:, a~J =0. 

Then, if we set 

(1. 32) 

it is easy to see that A~ satisfy the U(n) Lie algebra 
(1.1) as well as the special relations (1.29) and (1.30). 
Actually, these operators are defined in a dense subset 
of the whole boson Fock space which will reduce into a 
direct sum of finite dimensional IR's of the U(n) group. 
The subspace consisting exactly of f bosons gives the 
desired completely symmetric IR. In this construction, 
we have utilized all of n boson operators. However, we 
could find a slightly more economical realization in 
which we use only n - 1 bosons as follows. Let us set 

(1.33 ) 

For any positive integer f, this operator has a well
defined meaning in a boson Fock subspace satisfying 

n-1 
f?- :0 a~a~?- O. 

~=1 

When we define 

A~=~a", J.l*n, v*n 

A~=a~8{f), J.l=n, v*n, 

A~= q{f)a", , J,l'tn, v=n, 

A~=8{f)q{f), J.l=n, v=n, 

(1.34) 

(1. 35) 

then we can prove that these n2 operators A~ obey (1.1), 
(1.29), and (1.30), if we notice 

530 

e{f)a; = a;e{f-l), 

9{f)a", = a", q{f+l), 

e{f + 1)e{f + 1) - e{f)e{f) = 1. 
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Comparing (1. 35) with (1. 32), we see that the former 
can be obtainable from the latter by a formal 
substitution 

an - e{f), a~ - q{f) 

of an and a~ by the same Hermitian operator e{f). Of 
course, we have to be careful of the order of the opera
tors involved in this substitution. At any rate, this fact 
justifies the usual boson approximation used for treat
ment of dilute boson gas problems, 12 if we take care of 
the order of operators, 

The speCial case n = 2 in (1. 35) is especially inter
esting. If we set 

J 1 +iJ2=A~, J1 -iJ2=A~, 

J3=HA~-A~), 

then Ju J 2 and J 3 are infinitesimal generators of the 
three-dimensional orthogonal group 0(3), or more 
precisely of the S U(2). Then, (1. 35) becomes 

J
1 
+iJ2=a+{f-a+a)l/2, 

J 1 - iJ2 = {f- a+a)1/2a, 

J 3 = a+a - tf, 

(1. 36) 

where we have set a1 == a. This is precisely the formula 
of Holstein and Primakoff, 13 and we may regard (1. 35) 
as its generalization. We can easily verify an identity 

J2 = Jf. + ~ + ~ = ~ f(t f + 1) 

so that f/2 corresponds to the total angular momentum. 
The Holstein-Primakoff realization (1, 36) has been 
used by Tanabe and Sugawara-Tanabe14 for study of 
some deformed rotating nuclei. Also, it has been 
utilized by Pang, Klein, and Dreizler15 for an analysis 
of an exactly solvable nuclear model. For the special 
case n = 3, Li, Klein, and Dreizler16 previously dis
covered an asymptotic form of (1.35) for large values 
of f. Also, the special conditions (1.29) and (1.30) for 
completely symmetric representations have been suc
cessfully applied9 to simplify electromagnetic mass 
formulas of the baryon decuplet in the SU(3) symmetry. 
Also, their validity explains the reason why the SU(3) 
mass formula for the decuplet states becomes so sim
ple. 1 Further applications of the present identities will 
be given elsewhere. 

2. DERIVATION OF IDENTITIES 

In this section we shall prove various statements 
made in the previous section. Before going into details, 
let us briefly recapitulate some basic facts of the 
representation theory of the U(n) group. Setting 

(2.1) 

then the n operators H", form a maximal Abelian sub
algebra of our Lie ring. Consider a simultaneous eigen
vector X satisfying 

H"X =h",X. 

Then, the n eigenvalues h", (Il= 1,2, ... ,n) are called 
a weight. We introduce a partial ordering relation for 
two weights h", and k '" as follows. If we have an integer 
j, such that 
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hl=kl1 ~=k2"'" hJ=kJ , 

but hJ+I > kJ+I' then we say that the weight h" is higher 
than k". Any irreducible representation is specified by 
its highest weight. In particular, the irreducible repre
sentation with signature (1.2) is characterized by the 
highest weight vector cf> satisfying 

H" cf> = I" ¢, /1 = 1 ,2, ... ,n. (2.2) 

Hereafter, ¢ always refers to the highest weight state 
with the highest weight I". Then, the standard argument 
immediately leads to 

(2.3) 

However, if we have a special situation Iu = Iv for some 
/1 and lJ with /1"* lJ, then we find an additional condition 

(2.4) 

including the case /1 < lJ. To prove this last statement, 
we notice that (1. I) and (2.2) give us 

[A~,A:J¢= (A~ -A~)¢ = (tv - lu)¢' 

Suppose that we have /1 < lJ since otherwise (2.4) is valid 
always in view of (2.2) and (2.3). If we have lu =Iv' the 
above relation leads to 

A~A~¢=O, 

where we used the fact A ~ ¢ = 0 because we assumed lJ 
> /1. Using the hermiticity condition (1. 6), we can re
write this as 

(A~)+A~¢=O. 

Since the matrix (A ~)+A ~ multiplying ¢ is nonnegative, 
this is possible only if we have A~¢ = 0, and this proves 
(2.4). 

Now, we shall proceed to prove validities of our main 
results, identity (1.16) and the redundant factor rule 
illustrated by (1.19). For this purpose, let us introduce 
n new vector operators D~ (QI), (n? QI ? 1) by 

n 
DU(QI)=[IT A(l )]". 

v i=G: J v 

For a fixed value of QI, D~(QI) is obviously a vector 
operator, L e., it satisfies 

[Ar, D~{QI)] =O:D~(QI) - orD~(QI). 

Now, we shall prove the following lemma. 

Lemma 1: We have 

D~(QI)¢=O for J1?QI and lJ=1,2, •.• ,n. 

The proof is by induction on decreasing values of QI . 
First, for the highest possible value QI =n, we see 

D~(n)= [A(ln)]~=A~ -lno~E 

so that 

D':,(n)¢ =A~¢ - In6':,cf>. 

(2.5) 

(2.6) 

(2.7) 

However, /1? QI implies /1 =n in this case. Therefore, 
~(n)cf>=O is the result of (2.2) and (2.3), and the 
lemma is valid for QI =n. Next, suppose that the lemma 
holds for QI =j3+1, Le., we have 

(2.8) 
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Then, we proceed to show the validity of 

D~«(3)cf>=O for/1?j3. 

First, we notice 

D~(j3) = [D({3 + I)A(ls)J~ = [A (ls)D(/3 + 1)]~ 

(2.9) 

(2 0 10) 

from the Abelian nature of the product involving Ai. For 
J1 ? (3 + 1, we use the second form of (2.10) to find 

D~(j3)¢ = t [A(ls)]~ Di ({3 + l)¢ = 0 
~:l 

because of the induction hypothesis (2.8). Hence, we 
have only to prove (2.9) for the case /1 = j3. Using now 
the first form of (2.10), we compute 

n 

D~({3)¢= ~ D~({3+ I)[A~-lsO~E]¢. 
hI 

Because of (2.2), (2.3), and (2.6), we can rewrite this 
as 

The first and second terms in the above expression are 
zero in view of the induction hypothesis (2.8) since the 
summation over A runs only for A?c j3 + 1. Therefore, 
we finally find 

D~(J3)¢ = (n - /3 + Is -ls)D~(j3 + 1)¢, 

which is identically zero if we note Eq. (1.3), i. e. , 
ls = Is + n - j3. This completes the proof of (2.9) so that, 
by induction, we have proved Lemma 1. 

By setting QI = 1, the lemma implies 

D~(I)¢=O 

for all values of J1 and lJ since the condition J1? 1 is 
trivially satisfied. Then, as we shall see shortly, this 
gives 

D~(I)=O 

identically, which proves the validity of (1. 16). Now, in 
the above argument, we utilize the following lemma. 

Lemma 2: If a vector operator T~ satisfies 

T~¢=O 

for aU values of /1 and lJ, then T~ is identically zero. 

This can be shown as follows. Multiplying A'8 on this 
equation and noting (1.7), this gives 

T~A~¢=O. 

Repeating the same procedure, we find 

T~F(A)¢=O, 

where F(A) is an arbitrary polynomial of generators 
A~. Since we are dealing with an irreducible represen
tation, any state is cyclic, so that all states of the form 
F(A)¢ generate the whole irreducible representation 
space. Hence, T':, = 0 follows immediately. 

So far, in our derivation of the Lemma 1, we ul;ed 
only the basic condition (2.3). However, if we have Iu 
= Iv for some values of J1 and lJ with J1"* lJ, then we can 
utilize the additional condition (2.4) so that we can make 
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a stronger statement. In that case, we can simply omit 
all redundant factors A(l,) in D(a) as has been explained 
in Sec. 1. To be more precise, let us suppose that we 
have 

(2.11) 

Then, we omit all redundant AU,) (y + 1 !S /1"; J3 -1) in 
the definition of D(y + 1). This implies that instead of 
(2.10), we now define i5(y+l) by 

i5~ (y + 1) = [A (la)i5(J3 + 1)]~ = [D(J3 + l)A (la)]~' (2012) 

Also, suppose that we have 

IT >fT+1 = I,+2 = . 0 • = In 

at the extreme right end, and set 

15~(T + 1) = [A (In)] ~ = A~ - V)~E. 

(2013) 

(2.14) 

Now, (2.12) and (2.14) define 15~(a) recursively and we 
can still prove the validity of the Lemma 1 for this new 
i5~«()1 +1), if we use (2.4) in addition to (2.3). Indeed, 
we can repeat essentially the same argument, word by 
word. For example, we have, to begin with 

i5~(T+l)¢=O for n?- Jl?:- 7"+1 

from (2.4) and (2.14) if we_notice I" =In' Next, suppose 
that we have (2.8) for D-D. Then, we can easily prove 
the validity of 

i5~(y+l)¢=O for Jl?- y+1, 

which now replaces (2.9). This implies that the same 
induction method proceeds exactly in the same way for 
15(a). Therefore, the identities such as (1.19) and 
(1. 21) are valid. Especially, this shows that (1. 22) is a 
necessary condition for the degenerate representation. 
Actually, we can prove the following stronger converse 
statement. Suppose that we have 

(2015) 

for some complex numbers band c. Then, we can show 
that the IR is degenerate and that one of band c must 
coincide with In' Moreover, unless the IR is one-dimen
sional with I1 = f2 =. o. = fn' we find an integer j such 
that.t~=f2=··· =fj >Ij+1='" =In' with b=lj and c=ln· 
Note that, for the one-dimensional case, only one of Ii 
and c must be equal to 1n but the other can assume any 
complex number. To prove this statement, let z be a 
complex variable and consider a polynomial of z, given 
by 

g(z) = b1 (z - l~) . 
Using the standard algorithm, we can find another poly
nomial h(z) and constants do and d1 such that 

g(z) = (z - b)(z - c)h(z) + doz + d1 • 

Since the vector product involving AJ is Abelian, we can 
replace z and 1 by NxN matrices A and I in the above. 
For any irreducible representation, A satisfies (1.16), 
so that we must have 

if the IR satisfies (2.15). This implies that the repre
sentation is one-dimensional if do*O. In that case, we 
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repeat essentially the same argument to show that both 
g(z) and (z - b)(z - c) must be divisible by doz + d1 • In 
this way, we establish the first part of our assertion. 
On the other hand, if do = 0, we must have d1 = ° also, 
and (z - b)(z - c) must divide the polynomial g(z). There
fore, band c must coincide with l" and lv for some 
values of /1 and v with /1 * v. However, as we shall 
prove shortly, identities such as (1.19) or (1.21) are 
minimal so that the IR under consideration must be 
necessarily degenerate with 1" = lJ and Iv = In' 

As we mentioned in Sec. I, we can obtain a stronger 
relation (1.30) for the completely symmetric IR. This 
is due to the following fact. Because of (2.4), we have 
now 

A~¢=O for /1*1. 

Then, we can easily verify 

(A~8 -A~A~ - o~A~ + O~A8)CP =0 

if we use (1.1). Now, the same reasoning which led to 
Lemma 2 is applicable to prove the validity of (1. 30). 

We have assigned a scalar (T) for any vector opera
tor T~. However, we can make a stronger statement by 
assigning n scalars a~ (T) (x = 1,2, ... ,n) by 

(2.16) 

The reason for the validity of (2.16) is due to the fact 
that the state T~CP, for a fixed value of X, has exactly 
the same highest weight I", as we may verify easily. 
Therefore, (T) is given by 

<T)=t(J~(T). (2.17) 
).=1 

Also, we can show the validity of 

T~cp=(j~a,,(T)¢ for /1?- V. (2.18) 

Moreover, if we have I" = Iv for some values of /1 and 
v, then (2.18) is also applicable for such pairs of /1 and 
v even though we may have Jl < v. This is a simple con
sequence of (2.3) and (2.4) since we have 

T~CP = [A~, T"...]CP ={a" (T) - T~} A~CP = 0 

in view of (2.3) or (2.4) for /1*v. 

Lemma 3: Suppose that T~ is a vector operator, then 
we have first 

AT=TA, i.e., (AT)~=(TA)~ 

and second 

where K"v (/1, v= 1, 2, ..• ,n) is defined by 

K"v=O, /1 > v, 

K""=l,,, f.J.=v, 

K"v=-I, f.l<v. 

(2.19) 

(2.20) 

(2.21) 

In the matrix form, K is an nXn matrix of the form 
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First, Eq. (2.19) can be proven by computing 

" [ ~ (AA)~, T~] == 2(A T)~ - 2(TA)~ 
hI 

and noting the fact that the Casimir operator b~1 (AA)~ 
is a multiple of the unit matrix E. 

Next, we compute 

(AT)I'C/> = tA~ T).C/>== t AA TUC/> 
IJ. ),=1 j£ :\:'IL u. A. 

where we used (2.18). However, the second term is 

since the first term is zero because of (2.3). These are 
rewritten as (2.20) with (2.21). 

NOw, replacing the vector operator T by AT in (2.20) 
with repeated uses of (2.20), we obtain 

(2.22) 

where K' is the jth power of the nXn matrix K (not the 
NXN matrix! I). Especially, if we set T=[ in (2.22) and 
sum over /J., then we compute 

We can diagonalize the nXn matrix K easily as 

(R-l KR) uv = lJ) uv' 

(2.23) 

(2.24) 

where the explicit form of the diagonalizing matrix R 
is given by 

(2.25) 

(2.26) 

In (2.25) and (2.26), we interpret the product such as 
nJ:~ for v-I < /J. and n~u+l for the case /J. + 1 > v to be 
one. Also, in (2.26), the product on k omits the singular 
pOint k== /J.. From (2.23), (2.24), (2.25), and (2.26), 
we can derive the formula (1.15) if we note identities 

(2.27) 

Again in (2.27), the product on k omits the singular 
pOint k== /J.. 
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We are now in a position to prove that the identities 
derived in the present section is the minimal one. Sup
pose that j(z) is a polynomial of a complex variable z 

j(z) = t cJzi . 
j=O 

Then we can define a vector operator f(A) by 

From (2.22) and (2.24), we compute 

(2.28) 

Suppose that we have f(A) == 0 identically. Then, this 
gives (iu[f(A)] ==0. By setting T=[ in (2.28) and noting 
(2.25) and (2.27), this leads to 

for all J.l == 1,2, ... ,n. First let us set /J. ==n, which 
gives j(ln) =0. Next, we choose J.l=n-1 and findj(ln_l) 
==0 unless l,,_I=l"+l, i.e., f"_I=f". Continuing, we 
discover fell) = 0 always unless we have h == h+l' There
fore, we have j(lu) == 0 for nonredundant values of fu' 
This proves that (1.16) is the minimal polynomial if all 
flL are distinct. Similarly, for the special case (1.18), 
Eq. (1.19) is the minimal polynomial for which A 
satisfies. 

Finally, we shall show that any vector operator must 
be a linear combination of Ai. To this end, we prove the 
following lemma. 

Lemma 4: Let T~ be a vector operator. Then the 
following three statements are equivalent: 

(i) T~ == 0 identically, 

(ii) (i1L(T)=O for all J.l=1,2, ... ,n, 
(iii) (AiT) ==0 for all j=0,1,2,· ... 

Obviously (i) leads to (ii) trivially, while (iii) follows 
from (ii) because of (2.22) and (2.17). Conversely, 
suppose that (iii) is valid. Then, this implies that we 
have (j(A)T) =0 for arbitrary polynomialj(z). Hence, 
by summing (2.28) over /J. = 1,2, ... ,n and noting (2.27), 
this gives 

for an arbitrary polynomial fez). We can always find a 
polynomial j(z) such that j(l) == 0 for all A*" J.l but j(Z) == 1 
for any given value of /1. Then, it is easy to check that 
this leads to (ii). Now, we come to the most difficult 
part that (ii) implies (i). First of all, we note that (ii) 
leads immediately to 

oJf(A)TJ==O, (j(A)T)==O (2.29) 

for an arbitrary polynomial fez) if we use (2.28). Then, 
we can prove that T~ satisfies 

(2.30) 

where we have for simplicity omitted the presence of 
the unit matrix [ in front of lu's. Note that in compari-
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son to (1.16) this simply replaces the last factor A 
- In by T. Moreover, if we have fu = fv for some pair /1 
and v with /1 * v, we can omit all those redundant factors 
as in (1.19). 

To prove (2.30), we shall define vector operators 
T~(Q') by 

T(n)=T, o=n, 

T(Q') = (A -la)(A -l,,_I)' •• (A - In_JT, Q' < n. 

Then, we can prove by induction on decreasing values 
of 0, 

T~(Q')cp=O, for /1?!0. 

The proof is exactly the same as in the Lemma 1, if we 
note (2 .1S), (2.19), and (2029). Then, setting 0 = 1, we 
find (2.30) because of the Lemma 2. For the case that 
we have f" =fv' we can omit redundant factors by the 
same reasoning. 

Next, we shall show that T also satisfies another 
identity 

(A - 1 - (2) (A - 1 - l3) • •• (A - 1 - In) T = O. (2.31) 

Again, we can omit all redundant factors in (2.31), if 
two of fu and fv coincide. The proof of (2.31) is slightly 
more complicated. To this end, we define a new vector 
product SoT for two vector operators 5':, and T':, by 

(5oT)~=t5~T~. (2.32) 
A=1 

Then setting 

T(l) = T, 0' = 1, 

T(o) = (A + 1 -f2) 0 (A + 2 - f3) 0" 0 0 (A + 0' -1 - f2) 0 T, 

0> 1, (2.33) 

we can now prove by induction on increasing values of 0 

T~(Q') cp=O for o?! v. (2.34) 

Setting Ci == n and using the Lemma 2, this gives 

T':,(n)=O. (2.35) 

Now, we can rewrite the product (2.32) in terms of the 
old product (LS). By noting (2.29), then this leads to 
(2.31). Another way of proving (2.35) is to use 

J", = - f n-", +1> 'i", =J" +n - /1. 
(2.36) 

Then, 6 A~ is the generator of the complex conjugate 
representation with signature (fu.h, ... ,7,.). Hence, we 
must have 

(A -Z)(A - 4)'" <A -In_r>T=O 

in analogy to (2.30). This is noting but the relation 
(2.35). 

Now, since T satisfies both Eqs. (2.30) and (2.31), 
there must be a minimal polynomial f(A) satisfying 

f(A)T =0. 

Then, using the standard algorithm, we conclude that 
f(z) must divide two polynomials 

g1 (z) = (z -l)(z -l2)'" (z -In_)' 
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g2(z) = (z - 1 - l2Hz - 1 -l3)' •• (z - 1 - In)' 

However, g1 (z) and g2(Z) have no common factor, noting 
that lj - lk can never assume values ± 1. This is because 
in reality we can omit all redundant factors in both g1 (z) 
and g2(Z) if we have f", = fv' Therefore, we conclude that 
f(z) must be a constant and we have T':, == 0 identically. 
This proves (i). 

Our Lemma 4 implies that the subspace of the Hilbert 
space H orthogonal to 'H 0 is identically null. Hence, we 
find H =H 0 as we stated in Sec. 1. In other words, all 
vector operators are linear combinations of Ai. This 
fact is important in deriving the 5U(3) mass formula. 5 

We remark that by means of the new vector product, 
we can derive an identity 

(A + n - 1 - l1) 0 (A + n - 1 - l2) 0 ••• 0 (A + n - 1 - In) = O. 

(2.37) 

This must coincide with (1.16) if we convert the new 
product into the old one. We can explicitly verify this 
fact for the case n=3. Of course, our formulas (1.16) 
and (2.37) agree with the result of the Ref. 5 for the 
special case n=3. 

The present method may be applicable for more gen
eral Lie algebras. We may note that an analog of (1.29) 
exists also for the n-dimensional orthogonal group O(n) 
where its generators J",v satisfy 

J"v=- Jv",' 

[J",v,J"aJ = 0v"J"a - 0vaJ",Oi + ° ""Jav - o",aJ "'v' 

For the spinor representation of the O(n) group, we can 
easily verify a special relation 

(2.39) 

As a matter of fact, this relation is related to various 
identities17 found for the nuclear boson expansion method 
where the relevant Lie algebra is B n , corresponding to 
the 0(2n + 1) group. Also some interesting identities 
among O(n) generators are noticed by several 
authors. 18 
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The problem of electromagnetic wave propagation in a randomly perturbed waveguide is analyzed in 
the forward scattering approximation. Both propagating and evanescent modes are taken into account. 
Coupled power equations are derived in the asymptotic limit of long guide length and small 
perturbations. More generally, a diffusion equation is derived which governs the evolution of 
functions of the process in this same asymptotic limit. The resulting dynamical equations characterize 
the evolution of the propagating modes; the evanescent modes affect this propagation through their 
modification of the parameters in these equations. However, in the presence of evanescent modes, the 
forward scattering approximation leads to nonconservative coupled power equations; energy is 
apparently exchanged with the neglected backward waves through their coupling to the evanescent 
modes. 

INTRODUCTION 

We shall conSider the propagation of electromagnetic 
waves in a randomly perturbed cylindrical metallic 
waveguide. Such perturbations, arise from geometric 
imperfections and variations in the constitutive param
eters of the material filling the waveguide and are typi
cally small. However, the distances over which propa
gation takes place are usually long. Therefore, we shall 
analyze the problem in the asymptotic limit of small 
random perturbations and long waveguides. A number of 
authors, including those cited in Refs. 1-17, have 
studied electromagnetic propagation problems in this 
contexL For the waveguide problem, interest has cen
tered mainly upon obtaining statistical information about 
the flow of energy in the guide and upon the derivation of 
coupled power equations for the 'expected values of the 
modal powers. 

The electromagnetic fields in a cylindrical metallic 
guide can be represented by a countably infinite super
position of mOdes. At any given frequency of operation, 
a finite number of these modes will propagate along the 
guide while the remainder will be evanescent modes, 
exponentially damped in the direction of propagationo 
The entire collection of modes, propagating and evanes
cent, will in general be excited at an obstacle, imper
fection, or any other deviation of the guide from its 
homogeneous cylindrical configurationo 

Most studies of propagation in the randomly perturbed 
guide have dealt with a mathematical model which ig
nores the evanescent modeso Clearly, such modes can
not transport energy. Nevertheless, the small random 
imperfections couple the propagating modes to the eva
nescent modes and this modal interaction is sustained 
over long guide lengthso Consequently, although the non
propagating modes do not in themselves transport en
ergy, we shall show that they make their presence felt 
by modifying the parameters governing the evolution of 
the propagating modal powerso 

In Sec. I we adapt the stochastic perturbation theory 
of Papanicolaou and Keller5 to the problem being con
sidered and derive coupled power equations. These equa
tions form a llnear constant coefficient, first order sys
tem of ordinary differential equations. In the absence of 
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evanescent modes, they reduce to the equations derived 
by Papanicolaou. 6 In Sec. II we apply these coupled pow
er equations to an example studied by Matveev'8 and re
cover in a mean square sense a relation which he has 
shown to hold almost surely. In Sec. III we further use 
the perturbation theory of Ref 0 5 to derive a partial dif
ferential equation of diffusion type which is satisfied by 
expectations of functions of the process. In an appendix 
we use the local uniform modes introduced by Sny
der'7 ,19,20 to derive the coupled equations for the modal 
expansion coefficients which are used as our basic math
ematical model. 

Throughout this work we use the forward scattering 
approximation, wherein the transfer of energy to back
ward travelling waves is neglected. Such an approxima
tion has been used by a number of authors4,fi,ll,13; it sig
nificantly Simplifies the mathematical model since it 
replaces a two-point boundary value problem with a 
more tractable initial value problem. It is a reasonably 
good approximation at high frequencies, although its pre
cise impact remains to be assessed, The need for an 
ultimate treatment of the full boundary value problem is 
pointed out in Seco I by the fact that when evanescent 
modes are included, the forward scattering approxima
tion ceases to be conservative. Energy can be either 
gained or lost by the propagating modes, presumably to 
the neglected backward-travelling waves, through their 
coupling to the evanescent modes. 

The mathematics will be developed in a formal man
ner. This approach leads one quickly to the important 
results and, within the context of the forward scattering 
approximation, embodies the relevant physics. Previ
ous applications of the formalism have been rigorously 
justified. 21,22 Moreover, G. C. Papanicolaou and the 
author23 have developed a stochastic limit theorem which 
(at least for the case of a finite number of evanescent 
modes) rigorously justifies the application of the formal
ism to the problem considered in this paper. 

I. DERIVATION OF COUPLED POWER EQUATIONS 

Let us consider the infinite-dimensional stochastic 
initial value problem: 

d~ X(z, w, E):= [- iDp - De + EB(z, w)ix(z, w, .:j, 
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X(O, w, E) =Xo, 

where 

The symbol fl'> denotes a direct sum of matrices while 

(1) 

(2) 

the subscripts Nand 00 indicate square matrices which 
are Nx N and infinite dimensional, respectively. We as
sume that wE: n, where (n,J, P) denotes an underlying 
probability space, and that E is a small real parameter. 
B(z, w) is a square infinite matrix-valued stochastic 
process which couples the components of X, The gen
erally complex-valued elements of B will be denoted by 
bij(z, w). The process B(z, w) will be assumed to be cen
tered and wide -sense stationary, L e, , 

(bij(z, w) =0, 

(bjj(z + s, w)bkZ(z, w);; Pij, kZ(S), 

(bt/z + s, w)btz(z, w);;Pij,kZ(S), 

(3) 

where the brackets denote expected or mean values and 
the star denotes complex conjugation. The initial condi
tion Xo in (1) is a nonrandom constant vector. 

In an appendix, we shall derive coupled equations for 
the modal expansion coefficients of the electromagnetic 
waves propagating in a (nominally) cylindrical metallic 
waveguide. We assume that both the geometry and the 
constitutive parameters of the medium filling the guide 
are subjected to small random perturbations. Thus, the 
modal expansion coefficients are not constants but rather 
random functions of distance along the guide. We shall 
show that (1) models a system of N propagating modes, 
with propagation constants ~l> ••• , ~N' and a countably 
infinite set of nonpropagating or evanescent modes in 
the forward-scattering approximation, wherein the back
ward travelling waves are neglected. This model also 
assumes a harmonic time dependence exp(i27T!t) which 
is not shown. 

In the context of this model, the quantities 
Ixj(z, w, E) 12, i = 1, "', N (where Xi is the ith component 
of X), represent the power content of the N propagating 
modes at location z along the guide. In this section, we 
shall use a modification of the stochastic perturbation 
method of Papanicolaou and Keller5 to derive a system 
of Nequations for (lx j (Z,W,E)1 2

), i=1, ''',N, which 
are valid in an appropriate asymptotic limit as E goes to 
zero and z goes to infinity. This system of equations 
generalizes those derived by Papanicolaou6 since it ac
counts for the presence of the evanescent modes. We 
obtain, on the one hand, a drastic reduction in the di
menSionality of the system from the denumerably infi
nite coupled mode description to the N-dimensional 
coupled power description. On the other hand, the non
propagating modes make their presence felt by mOdify
ing the coefficients governing the propagation and inter
action of the N propagating modal powers, 

We begin by defining a change of dependent variable 
which removes the rapid phase variations. Let 

Y(z) ;;exp(iDpz)X(z), 
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(4) 

where we no longer explicitly indicate dependence upon 
all the variables, Then 

~ Y(z)=-DeY(Z)HC(Z,w)Y(z), Y(O)=Xo, (5) 

where 

C(z, w);; exp(iDpz)B(z, w) exp(- iDpz). (6) 

We now define the Kronecker product 

U(z);; Y(z)0 yt(z), (7) 

where t denotes complex conjugate transpose. From (5) 
and (6) 

..!!:..U=-DU-UD H(CU+UC t ), U(0)=Xo0X6. (8) dz e e 

We shall now develop the two-timing perturbation analy
sis of initial value problem (8). Observe that u jj = 1 X ;12, 
i = 1,2, .... We first define a "slow variable" ~; since 
the process C(z, w) is centered, the appropriate chOice 
is ~;; E2Z, Next we shall assume that U;; U(z, ~,E) so that 
differential equation (8) may be written as 

o 0 
-U+E2-U=-D U-UDe+E(CU+UCt). az 0 ~ e 

Let 
~ 

U = U(z,~, E)=6 EkUk(Z, ~L 
k=O 

Substituting (10) into (9) and equating coefficients of 
powers of E, we obtain 

O~ Uk + aa~ Uk-2 = - DeUk - UkDe + CUk_1 + Uk-1 C
t

, 

(9) 

(10) 

k=0,1,2, "', (11) 

Uo(0,0)=Xo0.Y6; Uk(O,O)=O, k=1,2, '0 •• 

The stochastic perturbation theory that will be applied 
essentially involves the following two assumptions: 

(i) The "fast" and "slow" variables, i 0 e" z and ~ re
spectively, will be treated as two independent distance 
variables, Such an assumption underlies all multiscale 
procedures, 

(ii) Stochastic processes evolving at the "fast" spatial 
rate will be assumed to be statistically independent of 
those evolving at the "slow" rate, In other words, ran
dom functions of z alone will be assumed statistically 
independent of functions of ~ along, 

This second assumption can be justified for a rather 
general class of stochastic processes known as strongly 
mixing processes, 21-23 Such processes are character
ized, roughly speaking, by the fact that random vari
ables formed by sampling the process become asymp
totically independent as the distance between sampling 
pOints becomes infinite 0 

Equations (11) can be recast into the following system 
of integral equations: 

Uk(z, 0 =exp( -Dez)Uk(O, ~) exp(-Dez) +1' exp[ -De(z - s)] 
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x ( C(s) Uk_1(S,~) +'Uk-1(S, ~)ct(S) 

- OO~ Uk- 2(S, O)exP[-De(Z -s)] ds, k=O, 1,2, .... (12) 

We shall now iteratively solve for U1 and U2 in terms 
of Uo and take expected values, For brevity, define 

(13) 

V,)A] =exp[ - De(z - s)][C(s)A +AtCt(s)] exp[ - De(z- s)]. 

(14) 

Then 

Uo(z, ~) =exp(- Dez)UO(O, ~) exp(- Dez), 

+ r z Vz .[ Uo(s, ~)] ds, 
Jo ' 

(15) 

U2 (Z, ~)=exp(-Dez)U2(0, ~)exp(-Dez) 

+ l Z(v z )U1 (S, O]-exp[-De(z -s)] 

x o(j~ Uo(s, 0 eXPL - De(z - s)] )dS. 
Observe that the random behavior in Uo(z,~) and U1 (0, 0 
depends on ~ alone while V z) , 1 is a centered random 
operator whose random behavior depends upon s. Using 
the two assumptions, we obtain 

(ao(z, m =exp(- Dez) W(~) exp(- Dez), 

(U2(z, ~»)=exp(-DeZ)(U2(O, ~»)exp(-Dez) 

+ l'i s 
(Vz,so Vs,t) 

[exp(-D.t) W(~)exp(-Di)]dtds 

d 
-exp(-Dez)z d~ W(~)exp(-Dez), 

where V z , s 0 V s, t denotes composition, 

(16) 

The basic strategy of the two-timing procedure in
vOlves the development of equations for the unknown 
functions of the "slow" variable, i. e., wlj(~), in such a 
way as to suppress secular growth of the terms in 
(U

2
(z, ~») as z- 00. Noting (2), we see that the principal 

NXN submatrix of the third term grows linearly with z 
while all other terms are exponentially decaying, Let 
the matrix subscript NX N be used to denote principal 
NxN submatrix. Then, the strategy of suppressing se
cularity in the third of Eqs. (16) leads to the equation 

d~ WNXNW =lim!. 
~ z .. 00 Z 

[J:Z;:s (Vz,soVs,t) 

[exp( - Det) W(O exp( - Det)] dt dsl , J NxN 

W NxN (0) = [Xo60 X6]NXN (17) 
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One can show that (17) is actually a well-defined ini
tial value problem, i. e" that the right side of the dif
ferential equation involves only the N2 elements wjj<n, 
1", i, j '" N, For brevity of notation, let 

t:.(3kz=I\-(3z' (18) 

A development of the right side of (17) and an applica
tion of the limit leads to the system of equations 

d 
d t Wij= .B (a UWZi + a jzw lZ ) 

S l~l:sN 

461 z=O 

+.B (aikj/Wkl+ajki/wZk) (19) 
l"'k,l",N 

tlflkZ=tlllij 

where 

(20) 

In the special case of nondegenerate propagating modes, 
Le" k=lif(3k=(3P thediagonaltermsw;p i=1, "', 
N, decouple from the remaining terms and we obtain 
the following system of coupled power equations: 

d~ W ii = 2Re{0! ii}wii + 2 t Re{a iklk}Wkk , 
'> k=l 

Let the infinite matrix B be partitioned as follows: 

In the Appendix we show that, for the general lossless 
waveguide problem, Bll is skew-Hermitian, Therefore, 
Pii, ji = - Piiii for 1", i, j '" Nand Eqs, (21) can be written 
in the form: 

d ~ -
dtWii=6 (QkiWii -QikWkk)+QiWii> i=1, .. ·N 

'> k=l 

Q ki = Q ik = 2Re [Io 00 Pik, ki(U) exp(it:.8 ikU) du ] 

Qi=2 t Re[l"'Pik,ki(u)exP(-KkU+iB/U)dU] 
k:N+l a 

In the absence of evanescent modes (i. e., Q 1 = 0) we 
obtain 

N 

6 W ii = const. 
i=l 

(23) 

(24) 

This conservation relation, derived in Ref. 6, is some
what surprising since the backward travelling waves are 
ignoredc 
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In the Appendix we show that if the geometric and ma
terial imperfections form statistically independent ran
dom processes, we obtain the following simple relation: 

(25) 

where Rit) and R;;:') are (real) correlation functions as
sociated with the geometriC and material fluctuation pro
cesses, respectively. The inequality in (25) follows from 
the fact that the cosine transform of a correlation func
tion is nonnegative. 

-
In the presence of evanescent modes, Q; must be 

taken into account. Conservation relation (24) no longer 
holds. For the general waveguide problem, no simple 
transformation relates the submatrices B12 and B 21 • 

This is apparent from Eq, (A9) since the matrix EB is 
simply an appropriate arrangement of the emn coeffi
cients. When one of the modes is nonpropagating, its 
characteristic impedance and admittance become imag
inary. For the simple case of a single propagating H
mode, ideal geometry, and random loss less fluctuations 
in the dielectric constant, it follows from (23) and (A14) 
that 

wll m = w11 (0) exp( Q1 ~), 
(26) 

Q1 =t (~[R:~(u)exp( - K~'U) - R~(u) exp( - K~U») sinS;'u du, 
.~2JO 

where R:~ and R:~ represent real correlations of the ran
dom coupling of the propagating if -mode to evanescent 
H-modes and E-modes, respectively, The single and 
double prime superscripts indicate quantities associated 
with E-modes and H-modes, respectively, This gain or 
loss of energy apparently represents an interaction with 
the neglected backward travelling waves through their 
mutual coupling to the evanescent modes, 

This lack of energy conservation arises from the for
ward scattering assumption rather than any shortcoming 
of the perturbation theory 0 This claim is based on the 
fact that the perturbation formalism gives the same re
sults as a rigorous treatment. 23 Also, in Sec, II, we 
study a system considered by Matveer8 and recover his 
result, 

II. EXAMPLE OF MATVEEV 

We shall apply the formalism of Sec, I to the follOWing 
example considered by Matveev18: 

where 17 k1 (Z) is a real stochastic process, E'" 0, Y I =a I 
+ is I' and 

O<CI!l <a 2 ~,., ~aM' 
(28) 

We shall assume that the process (17kZ (z» is centered and 
wide-sense stationary, This assumption differs some
what from those made by Matveev since he studied the 
problem in the context of almost sure convergence while 
our results hold in a mean square sense, By means of 
the change of dependent variable, 
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Xl(Z) =exp(a 1z)E1(z), X k(Z) = exp[(a 1 + iSk)z]Ek(z), 

k=2, ··',N, 

we recast (27) into the form 
M 

d
d Xl =-i(31X1 +E~ (171k(z)exp(-i,Bkz»xk(z), 
Z "=2 

M 

-o-X
d
d 

1:= - (a I - a 1)X I + E.B (17/k(Z) exp(iAS1kz»x k(Z). 
Z WI 

From (20) and (21) we obtain 

(29) 

(30) 

(31) 

w11W=IE1(0)12exp[2Re(a11 +all.ll)~). (32) 

However, a 11 11 = 0 since 1711 '" O. From (20), (28), and 
(29), it follows that 

<I Ei(z) I > = I E1 (0) 12 exp [ - 2a l z - 2E2Z 

x (E [~ expl- (a k - aJu) COSASk1U (17lk(u)17a (O» du) 1 
(33) 

The decay constant in (33) is that obtained by Matveev 
in the context of almost sure convergence, 

III. DERIVATION OF DIFFUSION EQUATION 

In this section, we extend our considerations from the 
specific case of the second moments of the process to 
general functions of the process, The formal perturba
tion procedure of Sec. I will be used to derive partial 
differential equations of diffusion type that are satisfied 
by the expected value of such functions. The collapse in 
the dimensionality of the system that characterized the 
speCial case of Sec, I will again Occur, For the case of 
N propagating modes, the limiting diffusion process will 
evolve in a 2N-dimensional (real) coordinate space, 

We begin by recasting (5) into a real system. Let 

Yj(z) '" y~ll(z) + iY~2)(Z), 

0jk(Z) =' o;~)(z) + ibj~)(z), j, k:= 1, 2, "', 

Then, (5) is equivalent to the system 

1 ~ k~ N, 

k"'N+1 i3k ='O if k>N, , 

(34) 

(35) 

By making the obvious redefinitions, we shall continue 
to use the notation of (5) to denote the real system (35). 
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Let us now consider the compositionf(Y(z,w,E)). The 
basic equation to be used is the chain rule development: 

df d 
dz=Vf· dz Y, (36) 

where V represents an infinite-dimensional gradient. 
We assume that 

f='E EkfJz,~, exp(-Dez)Xol, Y='E EkYk(Z). (37) 
k=O k=O 

Substitution of these expansions into (36) leads to the fol
lowing equations: 

From (5), moreover, we have 

Yo(z) =exp( - Dez)Xo, 

Yk(z) = .fa· exp( - D.(z - s)l, 

C(S)Yk_1(S)ds, k=1,2,'··. (39) 

Therefore, 

a~fo=O, i.e., fo=fo(~, exp(-Dez)Xo), 

a 
OZfl=Vfo·(-DeY1+CYo), (40) 

a afo 
azf2=Vfl • (- DeYl + CYo) + Vfo' (- DeY 2 + CYJ - a1' 

We shall now integrate Eqs. (40) with respect to z and 
take expected values, using the two assumptions of Sec. 
1. Note in particular that the randomness in fo is a func
tion of ~ alone. From (39) and (40) 

fl(Z,~, exp(-Dez)Xol=fl(O, ~,Xo) + .fo·Vfo(~,exp(-Des)Xo] 

• (- De fos exp[ - De(s - X )]C(X) 

Xexp(-DeX)Xo dA + C(s)eXP(-DeS)Xo) ds (41) 

f 2(z, ~,exp(-Dez)Xo] 

=f2(0, ~,Xo) + JozVfl[S,~, exp(- De s)Xol 

• (- De Ios exp[ - De(s -X)]C(X) exp(- DeX)XO dA 

+ C(s)exp(- DeS)Xo) ds + fozVfo[~, exp( - Des)Xol 

X (-DeJos Joxexpl- De(s - X)]C(X) exp( - De(X - a)]C(a) 

Xexp(-Dea)Xoda dA + .fas C(s)exp[-De(s -x)l C(A) 

Xexp(- DeX)XO dA) ds - Joz oa~fo[~, exp( - Des)Xol ds. 

When expected values are taken, no secular terms ap
pear in ifl ), The diffusion equation will result from the 
suppression of secular growth in the expression for if2 ). 

We define 

w( t. x(}) X(2) ... X(ll x(2»=lim /F It exp(-D z)X]) (42) s, 1 , l' ,N' N VO S, eO' 
z-~ 
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where the coordinates of Xo are now denoted by xkil • 

Note that the difference fo -w consists of terms that are 
exponentially decaying in z. The strategy of suppressing 
secular growth leads to the relation 

aa~ w =lim~ IT!a'( ( -De .f exp( - De(A - a)] 

x C(a) exp( - Dea)Xo da+ C(A) exp(- DeA)Xo) 

. VV(fo[~, exp( - DeA)Xol) • ( - De i' exp( - De(s -1)1 

X C(1) exp(- De1)Xo d1) + C(s)exp(- DeS)Xo))dA ds 

+V(fo(~,exp(-Des)Xo])' (-De is LX exp[-De(s -A)l 

X (C(x) exp[- De(X - a)]C(a» exp( - Dea)Xo dadA 

+ [, (C(s)expl-De(s -i\)]C(i\»eXP(-DeX)XodA)] ds. 

(43) 

The limit in (43) exists and yields a second order (pos
sibly degenerate) elliptic differential operator in the 2N 
variables xii>, i = I, 2, k = 1, . " , N, which we shall de
note by V. Since 

w(O, xiI>, ... ,xt2 » = f(x? >, ••• ,x}J>, 0, 0, ... ), (44) 

we are led to the initial value problem 

a -
a~ w = vw, w(O) =f(xil> , ... ,xt2 >, 0, 0,"'). (45) 

For the general case of more than one propagating mode, 
the expression for the infinitesimal generator V is cum
bersome since one must account for possible special re
lations among the propagation constant increments. 
Modes for which t!..Sij=±t!..Bkl or t!..Bij=O will interact so 
as to contribute to the limit in (43). For the case of a 
Single propagating mode, however, the expression for 
V is straightforward. Let 

Then, for the case of a single propagating mode we 
obtain 
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where x and y have been used instead of x~ll and X~2), 
respectively. 

Note that the function x 2 + y2 is an eigenfunction of V 
with eigenvalue 2(y(lll +1'(22) +X (11). Therefore, the so
lution of (45) with w(O) =x2 + y2 is 

(48) 

This expression, which is asymptotically equal to the 
power content of the single propagating mode, agrees 
with the solution of (21) in the case N= 1. 

In polar coordinates the operator V becomes 

V= (1l)r~+f.y(22)+x(1»r~+y(22)..z..:.. 
I' or \ or 0 82 

_ (I' (12) +1' (21) -X (2» ~ + [1'(12) +1' (21lJ r~ (49) 
08 ara8· 

Note that r" is an eigenfunction of V with eigenvalue 
n[(n-1)y(lll +1'(22) +X(llJ. Therefore, one can very 
easily compute all the moments of the power flowing in 
the propagating mode. In particular, the mean and vari
ance are 

=lx
al
I2exp[2(y(lll +1'(22) +X (ll)~J [exp(8y(llln _lJl/20 

(50) 

For the example of Matveev discussed in Sec. II, 
piijl=O, i,j=1,2. Therefore, the infinitesimal gener
ator in this case is completely degenerate, i.e., 

V = {x (ux -x (2)y)~+ (x (2)X +X (lly)~. ox oy 
The asymptotic behavior, therefore, is that of drift 
alone and not of diffusion. 
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APPENDIX: DERIVATION OF COUPLED MODE 
EQUATIONS 

We shall consider a metallic waveguide which, in the 
absence of random imperfections, is cylindrical and 
filled with homogeneous isotropic material. The guide 
cross section is assumed to lie in the xy plane with pro
pagation occurring along the z axis. The following two 
assumptions will be made regarding the randomly per
turbed guide: 

(0 The dielectric constant and permeability of the ma
terial filling the guide can each be represented as the 
sum of a constant and a zero mean inhomogeneous ran
dom perturbation, i.e., 

E =£a + E1(X,y, z, w), /l. =jJ.a + /l.l(X, y, z, w), 
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(A1) 

(ii) The perfectly conducting waveguide walls have 
random geometric imperfections. However, we assume 
that the average crOSS section is independent of z. ThUS, 
if {r(8,z, w): 0., 8 < 21T, - "" < z < "", wEn} represents 
the guide boundary in vector parametriC form, we shall 
assume that (r{8,z, w» is independent of Zo 

The transverse and longitudinal field decomposition 
(cL ReL 24) becomes 

where the zero subscript denotes unit vectors, the t 
subscript denotes transverse vectors and operators 

(A2) 

(E t '" E - zaE., "t "''' - za%z), and Wa '" 21TJ is used to de
noted radian frequency 0 (The sample space n remains 
indexed by the variable w.) 

At each point z and for each realization w, the trans
verse fields will be expanded in a complete set of local 
normal modes. These modes, introduced by Snyder, 19, 2a 

will correspond to a fictitious cylindrical guide having 
constitutive parameters Ea, ua and cross section defined 
by r{8, z, w). Note therefore that the local mode set will 
be both z -dependent and random since they are implicit 
functions of the random guide boundary 0 However, they 
have the obvious advantage of conforming exactly to the 
guide cross section at each value of z and for each reali
zation w, 

Let S{z, w) denote the guide cross section at point z 
and for realization w. The derivation of the mode func
tions is well known (Ref. 24). We obtain the 
representation 

Et{x,y, z, w) =,0 V~(z, w)e~{x, y, z, w) 
n 

+,0 V~'{z, w)e~'{x, y, z, w), 
(A3) 

Ht{x, y, z, w) =61~(z, w)h~(x,y, z, w) 
n 

+ 61~'(z, w)h~'(x, y, z, w), 

where the primed and double -primed quantities refer to 
E-modes (TM modes) and H-modes (TE modes) respec
ti vely 0 Moreover, h = za X e. The following normalization 
is assumed: 

lsI em(x,y,z, w) ·en(x,y,z,w)dxdy=o"", (A4) 
(z, w) 

for both E- and H-modes while the right side of (A4) is 
identically zero if the integrand is the scalar product of 
an E-mode and an H-mode function. 

We obtain coupled mode equations for the modal volt
ages and currents by inserting (A3) into (A2) and using 
orthornormality relation (A4). We define: 
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(i) k;~")(Z, w):;;the transverse wavenumber associated 
with the nth E(H) local mode function 
at point z and for realization w. 

(ii) k~~") :;;the transverse wavenumber associated with 
the nth E(H) mode function for a cylindrical 
guide having the mean cross section defined 
by <r>. 

1'/~'(z, w):;; [k;'2 - k;'2(Z, w)ll woMo' 
n n 

(vi) T"e(z w):;; (fe' '~e' 
mn' Js m (Jz n' 

T"h (z w):;; rfel . ~e" = - The 
mn' Js m Bz n Mm.' 

Thh (z w):;; (fell' ~e" 
1M' Js m Bz ". 

-1-Lf [c1_C1]Y' 'e'Y' 'e' 
W 

0 t m t n' 
o S 

zeh(Z w):;;iw Lf" e' ·e"=Zhe(z w) mn' 0""'1 m" nm" 
S 

Zhh(Z w)=iw if" e" e" mn' 0 """1 m 0 n 0 

S 

yeh(Z w)=iw iIEh' ,h,,=Yhe(z w) mn , 0 1 m n nm" 
S 

yhh(Z w)=iw IfEhll'h" mn' 0 1m n 
S 

In terms of these quantities, the following set of equa
tions are obtained: 

-!!.. V' =i(3' Z' T' + i~' TI dz m m nt'm nt'rn 

n 

-!!.. V" = is "Z "I" dz m m mm 

+ Z[The V' + Thh V" + zhe I' + Zhh T") 
mn" mn n mn n mrrn' 

d . V - -l' =tB' Y' , dzm'mmrn 

+ 2:( T"e "+ T"h I" + yee V' + yeh V") mrr'"n mn n mn n m" n , 
n 
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(A6) 

m=1,2,oo., 

Note that the coefficients T m" ~;,., and 1'/;: represent cou
pling due to geometric imperfections while the coeffi
cients Z mn and Y mn represent coupling due to imperfec
tions in the medium, 

To obtain the type of equation considered in Sec, I, we 
define the following scattering coefficients: 

m=1,2,···, (A7) 

for both E and H modes. We then recast (A6) into an 
equivalent system in terms of these scattering coeffi
cients, The forward scattering approximation disregards 
the backward travelling waves. We set b' = b" = 0 for 
all m; the resulting equations are rn rn 

d .~ [ -a' = - i{3' a' + 2.J eee a' + eeha" 1 dz m m m "=1 mn n mn n , 
(AS) 

!!..a ll == - i{3"a" + t [e he a' + e hh a") dzm mm mnn mnn' 
n=1 

where 

(A9) 

and 15 m" denotes the Kronecker delta. 

Observe that the transition from propagating to eva
nescent mode occurs when m is such that kt exceeds 
W~UoEo; in this case i3 m - iKm' The model adopted in Sec, 
I baSically assumes that the random coefficients in 
(A6) [and therefore in (A9)) are zero mean wide sense 
stationary processes whose amplitudes are scaled by a 
common small parameter. The vector X in (1) of Sec. I 
represents a suitable arrangement of the scattering co
efficients a;", a;: in an infinite column array; the matrix 
EB is the corresponding square array of the emn coeffi
cients determined by (AS) and the definition of X, 

We can assume without loss of generality that the lo
cal uniform mode functions are random vectors with 
real components. Then the T mn are real functions, while 
if E1 and III are real (L e., lossless) random perturba
tions, the Z mn and Y rnn are imaginary functions. More-
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over, the following identities hold: 

yhh= yhh 
mn nm' (AID) 

When both m and n index propagating modes, the mo
dal impedances and admittances (i. e., Z m' Zn' Y", and Yn) 
are positive real constants. In this case the e"," coeffi
cients satisfy the following skew-Hermitian relations: 

e;:'n = - e~;,.*, e~ = - e~~* , e;,.~ = - e~;,.* . (All) 

In general these coefficients are complex. Geometric 
imperfections contribute a complex diagonal term (i. e. , 
m = n) and real off -diagonal terms (m;< n); material im
perfections contribute imaginary terms. 

Since these coefficients comprise the principal NX N 
minor of the infinite matrix EE, we have 

(AI2) 

Moreover, if we assume that the geometric imperfec
tions and material imperfections are statistically inde
pendent processes, it follows that Pjj,ji can be written 
in the form 

(AI3) 

where R~f and R:~;> are real correlation functions cha
racterizing the geometry and material, respectively. 

When one index, say m, refers to a propagating mode 
while n indexes an evanescent mode, this skew-Hermi
tian property no longer holds. Zn and Yn become imagi
nary in this case, and their square roots are conse
quently complex. For the simple case of a single propa
gating H -mode in a guide with ideal geometry and only 
dielectric constant fluctuations, we obtain 

e hh = _ [(1 + i)/212]yhhZ 111/21 Z1I11/2 
In 1n 1 " , 
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e he = _ [(1 + i)/212]yheZII1/21 Z'll/2 = eeh 
In 1n 1 " "1 ~ (AI4) 

*This work was done while the author was a Visiting Member 
at the Courant Institute of Mathematical Sciences. The re
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Some remarks on the evolution of a Schr6dinger particle in an 
attractive 1/ r 2 potential* 

Charles Radin 
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Comparing the different solutions of Case and Nelson for the evolution operators of a Schrodinger 
particle in the potential V(r) = -l/r2, we show that Nelson's nonunitary solution is a simple 
average, over a physical parameter related to a boundary condition at the singularity, of Case's 
family of solutions. 

1. INTRODUCTION 

In two well-known papers, Casel and Nelson2 have 
used different approaches, and arrived at different con
clusions, in calculating the evolution operators for a 
Schrodinger particle in the presence of the singular, at
tractive potential V( r) = - l/r 2. The most striking dif
ference is that Case finds the operators to be unitary 
but not unique, whereas Nelson finds them to be unique 
but not unitary. 

As the potential is not physical (see, however, Ref. 
3, esp. Secs. V, VI), we do not try to justify one solu
tion or the other on physical grounds. All we attempt to 
do is clarify the relationship between the two; we show 
that Nelson's nonunitary solution is a simple (time in
dependent) average over Case's family of unitary 
solutions. 

We choose units so that Planck's constant, ii, has 
magnitude 1, and for complex numbers z and w we 
define 

ZW '" exp[w(ln I z I + i argz)], 

where - 7T '" argz < 7T. 

2. THE TWO SOLUTIONS 

We consider the Schrodinger equation in three space 
dimensions: 

OJ; = i(~ t. + -\-)J;, J;('. t) E L 2(R
3), "(f I. at 2m r 

(1) 

In spherical coordinates the Laplace operator is 

t. = ~ _0_ (r2~) _ J2 , 
r2 or or r 

where J2, the square of the angular momentum operator, 
is 

J2=-[s:Ue aae (Sine aCe) + si!2e a
O;2J. 

The natural identification of R3 with 5 x R+, where 5 is 
the unit sphere in R3

, induces a Hilbert space isomor
phism L 2(R3 ):; L2(5)~ L 2(0, 00). We associate with the 
formal differential operator J2, in the standard way, a 
self-adjoint operator (also denoted J2) on L 2(5) whose 
spectrum is purely discrete, with eigenspaces L j and 
eigenvalues j(j + 1). where j = 0,1,2, .... Finally we 
decompose in the natural manner 
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As the potential V = - l/r 2 is spherically symmetric, 
we will only consider solutions Ut for (1) which commute 
with J2 0 12 [where 12 is the identity operator on 
L 2(0,00)J, so that Ut can be decomposed as U t =Efj UI(j). 
where Ut(j) is of the form 110 XI(j) with 11 the identity 
operator on L j and xt(j) an operator on L 2(0, 00). [By an 
abuse of notation we will no longer distinguish ut(j) and 
xt(j)l. We will usually be considering evolution operators 
U t be means of their "restrictions" UtU) to an arbitrary 
but fixed H j' 

Assume that J; is a separable solution of (1) in H j' 
with radial part I/!p, and let u(r)=rJ;p(r). Then (1) be
comes 

where v" = ~ + 1J(j + 1) - 2m I and u( ., t) is in L 2(0, 00) for 
each fixed time I. Our problem now is to determine 
evolution operators Ut(j) on L 2(0, 00) for (2) whose gen
erator is appropriately related to the formal differential 
operator (2mi)-lH, which we will consider to be an 
operator on L 2 (0, 00) with domain C;, the (equivalence 
classes of) infinitely differentiable functions with com
pact support in the open interval (0,00). We seek a gen
erator which is an extension of (2mi)-IH. which is not. 
itself, a generator. 

Nelson in Ref. 2 defines such evolution operators 
U /(j). I'" 0. of (2) with Laplace transform 

QN(>C)U={ exp(->cI)U'/(J)udt. Re>C>O. 
o 

and shows that 

IQ N(>C)U)(x) = r G J,x, y;>c)u(y) dv 

with 

{ 

xl/2Hl[(2mi>c)1/2x)f(y), 
C; N(X, y;>c) = v 

Xl /2J J (2m i>c)1 / 2X l,l,r(y). 

X> ,', 

x< I'. 

where J and HI are the usual Bessel functions as de-
v v . 2)1/2. fined in Ref. 4. / and g are unknown, and v= (v , he 

also shows that U Nt(j) is not unitary for v" < ° but is 
unitary for v2 

'" 0. Thus his solutions U / for (1) are non
unitary if and only if m> 1/8, the only range of mass we 
will consider henceforth. From his definition of U"/U) 
it follows easily that QN(>c)=K[QJ,>C)]*K [where K is the 
complex conjugation operator on L 2(0, 00) and * denotes 
operator adjoint] and then that G N(X, y;>c) = G N(Y' x;>c) so 
that 
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G ,v(X, y;:\.) =n(:\.) 

~ Xl/2H~[(2mi:\.)1/2X] (y)1/2Jvl(2mi:\.)1/2y], 

x l X1/2Jvl(2mi:\.)1/2X](y)1;2H~[(2mi:\.)1/2y], 
x> y, 

X<y, 

(3) 

where n(A) is independent of x and y but as yet undeter
mined. 

An alternative approach to the problem was put forth 
by Case in Ref. 1, and consists of determining all pos
sible unitary evolution operators ut(j) for (2) whose gen
erators extend (2mi)-lH. Rather than use Case's method 
of carrying out this approach. we will use the method of 
von Neumann as described in Ref. 5, which has the ad
vantages of being of very general character, widely 
known, and most importantly, of leading directly to 
quantities that we need to calculate. We will discuss 
separately the cases v2 ~ 0 and 0 < O. 

For 0> O. Nelson's solution is, as he indicates. the 
commonly accepted one corresponding to a Friedrichs 
extension of H. The case v = 0 is slightly more compli
cated. but as we show in Sec. 4 it turns out that for 
o ~ 0 Nelson's solution can be "justified" by a regulari
zation procedure if necessary (except possibly for the 
)=0 restriction). Therefore. the only part of Nelson's 
solution that can be regarded as unusual is that for 
0<0. the nonunitary restrictions. 

A straightforward application of Theorem 10.20 of 
Ref. 5. most of which is explicitly exhibited in Ref. 6, 
shows that for 0 < 0 there is a one-parameter family of 
unitary solutions U/(j). - co < l< 00, 0 -'S e< 21T, whose 
Laplace transforms Qi>C) have kernels 

Xl /2H~[(2miA)1 /2X 1 (y)l /2{J) (2mi\)1 /2y] 

- (2miA)"L(e)J_J(2mi\)1/2y n, x> v, 
x 

X1/2{J)(2mi:\.)1/2X] _ (2mi\)"L(e) 

XJ _) (2m i:\.)l /2X]) (y)l /2H~[ (2m IA)l /2y]. X < y, 

(4) 

for ReA> O. where 'I] = exp( - iV1T/4) and 

L(8)=ex (-i8)( eXP(i.8)+r)2). 
p exp( - I e) + '1]2 

We emphasize that this is a complete list of the unitary 
solutions for 0 < 0 and that the parameter e is directly 
related to a boundary condition at the Singular point 
r=O; for the relation see Refs. 5 and 7. The parameter 
s for the corresponding evolution operators U, t on H 
='1' H j is a variable in [0, 21T)N; we emphasize that j eN 
and BE [0, 21T) are independent parameters. and 
U/(j):= U Nt(j) if v ~ O. 

3. COMPARISON OF SOLUTIONS FOR v2 <0 

Since L(e), defined above, is of absolute value 1. we 
can simplify the form of Ge(x, y;>c) by defining 

545 J. Math. Phys., Vol. 16, No.3, March 1975 

X(e)=argL(e)+7T. From 

dX 1-1)4 > 0 
de 1 exp(i8) + '1]212 

we see that X (e) increases monotonically from 0 to 21T 
with e, and has an inverse function 8(X). Defining the 
average 

1 [2T 
(Cie(x, V;A) = 27T 0 Ge( x )(x. y;\) dX 

1 12< d 
= 27T 0 Cie(x, y;:\.) d~ de, 

and replacing exp(iX) by the complex variable z and using 
Cauchy's integral formula, we find for Re\ > 0 

l 
Xl /2H~[ (2mi\)1 /2X] (y)l /2Jvl(2mi\)1 /2y ]. 

(Cie(x, y;:\.) =m7T X> y, 

x1/2Jvf(2mi:\.)1/2x] (y)1/2Ht[(2mi:\.)1/2y J. 
x<y. 

(5) 

From (3) and (4) we see that for Re\ > 0 the bounded 
operator Qg(A) is the sum of two bounded operators 

Qe(\) = h( e)Ql(\.) + k( e)Q2(:\.) 

with the numerical coefficients hand k carrying all the 
e dependence. Clearly Qe(:\'), as a function of e, is con
tinuous in the operator norm topology, and the average 
operator 

1 f2< 
(Qe(A))U:= 27T QO(X)(>C)u dX 

o 
is an integral operator with kernel (Ge(x, y;:\.). 

From Theorem 11. 5. 2 of Ref. 8. 

QN(>C) = 2mi(2mi>c -H Ntl, Qe(\) = 2mi(2mi\ -Hetl , 

where (2mi)- lH N [resp. (2mitlHeJ is the generator of 
U /(J) [resp. uet(j)]. Let u be a nonzero function in C;, 
and therefore in the domain of H. H N and He' Then H Nil 
=Heu, and v:=(2miA-H N)u=(2mi\-Hg)u is nonzero 
since He is self-adjoint. Therefore, 2miu = Q N(\')V 
= Qe(>C)v= (Qe(:\'))v, which implies that n(\)=m1T in (3), 
and Q N(A) =(Qe(A)). 

From Theorem 11. 6. 2 of Ref. 8, if Req> 0 we have 

-21 . lim I'dP lq+iP exp(\l)Qe(\.)ud\= jU/(i)U, 1>0. 
ml s - ~ / 

o q-iP U 2, 1=0. 

with a similar equation for U /(j). Defining 

(Uet(j))u= 2~ 12

• Ue(x/(J)udx, 
o 

we note that the limit in (6) is uniform in e so that for 
Req> O. 

( 6) 
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= {U/(j)U, 

u/2, 

t> 0, 

t=o, 

which proves that U Ntu) = (U/(j) for t? 0. 

4. REGULARIZING THE POTENTIAL 

In this section we consider the possibility of regu
larizing the potential V = - 1/r 2

, that is, altering it in 
a region of the origin so as to be nonsingular, calcu
lating the associated evolution operators as a function 
of the region of regularization, and then looking for 
limits as we allow the region of regularization to become 
arbitrarily small while keeping all other parameters, 
in particular t, fixed. (A similar program is carried out 
in Sec. 5 of Ref. 6, but there even the centrifugal po
tential term is regularized, which we prefer not to do. ) 

Thus we consider the differential operator 

- d 2 J.L2 - t -
H R =- dr2 + ~ + V R , 

where 

r>R. 

r~R. 

whereR>O, andJ.L=[~+j(j+l)]l/2. Ifi"'l. HR' with 
domain C;, is essentially self-adjoint as we see by ap
plying Theorem 10.21 o(Ref. 5. We will postpone dis
cussion of the case j = ° to the end of the section. 

Assuming j '" 1 and denoting by H R the closure of H R' 

we wish to study its behavior as R approaches 0. We 

will discuss separately the cases where II is, or is not, 
an integer. 

A straightforward calculation using Theorem 10. 21 
of Ref. 5 shows that if ReA> ° and II is not an integer, 
QR(A) defined as 2mi(2miA - H Rtl is a bounded integral 
operator will kernel 

(wl(x)wh)/W, x>Y, 
GR(x, Y;A) = ) 

(W 2(X)W l(Y)/W, x<y, 

where 

)

aR(X)l /2H~[(2miA)l /2X]. 

wl(x)= xl/2{J,J(2miA + 2m/R2)l/2x] 

+ bRJ_" [(2miA + 2m/R2)l/2xl}, 

x>R, 

x~R, 

)

' xl/2{JJ(2miA)l/2xJ + d~_vl(2miA)l/2x n, 
w 2(x) = 

CR(X)l/2J" [(2miA + 2m/R2)l/2xl, 

JJ(2miA)l/2RJ + dRJ_"[(2miNl /2R] 
cR= J,,[(2miA + 2m/R2)l/2RJ . 

b = r(l-J.L) (2miAR2+2m)" 
R r(l+J.L) 4 

x>R. 

x~R, 

( 
- J.L - II) [(2miA)l /2 /2]-vr( 1 + II) + R2"(J.L - II) [(2miA)l /2/2]" exp( - l17Ti)r( 1 - II) ) 

x (_ J.L + 1I)(2miA)l/2 /2]-"r( 1 + II) + R 2V (J.L + II) [(2miA)1/2/2] exp( - l17Ti) r( 1 - II) 

bR=bR+O(R2) as R-O, 

dR=dR+O(R2) as R-O. 

It is easy to see that if v < ° and we let R approach 
zero along the sequence {Re n; n = 1, 2 .... }, chosen so 
that dRe = - (2miA)"L(e). then for each x, yin (0. 00 ) 

n 

and, also, for each e there exists such a sequence, 
From simple estimates of [GRe (x, Y;A) - G9(x, Y;A)] in 
each of the regions of integration corresponding to the 
possible linear orderings of x, Y and R~, it follows that 
QR~ (A) converges strongly to Qg(A) and therefore from 
Theorem IX. 2.16 of Ref. 9, Uke(j) converges, in the 
strong operator topology, to U~l;) for each t in (- 00, 00). 
In particular, for 112 < ° and fixed l"* 0, U~(j) does not 
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Iconverge as R approaches zero, except along special se
quences. in contrast with the imaginary mass case in 
Sec. 2 of Ref. 2. This makes explicit the connection be
tween the radius of regularization in the cutoff model 
and the associated U e t. as discussed in Sec. IV of Ref. 1; 
the fact that R~ is a function of j could be interpreted as 
a means by which to select some of the evolution 
operators U; on H= fT'H j over others. For 11>0 but not 
integral, the above analysis shows that U~(j) does con
verge as R approaches zero, and converges to U;J,j). A 
similar analysis confirms that this latter behavior holds 
for all II? O. 

There remains the case j = 0. '!Yhen the above program 
is begun for j = 0, one finds that H R is not essentially 
self-adjoint for any II. That this problem is basically 
unrelated to the potential is evident from the fact that 
the same result would emerge for a free particle. The 
point is that when we have a singular potential. it is 
reasonable to first restrict the formal Hamiltonian H to 
a domain of functions with support isolated from the 
singularity. and then look for extensions. If the potential 
is not singular. this procedure can lead to unwanted 
solutions as it does in our problem for j = O. [It is im
portant to keep in mind that r = 0 is only a boundary 
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point for the radial equation (2), not the full SchrOdinger 
equation (1); there is no reason to distinguish r=O from 
neighboring points for the nonsingular iT. ] Thus the 
regularization method does not select out particular 
solutions for j = 0 as it does for j ?- 1. Fortunately II and 
j cannot vanish simultaneously for m> 1/8, so we can 
"justify" all the unitary restrictions of Nelson's, either 
by the Friedrichs extension or regularization. 

We summarize our results in the following 

Proposition: The nonuhitary evolution operators Ut on 
L 2(R3

) for 

O</J .( 1 1 ) -=l-~+-</J at 2m r2 

defined by Nelson in Ref. 2, i. e., those for m> 1/8, are 
(time independent) averages of unitary evolution 
operators Us t obtained by the traditional approach dis
cussed by Case in Ref. 1; in other terms, 

for some (time independent) probability measure iJ. on 
[0, 27T)N. 
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A study is made of time-dependent dynamical symmetry mappings of Hamilton's equations for 
classical particle systems. The conditions that an infinitesimal mapping (oxA ,ot)= (~A (x,t)oa, 

~o (x,t)oa), A = I, ... , 2n, be a symmetry mapping are expressed in terms of a "symmetry 
vector" ZA (X.f) = ~A -~ollABaBH(x,t)(where llABdefines the symplectic matrix of phase 
space). These conditions imply that ~o is arbitrary. It is shown that the symmetry deformation of a 
constant of motion M (x ,t) will also be a ("derived") constant of motion (time-dependent related 
integral theorem). It follows for the case H = H (x) that every time-dependent symmetry 
deformation of H (x) is a constant of motion, and it is shown conversely that every constant of 
motion M (x ,I) can be expressed as a symmetry deformation of the Hamiltonian, that is, there exists 
a symmetry vector Z A (x ,t) such that M = ZA aA H. It is found that if ZA (0100) is a symmetry 
vector, then M (x ,t)Z A will be a (scaled) symmetry vector if and only if M is a constant of 
motion. The existence of groups of symmetry vectors is considered, and it is shown that a complete 
set of r symmetry vectors Z ~, a = 1, ... , r, determines an r -parameter continuous group of 
symmetries. A special class of symmetry vectors zt?) (x,l) = r(B (as M - NaBH). ("extended 
Poisson vectors"), where M (x ,I), N (x ,I) are constants of motion is defined and conditions that 
such vectors determine a symmetry group are obtained. Poisson vectors are also used to show that 
the related integral theorem mentioned above may be considered as a generalization of Poisson's 
theorem on constants of motion. Dependency relations between derived constants of motion with 
respect to vectors of a symmetry group are obtained. 

1. INTRODUCTION 

In this paper we consider time dependent dynamical 
symmetries and associated time dependent constants of 
the motion for cLassical particle systems described by 
Hamilton's equations. This work is a continuation and 
generalization of recently published papers1

•
2 in which 

we limited our considerations essentially to the time 
independent case. 3 

We define 2n phase space coordinates x A in terms of 
the generalized coordinates qi of the associated con
figuration space and their conjugate momenta Pi such 
that4 

(Xl, ••• ,x"; X"+l, •.• , x2")=«(/, ... , q";PlO"" Pn). 

(1. 1) 

In general, we shall assume the Hamiltonian H to be 
time dependent [H(x, t)l and take Hamilton's equations in 
form 5 

iA =1]AB H ,B' (1. 2) 

where 1]AB i[' gT~ "b]Y the symplectic matrix
6 

[1]AB1= -In 0" (1]AB=_1]BA). (1. 3) 

The covariant form 1]AB is defined by 

1]AB1]BC=6~, (1]AB=-1]BA)' (1.4) 

A function M(x, f) will be a constant of motion of the 
dynamical path defined by (1. 2) if 

dMldt =1]ABM,AH.B + M.I =I'VI .AHA + M. t= 0, 
where 

(1. 5) 

HA =T/ABH.B (H. B =T/BAHA). (1. 6) 

A dynamical symmetry is a mapping which maps the 
set of integral curves of (1. 2) into itself. 
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In this paper the conditions for dynamical symmetries 
will be based upon infinitesimal point mappings with as
sociated changes in parameter I (Ref. 7) 

X'A =xA + e(x, 1)6a, 

T = I + ~o(x, 1)6a. 

(1. 7) 

(1. 8) 

This form of infinitesimal mapping is a generalization 
of those we previously considered (see Ref. 1. 2) where 
it was assumed H =H(x) and 

e = ~A(X), dl=dl{l + 2¢[x(l)Joa}. 

We give below, a brief summary of the main results 
of this paper. 

In Sec. 2 we obtain in two different ways the conditions 
(see Theorem 2.1) that the transformation (1. 7), (1. 8) 
define a dynamical symmetry mapping. It is shown that 
the function ~O(x, f), which appears in (1. 8), may be 
taken as arbitrary, and that the e(x, I) of (1. 7) is de
fined in terms of a symmetry vector ZA(X, t) la solution 
of (2.13)] and ~o. 

In Sec. 3 a time dependent related integral theorem 
is derived which states that the symmetry deformation 
of a constant of motion M(x, t) will also be a ("derived") 
constant of motion, This includes the case in which 
M(x, t) =H(x), and hence it follows that time dependent 
symmetry deformations of Hamiltonians of the form 
H(x) are constants of motion. It is also shown that if 
H=H(x, t) (which is hence not a constant of motion) there 
exist r as a result of the arbitrariness of the C(x, t) I 
suitably chosen symmetry mappings for which the de
formations of H(x, I) will be constants of motion. 

In Sec. 4 it is proved for dynamical systems with 
H =H(x) that every constant af motion M(x, t) can be ex
pressed as a svmmelry de(armation of Ihe Hamiltonian. 
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In Sec. 5 we show that if ZA(X, t) is any symmetry 
vector, then the "scaled" vector M(x, t)ZA(X, t) will also 
be a symmetry vector where M(x, I) is any constant of 
motion. 

In Sec. 6 it is shown that if M(x, t), N(x, t) are ar
bitrary constants of motion of dynamical systems with 
H = F(x) + G(l), then the "extended Poisson" vector 
Z1Pl "" T/ABM ,B - NHA and its partial time-derivatives will 
be symmetry vectors. It is also shown that there exist 
2n linearly independent symmetry vectors of the "Pois
son form" Z1Pl"'(X, l)""T/ABM",.B where iVI",(x, l) is any set 
of 2n functionally independent constants of motion. 

In Sec. 7 we consider r-parameter continuous groups 
determined by symmetry vectors. It is first shown that 
the commutator of any two symmetry vectors is also a 
symmetry vector. Conditions are obtained in order that 
a set of symmetry vectors of the Poisson form deter
mine a symmetry group. It is also shown how extended 
Poisson vectors can be used to define groups of sym
metry mappings (1. 7), (1. 8). Dependency relations be
tween derived constants of motion obtained by the sym
metry deformation of a given constant of motion with 
respect to vectors of a symmetry group are determined 
in terms of the structure constants of the group. 

SpeCific examples illustrating in detail results of this 
paper will appear elsewhere. 

2. DERIVATION OF DYNAMICAL SYMMETRY 
EQUATIONS 

In this section we derive the dynamical symmetry 
equations of the system (1. 2) based upon the mapping 
(1. 7), (1. 8). The conditions for such a symmetry can be 
expressed in the form 

15 (dX
A 

_ AB iJH(x, t) ) "" (dXA _ AB aR(X',7) ) 
dt T/ axB dt T/ iJxB 

_ (dX
A 

_ AB aH(x, f) ) = 0 
dt T/ axB • 

for all xA(t) which satisfy (1. 2). 

From (1. 8) we find to first order in l5a that 

d~ = 1 _ d~O(x, t) 15 
dt dt a. 

ConSider 

. axA dxA d dt dXA 
l5(x

A
)"" dt - dl = dj(x

A + el5a) dt - dl' 

From (2.2) and (2.3) we obtain (to first order in l5a) 

(2.1) 

(2.2) 

(2.3) 

15<-~A) = [d~A/dt - (d~o/dt)XA jl5a. (2.4) 

By use of (1. 7), (1. 8) we have for any function F(x, t) 

I5F(x, I) "" F(X', 7) - F(x, t) = (F,A e + F,tCll5a. (2.5) 

In addition, 

dF(x.l)/df=F,AXA + F. t =T/ABF.AH.B + F. t • 

We now apply (2. 5) to obtain 

(2.6) 

I5(H.B)=(H.Bc~c+H.BtC)l5a. (2.7) 

From (2.4), (2.7), (1. 3), and (2.6) we evaluate the left
hand side of (2. 1) to obtain the following conditions for 
a dynamical symmetry: 
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If we define for any vector VA(X, t) the operator 

S(VA) "" V~BHB - VBH~B + V.~, 

then (2.8) can be written in the form 

(2.8) 

(2.9) 

(2.10) 

From the linearity of the operator 5 we may write (2. 10) 
in the form 

(2.11) 

Hence if we define 

(2.12) 

the symmetry equation (2.8) can be written in the form 

(2, 13) 

This indicates that to obtain a solution (~A, ~O) to the 
symmetry equation (2. 8) it is sufficient to solve (2. 13) 
for ZA(X, t) and then determine e from (2.12) in which 
~o may be chosen arbitrarily. 

We refer to the vector ~A as a "symmetry mapping 
vector" and to ZA as a "symmetry vector. " 

Theorem 2.1: For a dynamical system (1. 2) where 
H =H(x, t) every symmetry mapping (1. 7), (1. 8) is 
determined by e(x, f), nx. f) where ~o is chosen ar
bitrarily and ~A is defined by (2. 12) in which ZA(X, t) is 
a solution of (2.13). 

If in (2.12) the particular choice ~o=O is made, we 
see that any solution ZA of (2. 13) will itself be a sym
metry mapping vector. 

We give next an alternative derivation of (2. 8) based 
upon a generalization of a method used by Komara which 
applies to our present case where H =H(x, t) and ~o 
= ~O(x, t) * 0 [Komar considered the case H =H(x), and 
~o= 0]. 

Starting at any point P we move to a point Q along the 
trajectory passing through P as determined by (1. 2). 
Then a point R is determined by means of the point map
ping (1. 7) as applied to the pOint Q. We now interchange 
the order of these two operations by starting at P and 
use (1. 7) to obtain the point S. We then require that the 
point R lies on the trajectory passing through the point 
S. 

Since P and Q are on the same dynamical path, to 
reach the point R through Q as described above, we may 
write 

xA(R)=xA(Q)+ ~A(Q)l5a=xA(p) +xA(P)l5t+ ~A(Q)l5a, 

(2.14) 

where 6t '= I(Q) -t(P). For the same reason we may 
evaluate ~A(Q) by 

(2.15) 

From (2.15), (2.14), and (1. 2) we have 

G.H. Katzin and J. Levine 549 



                                                                                                                                    

By means of the second route we have 

xA(R) = XA(S) + iA(S)ot = xA(P)+ ~A(P)oa + iA(S)of, 

iA =' i)cA I df, 

where oTd(R) -7(S). We may write 

fAtS) =W(S) =HA(P) + [H~B~B + H~t~o]p Oa. 

From (1. 8) we obtain 

01= [1 + ~~o oa] p of = 11 + (~~cHC + ~~ t)oa]p 0/. 

By use of (2.19), (2.18) in (2.17) we obtain 

XA(R) =XA(P) + e(p)oa + [HA + (H~B~B + H~t~O 

+ HAHc ~~ c + HA ~~ I)oa]p ot. 

(2. 16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Equating the right-hand sides of (2. 16) and (2.20) we 
again obtain the symmetry condition (2.8). 

In order to obtain the time independent symmetry 
equation discussed in Ref. 1,2 we take H =H(x), e 
= e(x), ~o= ~O(x) in (2.8) and define 

2<p(X)='~~AHA. (2.21) 

Then (2.8) reduces to 

(2.22) 

which is recognized as the above-mentioned time in
dependent symmetry equation. Thus to obtain solutions 
to (2.22) it is sufficient to solve (2.13) for ZA assuming 
H=H(x), ZA =ZA(X) and then define ~A and <P by (2.12) 
and (2.21), respectively, where we consider ~o as an 
arbitrary function ~O(x). 

3. TIME DEPENDENT RELATED INTEGRAL 
THEOREM 

In this section we examine several means of deter
mining time dependent constants of motion of a dynami
cal system. It was shown in Ref. 1 and indirectly in 
Ref. 2 (expressed in terms of a related integral theorem) 
that if M(x) is a time independent constant of motion of 
a dynamical system with H=H(x), then so also is oMI 

lia =' M .A e where ~A (x) is a symmetry mapping vector 
given by (2. 22). We now extend this result to time de
pendent constants of motion M(x, t) for systems in which 
H = H(x, t) and symmetry mappings are based upon (1. 7), 
(1. 8). 

To obtain this extension, first observe that we may 
express IiM(x, t) by means of (2.5) as 

(3.1) 

We define a deformation operator ~ by 

_ ) A a 
~~(lia Z ~' 

uX 
(3.2) 

and note by means of (2.12) and (1. 5) that for any con
stant of motion M(x, t) 

(3.3) 
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If M(x, t) is a constant of the motion [see (1. 5)], then 
a Simple calculation shows that for any ZA which 
satisfies (2. 13) 

!!:.-(OM) =,S(ZA)M A+(M BHB+iVI t) AZA=O. (3.4) 
dt lia " , , 

which implies that oM loa is a constant of the motion. 

We summarize the above remarks as 

Theorem 3.1 (Time Dependent Related Integral 
Theorem): If IVI(x, I) is a constant of the motion of the 
dynamical system (1. 2) with H =H(x. I), then oM/lia 
=1VI'A~A +M,t~o=t:.J.VJ./Ba=}'vl'AZA is also a constant of 
the motion, where ZA is a symmetry vector as described 
in Theorem 2.1. 

As an important illustration of this theorem we men
tion the case where H = H(x) for which it is well known 
H is a constant of motion. Then Theorem 3.1 states that 

oH(x)/Ba =H.AZA (3. 5) 

is also a constant of the motion. 

We now assume the general case H =H(x, t) and show 
by a suitable choice of ~O(x. t) there exist symmetry 
mappings (1. 7), (1. 8) for which 

will be a constant of the motion. The condition that 
oH/oa be a constant of motion is 

(3.6) 

(3.7) 

We evaluate the left-hand side of (3. 7) by means of 
(3.6) and combine the result with the equation H,AS(ZA) 
=0 Irefer to (2.13)] to obtain the condition on ~O(x,1) 

~~AHAH ,I + ~~IH.I + to(H .. ~~A + H ,tt) + H ,AIZA =.c 0 

(3.8) 

in order that oH(x. /)/0(1 be a constant of motion. 

We state this in the form of a theorem. 

Theorem 3.2: Corresponding to any solution (ZA. ~O) 

of (2. 13) and (3.8). oH/oa as defined in (3. 6) will be a 
constant of motion of the dynamical system (1. 2) with 
H = H(x. f). The associated symmetry mapping (1. 7). 
(1. 8) is then determined bye. ~o where EA is given by 
(2.12). 

4. REPRESENTATION OF EVERY CONSTANT OF 
MOTION AS A SYMMETRY-INDUCED 
DEFORMATION OF THE HAMILTONIAN 

In Sec. 3 it was shown by means of Theorem 3.1 that 
if H =, H(x) (and hence H is a constant of motion) then the 
symmetry-induced deformation of the Hamiltonian 
oH/Ba = ~H/oa =H .AZA(x,l) is also a constant of the 
motion. We shall now show for such dynamical systems 
[i. e .. those with H =H(x)] that corresponding to every 
constant of motion lVI(x, t) there exists at least one sym
metry vector ZtM)(X. t) such that 

(4.1) 

This will be done by use of a suitably chosen canonical 
transformation. 
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For any Hamiltonian H(x) ,=H(q, p) [see (1. 1)] there 
exists a canonical coordinate transformation9 

xA =xA(x) .... qi = i[l(q, p), Pi =P;<q, p), i = 1, ... ,n, 

(4.2) 

such that in (.x) coordinates 

H(q, p) =iiC(j, p) '= Pl' (4.3) 

It follows from (4.3) and Hamilton's equations in the 
(x) system that 

(4.4) 

are constants of motion, which by inspection are seen 
to be functionally independent. 

It should be recalled that the elements 1]AB of the 
symplectic matrix [1]AB] [see (1. 3)] transform as the 
components of a second rank contravariant numerical 
tensor under canonical transformations, i. e. ,10 

-AB axA axB CD AB 
1] = axC axD 1] =1] . (4.5) 

Under the coordinate transformation (4.2) H(x) trans
forms as a scalar as indicated by (4.3). It therefore 
follows that H.A and HA transform as covariant and 
contravariant vectors, respectively: 

(4.6) 

where 

H.. A ,= aH/xA (4.7) 

Since any symmetry vector ZA(X, t) transforms under 
(4.2) as a contravariant vector we may writell 

A ) axA 
-B - ) Z (x, t = W Z (x. t , 

and hence we note by (4.6) and (4. 8) that f:ili is a 
scalar, i. e., 

(4.8) 

f:ili(x)/lia =H ,A (X)ZA(X, t) =H,A (X)ZA(X, t) = MI (x)/lia. 

(4.9) 

Based upon the above-mentioned transformations a 
simple calculation shows that S(ZA) as defined by (2.13) 
transforms as a functionally form invariant vector, i. e. , 

S(ZA) '= Z:\HB 
- ZBH~B + Z~t = (a.xA /hC)S(ZC) = 0 

(4.10) 

(where the zero follows from the fact that ZC is a sym
metry vector). Hence (4.10) implies ZA is also a sym
metry vector. 

By means of (4. 3) and (4.7) we find that 

aZA aZA 

oxl + at =0. 

The solution of (4.13) can be written as 

fA = jA(Xl_ t, 3f, ... , x2"), 

(4.13) 

(4.14) 

where FA is an arbitrary function of the indicated argu
ments. We note that each of these arguments is itself 
a constant of motion [see (4.4)]. We state this (inter
mediate) result as 

Theorem 4.1: For every dynamical system (1. 2) with 
H =H(x) there exists a canonical coordinate system (x) 
in which each component ZA(X, t) of any symmetry 
vector is a constant of motion. 

Remark: From (4.14) it follows that the 2n com
ponents ZA can always be selected as 2n functionally in
dependent constants of motion. 

Suppose now that M(x, t) is an arbitrary constant of 
motion in the (x) coordinate system. In the (x) coordinate 
system M(x, t) transforms to 

(4.15) 

We now define a symmetry vector ztMl based on (4.14) 
and (4.15) by 

(4.16) 

From (4.8) we determine the components ZtM)(X, t) in 
the (x) coordinate system by 

axA -
ZA -_ ZB 

(M) - a-B (M)' x 
(4.17) 

Since S(ZtM) = 0 it follows from an equation similar to 
(4.10) that S(Z1M)=0, and hence Z1M)(X, t) is a sym
metry vector. It will now be shown that the ZtM) given 
by (4. 17) will satisfy the desired condition (4. 1). 

From Theorem 3. 1 referred to the (x) coordinates we 
obtain the constant of motion 

(4.18) 

by use of (4.3) and (4.16). It follows from (4.9), (4.15), 
and (4.18) that (4.1) will be satisfied by the Z1M) given 
by (4.17). From the degree of arbitrariness of the com
ponents 2tM) as given by (4.16) it is evident that the 
vector Z1M ) is not unique. 

We may now state 

Theorem 4.2: Every constant of the motion M(x, t) of 
a dynamical system (1. 2) with H =H(x) can be expressed 
as a symmetry-induced deformation of the Hamiltonian 
H, that is, M(x, t) may be expressed in the form (4.1) 
where Z1M)(X, t) is a symmetry vector. 

(4.11) 5. SCALING OF SYMMETRY VECTORS 
and hence in (4.10) ZBR~B=O. This implies by (4.10) 
that 

(4.12) 

~hich shows [see (1. 5)] that the individual components 
ZA(X, t) are constants of motion. l2 By use of (4. 11) we 
see that (4. 12) reduces to 
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Given a symmetry vector ZB(X, t), i. e. a solution of 
(2. 13), we determine if there exists a function A(x, t) 
such that 

(5.1) 

will also be a symmetry vector. From (2.13) we have 
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S(Z*B) =S(AZB) =AS(ZB) - (A,cJlC +A)ZB. (5.2) 

Hence (5.2) implies that if S(Z*B) is to be zero when 
S(ZB)=O, thenA,cHc+A,t=O (assuming ZB*O). There
fore, A(x, t) must be a constant of motion. Conversely, 
if A(x, t) is a constant of motion, then it follows from 
(5.2) that Z*B will be a symmetry vector. 

Theorem 5.1: If ZB (* 0) is a symmetry vector of the 
dynamical system (1. 2) [that is, ZB satisfies (2.13)], 
then a necessary and sufficient condition that Z*B(X, t) 
"OA(x, t)ZB(X, t) be a symmetry vector is that A be a 
constant of motion, 

We shall refer to Z*B as a scaling-related symmetry 
vector obtained from ZB by means of the scaling factor 
A. 

In keeping with (2.12) we write 

(5.3) 

where 

(5.4) 

Theorem 5.2: If (1. 7) and (1. 8) define a symmetry 
mapping in terms of (~B, ~O) [that is. (2.8) is satisfied], 
then a scaling-related symmetry mapping is defined by 
(~*B, ~*O)"O (A~B,An, where A =A(x, t) is an arbitrary 
constant of motion. 

Since A(x, t) is a constant of motion, then along a 
given dynamical path A(x, t) =Ao= const and hence along 
this path (Z*B, ~*B. ~ *') differ from (ZB, e, ~O) by this 
constant factor Ao as indicated by (5.1), (5,4), 

We next show that if ZA(X, f) is any symmetry vector. 
i. e., a solution of (2. 13), then Z~A will be a constant of 
motion. 13 To prove this we form from the symmetry 
equation S(ZA)=O [see (2.13)] 

[S(ZA)l.A=W,AHA+W,t=dW/dl=O, W"OZ~A' (5.5) 

By Theorem 5.1 the scaled vector Z*B(X, t) 
=A(x, t)ZR(X. i) is a symmetry vector and hence by (5.5) 
Z*~B is a constant of motion. We show below how this 
may be used to obtain an alternative proof of the time 
dependent related integral theorem (Theorem 3.1). 
From (5. 1) we have 

Z*B,R = (AZB),B =AZ~R +A,BZB. (5.6) 

Hence 

A,RZR =Z*,~ -AZ~B' (5.7) 

Since the right-hand side of (5. 7) is a constant of motion 
the left-hand side must also be a constant of motion. 
From the definition (2. 5) we have 

oA/oa=A,B~B +A,t~o=A,BZR + ~O(A'RHR +H,t)=A,BZR, 

(5. 8) 

because A is a constant of motion. We have thus proved 
that if A(x, t) is any constant of motion, then oA/oa 
(based upon the symmetry vector ZA) is a constant of 
motion, which is the related integral theorem. 

6. EXTENDED POISSON SYMMETRY VECTORS 

In Ref. 1, 2 it was shown how to construct a class of 
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symmetry mapping vectors derived from constants of 
motion. Such vectors, called Poisson symmetry vectors, 
were defined by ~tp)(x)"O 1)A RM(x),B' where 1vI(x) is any 
constant of motion of a dynamical system (1. 2) with 
H =H(x). [Such vectors ~1pJx) will satisfy (2.22) with 
¢ = o. 1 We now generalize this definition of a Poisson 
symmetry vector to the time dependent theory. 

For this purpose define the "extended Poisson sym
metry vector" 

(6. 1) 

where 

~1p)"01)ABM.R' ~~P\=N. (6.2) 

with 1\II(x, f), N(x, t) any constants of motion. 

We now prove that if 

H(x, t) = F(x) + Crt) (6.3) 

the vector Zfp) defined by (6.1) will be a symmetry vec
tor. i. e., it will satisfy (2.13). This implies that 
(~1p), ~(P») of (6. 2) will define a symmetry mapping (1. 7). 
(1. 8). 

We have then from (6. 1) and (2.13) that 

(6.4) 

By use of (6.3) and the conditions that M(x, l) and N(x, t) 
are constants of motion an easy calculation shows that 
each term on the right-hand side of (6 4) is zero. This 
completes the proof. 14 

We state this as follows. 

Theorem 6.1: If H(x, t) =F(x) + G(t), and J'vI(x, I). 
N(x, t) are any constants of motion of the dynamical 
system (1. 2), then the mapping (1. 7). (1. 8) defined by 
(6. 2) will be a symmetry mapping, and in addition the 
extended Poisson symmetry vector Z1p) defined by (6. 1). 
will be a symmetry vector [that is. it will satisfy (2.13)\. 

Corollary 6.1: If H(x, t) = F(x) + G(t). and if Z1p) is 
an extended Poisson symmetry vector as defined in 
(6.1). then ztp).t' Z1p).tt' ... will also be symmetry 
vectors. 

If in (6. 1) we choose N = 0, then it is easily shown 
that the resulting Poisson vector 

(6.5) 

will be a symmetry vector for the dynamical system 
(1. 2) with H =H(x, t) (H arbitrary). If now R(x. t) denotes 
any constant of motion of such a system, then by 
Theorem 3.1 with ZA =Z1p) of (6.5) we have's 

oR/oa=TjABRjvI. R = [R,A! \. (6.6) 

We recognize that (6. 6) gives an alternative proof of 
Poisson's theorem on constants of motion since the 
right side of (6.6) is the Poisson bracket of the ar
bitrary constants of motion R(x, I), IH(x.l). and the left 
side of (6.6) is a constant of motion by Theorem 3.1. 
Hence, Theorem 3.1 may be viewed as a generalization 
of Poisson's theorem. 16 

Note if we consider the case H =H(x) and choose 
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R=H then (6.6) shows oH/oa=-M. t • 

Note also if H is of the form (6.3) and Z11') is defined 
by (6. 1), then the constant of motion Z1p). A = M. t. 

We now show how the Poisson symmetry vector form 
(6.5) may be used to determine r "" 2n linearly indepen
dent symmetry vectors. Let M ",(x, t), 0' = 1, ... , r, be 
a set of functionally independent constants of motion of 
(1. 2) with H =H(x, t), where H(x, t) is now taken to be 
arbitrary. We show that the Poisson symmetry vectors 

Z1P)",(X,t)==1jABM",.B' O!=l, ... ,r, (6.7) 

are linearly independent. 

To prove this assume they are linearly dependent. 
Then there exist constants k'" not all zero such that 

k'" Z ~ = 0, O! = 1, .... r. (6.8) 

From (6. 7), (6. 8) it follows that 

k"'l'vI".B=O. (6.9) 

This implies k" M" = </!(t). Since k" M '" must be a constant 
of motion, it follows that d</!/dt=O or IP=</!o=const. 
Hence k"'M", = c/!o which contradicts the assumption that 
the M" are functionally independent, and therefore the 
Z! of (6.7) are linearly independent. 

Theorem 6.2: A dynamical system (1. 2) with 
H = H(x, t) admits r "" 2n linearly independent symmetry 
vectors of the form (6.7) where the M,,(x, f) is a set of 
r functionally independent constants of motion. 

7. GROUPS OF DYNAMICAL SYMMETRIES 

In this section we examine group properties of sym
metry vectors in phase space. 

A. Commutator theorem 

We show first that if Z~(x, t), zt(x, t) are any two 
symmetry vectors [i. e., solutions of (2. 13)]. then 
Z!a defined by17 

Z!s=£" Z~ =Z~.B Z~ - Z:Z!.B 

will also be a symmetry vector. 

Since S(Z!)=O and S(Z~)=O. we may write 

Z~lS(Z~ )J.B - Z:[S(Z!)l.B = o. 

(7.1) 

(7.2) 

If (7.2) is expanded and then use be made of (2. 13) as 
applied to Z!. Z~ we obtain the result 

(7.3) 

Hence Z~s as defined by (7.1) will be a symmetry vector. 

We state this as Theorem 7. 1. 

Theorem 7.1; Corresponding to any two symmetry 
vectors Z!(x, f), zt(x, t) [solutions to (2.13)J their com
mutator Z~B defined by (7.1) will also be a symmetry 
vector. 

If now (2. 13) admits a complete set of s linearly in
dependent solutions {Zl= {zt, ... , Z:}, then every other 
solution will be linearly dependent on the vectors of 
this set. If Z~, Z1 c {Z}, then by Theorem 7.1 Z!B will 
be a solution of (2.13) and hence we may write by (7.1) 
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(7,4) 

where C~s are constants. Defining a set of operators 

x'" == z~a A (= A",/oa), 

we obtain from (7.4) and (7.5) 

(X""Xs) = C~aXr' 

where 

(7.5) 

(7.6) 

(7.7) 

Equation (7.6) implies that [Xl' ... ,XJ is a basis for an 
s-parameter (complete) group C, of symmetry vectors. 

Theorem 7.2: If the dynamical system (1. 2) admits a 
complete set of s linearly independent symmetry vectors 
Z1, ... , Z:, then it admits an s-parameter group C, 
generated by these vectors. 

By Theorem 6.2 we have the following corollary to 
Theorem 7.2; 

Corollary 7.2: The complete group of symmetries (if 
it exists) is of order >- 2n. 

B. Poisson algebras and groups of Poisson symmetry 
vectors 

We consider the question as to when a set of r Poisson 
symmetry vectors ztp) defined by (6.7), where M",(x, t) 
is a set of r functionally independent constants of motion 
of (1. 2) with H =H(x, t). will define an r-parameter 
group of symmetries in that (7.4) or the equivalent (7.6) 
holds for the vectors Z1p)". 

Assume then the Z1p)", of (6.7) define an r-parameter 
group of symmetries. From (7.4) it will follow by use 
of (6. 7) that 

([,vI s' M", J- C ~ B''\1).A = O. O! , p, 'Y = 1. ... , r . (7.8) 

Hence we may write 

[Ms' M"J- C~sMr = G",s(t). (7.9) 

where G"B(t) must be a constant of motion. This implies 
dG"B/dt=O or G"B=k",s=const. Hence from (7.9) we 
obtain as necessary conditions on the M '" 

[Ma,M",J-C';,sMr=k",a' (7.10) 

Conversely, if (7.10) is satisfied for a set of r func
tionally independent constants of motion M"" it follows 
that (7.4) holds for the vectors ztp)", of (6.7). 

Theorem 7.3: A necessary and sufficient condition 
that a set of r Poisson vectors ztp)",. Q = 1. .... r. 
defined by (6. 7) determine an r-parameter group of 
symmetries of the system (1. 2) with H = H(x. t) is that 
(7.10) be satisfied, where the }'vI", (x. t) is a set of r ~ 2n 
functionally independent constants of motion and where 
C~B are the structure constants of the group and k"'B 
are constants. 

If k",B=O in (7.10). we say the M", define a Poisson 
algebra. 

We next determine a sufficient condition that the group 
of Poisson symmetry vectors based upon the constants 
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of motion M", as described in Theorem 7. 3 determines 
a Poisson algebra of order r. 

Suppose then the constants k",e of (7. 10) are such that 
the equations 

C~ekr=k",e 

have solutions for ka = const. Then 

M~=Ma+ka 

will be constants of motion such that 

[M~. MJ=C:aM;, Q',J3,y=I, ... ,r, 

(7.11) 

(7.12) 

(7.13) 

and hence the lvl~ define a Poisson algebra of order r. 

Theorem 7.4: If the conditions of Theorem 7.3 are 
satisfied, then a sufficient condition that the system 
(1. 2) admit a Poisson algebra of order r"" 2n is that 

rank of matrix [C~e] = rank of matrix [C~B' kaBl, 

(7.14) 

(where y = column and Q'J3 = row). The algebra is then 
defined by (7.13), where M~ is given by (7.12), and the 
ka are solutions of (7. 11). 

Remark: If the kOle=O, then (7. 11) is satisfied by 
kr=O and M~=MOI' 

As an illustration of the above discussion, we con
sider the case H =H(x) in the canonical coordinate 
system (x) of Sec. 4 [see (4.3)]. From (4.4) we define 
the 2n functionally independent constants of motion M 
by [see (4.4)] 01 

We calculate 

(a) [iiit Ol , Me] ='t]OIe; (b) Zti»OI='t]A RMOI •B='t]AOI, 

O!, J3 = 1. ... , 2n. 

(7.15) 

(7. 16) 

It is evident from (7.16) that these Z1p)0I define a 2n
parameter Abelian group of symmetries (C~e=O). From 
(7. 16a) the matrix rank condition (7.14) is not met and 
hence there is no Poisson algebra of order 2n of the 
type described in Theorem 7. 4. However Abelian 
Poisson algebras of order r "" n may be easily obtained 
in the f,9l1owing m~nnex:; From the set (7.15) choose r 
of the lvf's, say, M

0I1
,Ma2 , ••• ,MOl so that 100j- O!j I *n, 

i.j = 1, .. . , r. It follows from (7. 16a) that the Poisson 
brackets [iVI OI ., M .l = 0, and hence such a set of M ~ de-

I OI. J .... i 
fines an Abelian Poisson algebra of order r "" n. 

This example enables us to state the following 
theorem. 

Theorem 7.5: Every dynamical system (1. 2) with 
H =H(x) always admits Abelian Poisson algebras of 
order r ""n. 

C. Dependency relations 

We now assume a dynamical system (1. 2) with 
H =H(x, t) which admits an r-parameter group Sr of 
symmetries based upon r vectors Z~(x, t) and hence 
which satisfy (2.13) and (7.4). Corresponding to any 
constant of motion M(x, t) we have from Theorem 3.1 a 
"first derived" constant of motion 
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MOl = A OiM/l5a=M.AZ!, Q' = 1, ... , r. (7.17) 

From (7.5), (7.6) we have 

(7.18) 

where MOIa= A OIM/l5a is a "second derived" constant of 
motion, and hence (7.18) exhibits a linear dependency 
relation between the first and second derived constants 
of motion based on the constant of motion M(x, f). This 
result is recognized as an extension of a similar rela
tion between constants of motion obtained in the time 
independent theory. 1 

As a second example of linear dependence we continue 
with the vectors Z~ which define the group Sr' We obtain 
from (7.4) 

Z!B ,A = C~eZ:.A . 

If we define 

WOI = Z~.A' W OIe= AOI We/l5a = Wa,BZB 
01' 

then (7. 19) can be written in the form 

(7. 19) 

(7.20) 

(7.21) 

Since W 01 is a constant of motion [see (5. 5)], it follows 
by Theorem 3. 1 that W 018 is a first derived constant of 
motion, and hence (7.21) is a dependency relation be
tween the Wa and their first derived constants of motion. 

D. Symmetry groups determined by extended Poisson 
vectors 

From Theorem 6. 1 we know that the extended Poisson 
vectors ztp) 01 [based on the constants of motion MOI(x, t), 

NOI(x,l) for H(x, t)=F(x) + G(t)] given by 

Zti»OI='t]ABM".B-NOIHA. Q'=I, .... r, 

are symmetry vectors. 

(7.22) 

We now determine when such a set of ZtPIOi. define an 
r-parameter group in that (7.4) will be satisfied. A 
necessary condition is obtained by substitution of (7.22) 
in (7.4) which gives 

(7.23) 

It can be shown that (7. 23) is also a sufficient condition. 
Hence we state 

Theorem 7.6: A necessary and sufficient condition 
that the extended Poisson symmetry vectors (7.22) 
determine an r-parameter group of symmetries is that 
(7.23) be satisfied. 

To illustrate this theorem we consider two examples. 

Example 1: Here we takeM,,=MOI(x)=N,,(x) in (7.22) 
such that (MOI,Me]=O and choose C:e=O. An inspection 
of (7.23) under these assumptions shows it is satisfied. 

As a specific example satisfying these conditions we 
select H to have a Liouville form 
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n 
H(x)=6 [¢i(Pj)+lP;(qi)), (7.24) 

i=l 

where ¢j is a function of Pj only and lPj is a function of 
q i only. It is easily verified that 

Mj(x),= ¢j(P j) + lPj(qj), i=l, ... ,n, (7.25) 

are n constants of motion such that [MpMj]=O. Hence 
the ztP)a defined by (7.22), (7.25) define an n-param
eter Abelian symmetry group. 

Note that the n-dimensional simple harmonic oscilla
tor is obtained by choosing ¢i'=(1/2)p~, lPi,=(1/2)qi

2 
and 

the geodesic system is obtained by choosing ¢i '= (1/2)P~, 
lPi'=O. 

Example 2: For this example we take Na =Ma.t(x, t) 
in (7.22). The corresponding extended Poisson vectors 
are given by 

Z1P)a(x,l)=7jABM a•B -Ma./iA, a=l, ... ,r. (7.26) 

In this case it can be shown that a necessary and suf
ficient condition that (7.23) be satisfied is that 

[Ma, M al.e +Ma.tMa.et -Ma.~",.et - C:,JI1y.e = 0, 

Cl!,J3,y=l, .•. ,r. (7.27) 

As a specific illustration of this case we consider the 
n-dimensional harmonic oscillator with 

. 2 
H,=(1/2)~7=1(P~+q'). We choose C:a=O, G',J3,y 

=1, .... n, and 

MI '" [arctan(PI/ql) - tF, Ma'" kaMI + (P~ + qa
2
)1/2, 

a=2 ...• ,no (7.28) 

It is found that (7.27) is satisfied for these choices, 
and hence the Z1p)", of (7.26) determine an n-parameter 
Abelian symmetry group. 

E. Groups of symmetry mappings 

Consider a set of r extended Poisson vectors Z1p)0l 
defined by (7.22) with MOl (x) = N", (x) such that 

[M B• Ma1=C:,JI1y, Cl!,(3, y=l .... ,r. (7.29) 

From (6.1), (6.2) we have 

~1P)" =7j
AB

M".B' ~7p)" =M". (7.30) 

We define operators 

u'" '= ~1p)" a A' T" '= ~7p)Olat. (7.31) 

A calculation shows that 

(Ua,UB)=C~aUy, (U",Ta)=C:BT y, (T""Ta)=O. 

(7.32) 
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Hence we consider the set of symmetry mappings (1. 7), 
(1. 8) determined by (7.30) [see Theorem 6.1], 

XA=XA+~1p)oa, T=t+~7p)oa, 

where 

(7.33) 

(7.34) 

as defining a 2r-parameter group of symmetry mappings. 

We note that Example 1 following Theorem 7.6 
illustrates the above concept. 
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Observables, operators, and complex numbers in the Dirac 
theory 

David Hestenes 

Physics Department, Arizona State University, Tempe, Arizona 85281 
(Received 30 September 1974) 

The geometrical formulation of the Dirac theory with spacetime algebra is shown to be equivalent to 
the usual matrix formalism. Imaginary numbers in the Dirac theory are shown to be related to the 
spin tensor. The relation of observables to operators and the wavefunction is analyzed in detail and 
compared with some purportedly general principles of quantum mechanics. An exact formulation of 
Lormor and Thomas precessions in the Dirac theory is given for the first time. Finally, some basic 
relations among local observables in the nonrelativistic limit are determined. 

1. INTRODUCTION 

The Dirac electron theory is widely acknowledged to 
be the most precise available quantum theory of a single 
particle. Yet the principles and interpretation of quan
tum theory continue to be discussed at great length in 
the literature without taking the Dirac theory into ac
count. Though the mathematical formalism of the Dirac 
theory unfortunately does not uniquely determine its 
interpretation, one should expect a reasonable inter
pretation to provide Some understanding of the mathe
matical structure of the theory. On this score many 
widely proclaimed general principles of quantum theory 
prove to be profoundly defiCient, if not substantially 
wrong. For example, if the uncertainty prinCiple is 
basic to the interpretation of quantum mechanics, why 
has it never been given a clear formulation in the full 
Dirac theory? And if Planck's constant provides an 
absolute limit on the precision of measurements, why 
does it also determine the magnitude of the spin? 

This paper aims to clarify the geometrical and physi
cal interpretation of the Dirac theory and determine 
some of its implications for the interpretation of quan
tum theory in general. With a formalism developed in 
Refs. 1, 2, 3 the Dirac theory can be given a complete
ly geometrical formulation, involving neither matrices 
nor complex numbers. In the process, the following 
significant facts are established concerning the inter
pretation of the theory: (1) The four gamma matrices 
playa completely geometrical role in the Dirac theory. 
They are matrix representations of four orthonormal 
vectors (not four matrix components of a single vector 
as often suggested). The algebra of gamma matrices 
has the same geometrical Significance as tensor algebra. 
The gamma matrices have no function in the Dirac the
ory which entitles them to be regarded as operators with 
any special quantum-mechanical significance. (2) The 
unit imaginary i' = (- 1)1/2 in the customary formulation 
of the Dirac has a definite geometrical and physical 
significance. It is a superfluous adjunct of the mathe
matical formalism in the sense that it can be replaced 
by the tensor quantity it actually represents. Specifi
cally, the quantity ';i'n, wherever it appears in equa
tions of the Dirac theory, is a representation of the spin 
tensor by one of its eigenvalues. When ~i'n has been re
placed in the formalism by the spin bivector it repre
sents, antiparticle conjugation can be identified as a 
gco}J)('tricnl transformation of observables of the theory. 
(3) The Dirac equation and the wavefunction can be 
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eliminated from the Dirac theory, leaving a set of con
servation laws and constitutive relations for observables. 

The above facts and further details have already been 
established in Refs. 2 and 3 0 However, these papers 
are open to misunderstanding, because they do not ex
plain in detail exactly how they are related to the con
vehtional matrix formulation of the Dirac theory. This 
paper aims to supply the miSSing details and make it 
easy to translate expressions of the matrix formalism 
into the geometrical language and vice-versa. The first 
few sections are devoted to this end, with emphasis on 
establishing the first two facts cited above. 

Section 3 derives the geometrical form of the Dirac 
equation, which involves no complex numbers. 

Sections 4 and 5 analyze the relation of the wave func
tion to observables in detail. In Sec. 5 some common 
notions about a correspondence between observables and 
operators are criticized in the light of the Dirac theory. 
Correspondences of observables with the wavefunction 
are held to be fundamental. It is suggested that the 
significance of eigenvalues in quantum theory is to be 
found more in their association with constant and homo
geneous local observables than with operators. 

Section 6 introduces the fundamental relative observa
bles and analyzes the physical interpretation of the en
ergy density in considerable detail. For the first time 
expressions for the Larmor and Thomas precession 
energies are derived from the Dirac theory without any 
approximations. 

Section 7 proves that in the nonrelativistic limit the 
Gordon current is equal to the local momentum density 
but differs from the charge current by the magnetiza
tion current associated with the spin density. 

2. GEOMETRIC SIGNIFICANCE OF THE DIRAC 
MATRICES 

Recall some of the fundamental properties of the 
Dirac matrices (as developed, for example in Ref. 4). 
The DiY((c ma/yiccs are defined as a set of irreducible 
matrices Y" which satisfy the anticommutation rules 

'}"Yv+Yv}',,=2gJl.J, (2. la) 

where the g"v (J..I., v = 0,1,2,3) are components of the 
spacetime metric tensor and 1 is the unit matrix. Since 
it can be proved that the Y" must be 4 x4 matrices, their 
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irreducibility can be expressed by the condition that the 
trace of (2. 1a) gives 

Conditions (2.1) can be satisfied only by traceless 
matrices, that is, 

tTr)l" =0. 

(2.1b) 

(2.2) 

Conditions (2.1) do not determine the Dirac matrices 
uniquely. However, it can be shown that any two sets of 
Dirac matrices {YJ and {y,,'} are related by a similarity 
transformation, that is, 

)1,/ = S)I"S-I, (2.3) 

where S is a nonsingular matrix. The Y" over the com
plex numbers generate the complete algebra of 4 x4 
matrices. But certain elements of the algebra are dis
tinguished by their association (2.1) with the spacetime 
algebra, and this gives the entire algebra a geometric 
Significance. The 4 x4 matrix algebra with the geomet
ric interpretation induced by the conditions (2.1) is 
called the Dirac Algebra. 

Clearly, (2.1) indirectly assigns some geometric 
Significance to the Dirac matrices themselves. But in 
the usual approach the full geometric Significance of the 
y" is not determined until their relation to a Dirac 
spinor has been specified. Equivalent results can be 
achieved more efficiently by a change in viewpoint. To 
see how, it is only necessary to realize that the key 
relation (2. 1a) does not depend in any essential way on 
the assumption that the )I" are matrices. All that is re
quired is that the )I" belong to an associative noncom
mutative algebra. 

The appropriate change in viewpoint is achieved 
Simply by interpreting the )I" as vectors of a spacetime 
frame instead of as matrices. By definition the scalar 
products )I" ')lv of these vectors are just the components 
g "V of the metric tensor. So the two equations (2.1a) 
and (2. 1b) for matrices correspond to the single 
equation 

(2.4) 

for vectors. The vectors )I" generate an associative 
algebra over the reals which has been dubbed the space
time algebra in Ref. 1, because it provides a direct 
and complete algebraic characterization of the geomet
ric properties of Minkowski spacetime. 

By providing a geometrical interpretation of the )I" 

which does not depend on the notion of spinor, geomet
ric algebra releases the )I" from their confines in rela
tivistic quantum theory and elevates them to a central 
position in the mathematical description of all physical 
systems in spacetime. The advantages of using space
time algebra in place of the usual tensor methods have 
been adequately demonstrated in Refs. 1, 5, and 6, to 
which the reader is referred for details. Of course any 
equation in the spacetime algebra can be reexpressed as 
an equation in the Dirac algebra, but besides having a 
more direct geometric interpretation, the spacetime 
algebra is mathematically more efficient, as should 
already be evident from a comparison of (2.1) with 
(2.4). This becomes clearer as manipulations with the 
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two algebras are compared in more detail. 

Since the Dirac matrices in (2. 1) can obviously be 
regarded as matrix representations of the vectors in 
(2.3), it is convenient to persist in using the same sym
bols y" for both to facilitate comparison of the algebras 
and translation of equations from one system to the 
other. For the s~me reason, it is convenient to estab
lish a correspondence between the nomenclatures of the 
two systems. The elements of the spacetime algebra 
are called multivectors and every such element can be 
expressed as a polynomial of the y" over the reals, 
which has at most 16 linearly independent elements. 
(see Refs. 1 and 5 for more details). A multivector is 
said to be even (odd) if it does (does not) change sign on 
replacement of )I" by -)I" in its polynomial representa
tion. The same terminology will be applied here to 
matrix representations of multivectors. Of course, the 
Dirac algebra admits polynomials of the )I" over the 
complex numbers, but, in contrast to other elements of 
the algebra, the unit imaginary of the complex field has 
no geometric Significance except, as will be shown in 
the next section, in connection with spinors. 

It may be worth pointing out that a (- 1)112 is common
ly introduced as a "scalar" in the Dirac theory in two 
distinct ways, first as a root of negative terms in g "V, 
and second as an essential element of the Dirac equa
tion. Geometric algebra shows that (_1)1/2 has a dif
ferent geometrical significance in each case, and it 
provides the machinery to keep the distinction clear. 
Thus, Eq. (2.4) gives )1,, 2 = g "V where )I" = (g" ,,)1 /2 (no 
sum on 11). More particularly, )I~ = 1 has the timelike 
vector )10 = (1)1/2 as a "root of unity", while )Ii = - 1 has 
the spacelike vector )11 = (- 1)1/2 as a "root of minus 
one. " This shows that in the first of the above cases 
the "scalar (- 1 )112" serves to distinguish between 
spacelike and timelike vectors, and that such a quantity 
is rendered superfluous by the use of spacetime algebra. 
It will be shown later that in the second case (_ 1)1/2 

represents a spacelike bivector. 

In accordance with conventions adopted in Ref. 5, 
the scalar term in a polynomial representation of a 
multivector M is denoted by M(O) and called the scalar 
or (O-vector) part of M. From (2.2) it is easy to prove 
that in general 

(2.5) 

which shows that "scalar part" spacetime algebra cor
responds to "trace" in the Dirac algebra. In particular, 
from (2. 1b) and (2.4) 

(2.6) 

Moreover, Eq. (2.2) becomes ()I,,)(O) = 0 in spacetime 
algebra and simply says that a vector is not a scalar. 
The factor t in (2. 5) and (2.6) has no geometrical im
port. Its appearance is another indication that matrix 
algebra is not ideally suited to the geometrical role it 
plays in the Dirac theory. 

Hermitian conjugation plays an important role in 
matrix theory, but it has no geometrical significance in 
the Dirac algebra except in connection with a specific 
matrix representation. In spacetime algebra a similar 
role is played by an operation called reversion. The 
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rCl'crsc S;1 of a multivector M is obtained from M by 
reversing the order of y's in its polynomial representa
tion. The relation of reversion to Hermitian conjugation 
will be given in the next section. 

Equation (2. 3) was presented as a change in repre
sentation of the Dirac matrices, but the fact is the 
same equation sppears in spacetime algebra where the 
notion of representation has no significance. The 
geometrical requirement of spacetime algebra that the 
y".' in (2.3) must be vectors entails that they can be 
written as a linear combination y".' ooa,/yv of the Yv, so 
(2.3) must be invariant under reversion, from which it 
follows that 5 can be chosen so that 5-1 = S. Thus (2.3) 
takes on the special form 

(2.7) 

This equation describes a Lorentz transformation of a 
frame of vectors Y," into a frame {y".'}. Moreover, 
Eq. (2.7) can be solved for 5 as a function the y".' and 
the Y," alone, which proves the 5 is indeed a multivector 
and that every Lorentz transformation can be expressed 
in that form. Proper Lorentz transformations (i. e. , 
transformations continuously connected to the identity) 
will be of special interest in the analysis of the Dirac 
theory. It can be shown that (2.7) is a proper Lorentz 
transformation if and only if 5 is an C1!cn multivector 
satisfying 

(2.8) 

From this condition it is only an algebraic exercise to 
show that 5 can be put in the form 

(2.9) 

where B is a bivector. Without elaborating on the im
portant geometric notion of a bivector, it is sufficient 
for present purposes to remark that any bivector B can 
be written in the "polynomial form" 

(2. lOa) 

where the 

1',"/\ Yv = HI',", Yv 1 = i(y,"Yv - YvY,") (2. lOb) 

provide a complete basis for the space of bivectors, and 
the 

B"v = 1''' • B· 1'" = B(y'" /\ Y") = (BY"Y")(Ol = - B V
" (2. lOc) 

are alternative expressions for the six independent 
scalar coefficients. For more details and proofs of the 
assertions in this paragraph see Ref. 1, Chap. IV and 
Appendix B. 

3. THE DIRAC EQUATION WITHOUT 
COMPLEX NUMBERS 

A t first sight the Dirac algebra appears to be more 
general than spacetime algebra, because its "scalar 
field" consists of complex numbers rather than real 
numbers only. But, it will be shown that the imaginary 
unit i' of the Dirac algebra is superfluous in the physi
cal theory, and its use serves only to obscure the 
geometrical and physical interpretation. This section 
shows that i' can be replaced by a spacelike bivector 
and finds the appropriate formulations of the wavefunc-
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tion and Dirac equation in terms of the spacetime alge
bra. The next section shows that i' is superfluous in the 
expression for observables of the Dirac theory. 

A Dirac spinor 'iF is a column matrix with four com
plex components, that is, 

(

<P1) (0'1 +i'(3) 
'iF = <P2 = 0'2 + ~: (32 , 

<P3 0'3 +z (33 
<P4 0'4 +i'(34 

(3.1) 

where the O"s and (3's are real numbers and i' is the 
(_1)1/2 of the matrix algebra. The representation (3.1) 
in terms of components <Pj, <P2, <P3, <P4 presumes a specific 
representation of the Dirac matrices. It is convenient 
to work with the socalled standard representation: 

YO=(~ _0/), Yk=(~k -OUk). (3.2a) 

Here / is the 2 x 2 unit matrix and where the Uk are the 
usual 2 x 2 Pauli matrices, that is, are traceless 
Hermitian matrices satisfying 

(3.2b) 

By virtue of the fact that the Y," are related to the spac e
time metric by (2.1), 'iF and its components have a def
inite geometrical Significance, a significance to be 
ascertained below by finding an expression for 'iF in 
terms of spacetime algebra which is independent of the 
matrix representation. 

As explained in Refs. 1 and 5, in the spacetime al
gebra the quantities Uk defined by Uk = YkYO (k = 1, 2, 3) 
are to be interpreted as vectors relative to the inertial 
system specified by the timelike vector Yo. The Uk 

generate an algebra over the reals which is isomorphic 
to the Pauli algebra. To emphasize this fact it is con
venient to write 

(3.3) 

in analogy to (3. 2b). On the other hand, Uk = YkYO implies 
0"1U2U3 = 1'01'11'21'3' This fact can be expressed only in a 
4x4 matrix representation of the O"k' The 4x4 matrix 
representations of the O"k are commonly denoted by O'k 

in the literature (e. g., p. 69 of Ref. 4), but to help 
keep geometric significance to the fore the symbols O"k 
are used here. From the standard representation (3.2), 

(3.4a) 

(3.4b) 

which imply 

iO"k = (i~Uk i'U) (3.5) 

Now introduce a basis in spinor space 

such that 
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and 

(3.6a) 

(3. 6b) 

(3.6c) 

Supposing (3.1) refers to this representation, by using 
(3. 6c) to eliminate u2, u3, u4, and (3. 6b) to eliminate the 
imaginary unit i', >Ir can be written 

>Ir = if!lul + if!2U2 + if!3u3 + if!4u4 

= (<PI - i(12if!2 + (13zJ!3 + (11zJ!4)U 1 

= {O'I + (0'4(11 + 134(12 + 0'3(13) +i({32(1j - 0'2(12 + 131(13) +i133}Uj. 

Thus any Dirac spinal' >Ir can be written in for form 

(3.7) 

where if! can be written down directly from the column 
matrix form (3.1) by using 

zJ! = 0'1 + (0'4(11 + 134(12 + 0'3(13) + i (~(11 - 0'2(12 + 131(13) + i133 

= 0'1 + O'4Yl Yo + 134 1'21'0 + 0'31'31'0 

+ ~Y3Y2 + 0'21'3 Y! + 1311'21'1 + 1'5133' (3.8) 

The significance of (3.7) and (3.8) is that the unit 
imaginary i' has been eliminated to express >Ir uniquely 
as a function of an even multivector I/J. But I/J can be ex
pressed as an element of the spacetime algebra at once 
simply by interpreting the y's as vectors instead of 
matrices. As will be seen, this helps to make the 
geometrical Significance of spinors explicit. 

Dirac's equation for an electron with charge e and 
mass m in an external electromagnetic field can be 
written 

1'" ~'1fa" - ~ A,,)>Ir =mc>Ir 

where 1'" = (y.J-l =g"Vyvo With 

o =y"o", ° =_0_ 
" oX" 

and 

A ooA" y" =A"y" , 

the Dirac equation assumes the form 

(i'1fo - ~ A)>Ir =mc>Iro 

(3.9) 

(3.10) 

(3.11) 

It is crucial to note that the unit imaginary i' in the 
Dirac equation cannot be absorbed into the definition of 
the 1'" while both 0 IL and AIL are kept real. Since the 
Dirac equation describes a physical property of the 
electron, the nontrivial explicit appearance of if in the 
equation implies that i' has a physical Significance. 
That Significance remains to be determined. 

The i' in the Dirac equation can be replaced by a 
multivector by using (3.7) along with (3. 6b) to put (3.11) 
in the form 

(lfoif!Y2Yl - ~ AzJ!)YOUI = mc1j!ul' (3.12) 

The Yo was inserted in the right side of (3.12) by using 
(3.6a) to make the coefficients of Uj even multivectors. 
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Although ul does not have an inverse, the coefficients 
of u1 in (3.12) can be equated, because, as (3. 6c) shows, 
even multivectors operating on u1 generate a complete 
basis for Dirac spinors. Therefore, (3.12) yields 

(no zJ! Y2Yt - ~ AzJ!)YO = mczJ!, 

or equivalently, 

(3.13) 

Conversely, by multiplying (3.13) on the right by ul and 
using (3.6) and (3.7) the Dirac equation is recovered. 
So (3.13) is fully equivalent to the Dirac equation (3.11), 
and, by using (3.7), a solution of the one equation can 
be easily expressed as a solution of the other. 

By interpreting the y's as vectors instead of matrices, 
Eq. (3.13) becomes an equation in spacetime algebra 
which may fairly be called the Dirac equation in that 
language because of its equivalence to the usual matrix 
equation. Likewise, it is appropriate to refer to if! as a 
spinor in the spacetime algebra. In the spacetime 
algebra, (3.10) simply expresses the potential A as a 
linear combination of basis vectors, and the socalled 
"Dirac operator" 0 introduced by (3. 9) can be directly 
interpreted as the derivative with respect to a space
time point X =x"y,.. 

The most significant feature of (3.13) is that the i' 
which appears in (3.11) has been replaced by the bivec
tor Y2Yb because bivectors have a straightforward 
geometrical interpretation in spacetime algebra. So 
translation of the Dirac theory into the language of 
spacetime algebra promises to reveal a hidden signifi
cance of imaginary numbers in the Dirac theory. This 
promise will be completely fulfilled in the next section. 

The derivation of (3.13) made use of a specific matrix 
representation of the I'lL' The consequence of using any 
other representation can be ascertained by considering 
an arbitrary change of basis in Dirac "spin space" 
which takes 1(1 to 

(3.14) 

Now the transformation matrix 5' in (3014) can be taken 
to be an even multivector; for if 5' has an odd part, be
cause of (3. 6a) that part can be made even without 
affecting (3. 14) by multiplying it on the right by Yo; 

similarily, any "complex coefficient" in a polynomial 
representation of 5' can be replaced by an even multi
vector by using (3. 6b). By an argument to be given later 
in connection with a more important issue, the fact that 
S' is even implies that it can be put in the form 

5' =exp(i6)5, (3. 15a) 

where S satisfies (20 8), 0 is a scalar, and it will be re
called, i satisfies (304b). The inverse of 5' is 

5,-1 = exp(- i 0)5. (3. 15b) 

Hence (3.14) gives 

(3.16) 

Equations (3. 6a, b) can be transformed into the new 
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representation by multiplying them by S' and using 
(3. 15) and (3. 16) together with the fact that i = Y5 anti
commutes with the Y IL ; one gets 

(3. 17a) 

(3. 17b) 

where the Y,,' are related to the Y IL by (2.7). With (3.16), 
(3. 7) can be put in the form 

\If = <P' exp(- ili)ut' 

where 

~)' = <PS. 

(3. 18a) 

(3. 18b) 

Substituting (3. 18a) into the Dirac equation (3.11), 
and using (3. 17a, b) to get an equation for lj!' in the same 
way that (3. 6a, b) were used to get an equation for ~', 
one notices that the factor exp(- iii) can be eliminated 
yielding the equation 

(3.19) 

This has the same form as (3.13). Indeed (3.19) can be 
obtained directly from (3. 13) by multiplying it on the 
right by the constant factor S. For note that, by (2. 8) 
and (2.7), 

<J!r2yJi = lj!RRY2Riiy/i = lj!'Y2 'Yi', 

which shows how the terms on the left of (3.13) and 
(3. 19) are related. 

Thus it has been proved that the form of (3.13) is 
uniquely determined, independently of the choice of a 
representation for the Dirac matrices. The specifica
tion of vectors Y2, Yj, and Yo in (3.13) is determined 
only to within a proper Lorentz transformation; this 
arbitrariness corresponds to the freedom to choose a 
matrix representation for the Dirac theory. The form 
of the usual Dirac equation (3.11) is representation in
dependent. However, no solution to that equation can be 
exhibited without choosing a specific representation. 
The significance of such a choice is hidden in the matrix 
formulation of the Dirac theory. It has been uncovered 
above. A choice of representation amounts to a specific 
correspondence between 4 x 4 matrices and vectors. 
Though the choice is to some extent arbitrary, a def
inite choice must nevertheless be made. The explicit 
appearance of )"s in (3.13) and (3.19) is a consequence 
of such a choice. It has already been pointed out that 
this implies that i' must be interpreted geometrically 
as a spacelike bivector. A more complete interpreta
tion will be provided in the next section. 

It should be noted that in conventional treatments of 
the Dirac theory, 4 it is proved that the Dirac equation 
retains its form under Lorentz transformations. That 
proof is easily translated into the present language, but 
it would be superfluous, for having eliminated matrices 
and interpreted the 1'" as vectors, we have put the Dirac 
equation in the form (3.13) which is manifestly indepen
dent of coordinates. It cannot be overemphasized that 
the vectors Yo, Yl, Y2 appearing in (3.13) need not be 
associated with any coordinate frame; they are simply a 
set of arbitrarily chosen orthonormal vectors. Adop
tion of a coordinate frame with Yo as the time component 
is equivalent in the conventional theory to adopting a 
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matrix representation for which Yo is Hermitian and the 
Yk are anti-Hermitian. Adoption of the standard repre
sentation (3. 2) associates by (3. 6b) the i' of the matrix 
representation with the bivectors Y2 Yl in (3.13). Thus, 
the standard representation is distinguished by relating 
Hermitian conjugation and complex numbers of the 
matrix algebra to intrinsic features of the Dirac 
equation. 

There is an alternative formulation of the Dirac equa
tion in terms of spacetime algebra which should be 
mentioned. Define the quantity <I> by the equation 

(3.20a) 

where 

(3.20b) 

Multiplying (3. 13) on the right by U and noting that 
Y2 Yj U = Ui0'3 = Ui and YoU = U, one gets 

nD<I>i - ~ A<I> = I1/c<I>. 
C 

(3.21) 

Except for the choice of units and a difference in sign 
which is merely a matter of convention, (3.21) is identi
cal to Eq. (13.2) of Ref. 1. It is the first formulation of 
the Dirac equation in terms of spacetime algebra. 

Comparison of (3.21) with the matrix Dirac equation 
(3.11) suggests that the pseudoscalar i = Ys in (3.22) is 
the geometrical quantity which corresponds to the 
imaginary if in (3.11). But this is misleading, because 
certain essential geometrical features of the Dirac the
ory are hidden in the structure of U as defined by (3.20), 
much as they are hidden in the properties of the base 
spinor til in (3.7). These features were first uncovered 
in Ref. 2, where it was concluded that (3.13) is a much 
more significant equation than (3.21). To nail down the 
interpretation of i' in the Dirac theory, it is necessary to 
examine the definitions of observables. This is under
taken in the next section. 

4. OBSERVABLES AND THE WAVEFUNCTION 

The geometrical significance of the wavefunction \If in 
Dirac's theory is determined by requiring that certain 
bilinear functions of \If be tensors. Interpretation of 
these tensors as observables determines the physical 
significance of \If. 

This section explains how the socalled "bilinear 
covariants" of the Dirac theory can be expressed in 
terms of spacetime algebra. This makes it possible to 
provide a direct interpretation of the Dirac wavefunc
tion, showing that the interpretation of the y" as vec
tors is in complete accord with the Dirac theory and so 
justified by its simplicity. Moreover, the geometrical 
and physical interpretation of the unit imaginary i' in 
the Dirac theory is ascertained by proving that ii'Pi is 
a representation of the spin bivector by one of its 
eigenvalues. 

Equation (3. 8) explicitly shows that 4) is a sum of 
scalar, bivector, and pseudoscalar parts. Of course, 
every even multivector has this property. Note that i 
= i, that is, the unit pesudoscalar i = Y5 = YOY1Y2Y3 is in
variant under reversion. However, every bivector 
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changes sign under reversion as is shown by Y"Yv 
= - YvY" for Il * II. Hence ~ can be obtained from IjJ simp
ly by changing the sign of its bivector part. Since IjJ is 
an even multivector, so, is 1jJ~. But 1jJ~ is clearly in
variant under reversion, so its bivector part must 
vanish. Moreover, since i2 = - 1, 1jJ~ can be put in the 
"polar form" 

1jJ~ = p exp(i!3) = p cosj3 + ip sinj3, (4. 1) 

where p and 13 are scalars. One can then define R by the 
equation R = [p exp(i8) 1-1 /21jJ, or just write 

IjJ = pl/2 exp(ti!3)R. 

Because of (3. 9), 

RR=1. 

(4.2a) 

(4.2b) 

The expression (4. 2a) is the "canonical form" for a 
spinor in the spacetime algebra, first found in Ref. 2. 
The quantities p, 13, and R have distinctive geometrical 
and physical interpretations which are independent of 
any matrix representation. So it is best to use them 
instead of the a's and j3's in (3.8). 

It is simplest to set forth the interpretation of IjJ 
categorically and after that explain how it is related to 
the usual formulation of the Dirac theory. The quantity 
R in (4.2) determines a proper Lorentz transformation 
of a frame {y,,} into a frame {e ,,} according to the 
equation 

(4.3) 

This equation has exactly the form of the Lorentz 
transformation (2. 7), since comparison of (4. 2b) with 
(2. 8) shows that R has the same algebraic structure as 
S. However, R =R(x) is a (generally differentiable) 
function of the spacetime point x, while S is constant. 
Thus, (4. 3) specifies a (generally differentiable) set of 
four vector fields with values e" = e" (x) at each point x 
determined by a proper Lorentz transformation of a 
fixed frame {YJ. This completely describes the 
geometrical significance of R. By virtue of (4.3), the 
spinor R may be regarded as a representation of a 
Lorentz transformation. 

Since the pseudoscalar i anticommutes with the vec
tor y", (4. 2a) and (4.3) imply 

(4.4) 

If (3.12) is regarded as a generalization of the trans
formation (4.3), then multiplication of the elL by p must 
be interpreted as a dilatation. 

The geometrical interpretation of a Dirac spinor 
given here is more direct and detailed than the conven
tional one. Ordinarily, Dirac spinors are said to be 
representations of the Lorentz group because they 
transform in a certain way under Lorentz transforma
tion (see Ref. 4). In contrast, we say that IjJ represents 
a Lorentz transformation because, by Eq. (4.4), it 
determines a "rotation-dilatation" of the frame {y,,} into 
the frame {pe,,}. Actually, 1jJ= ljJ(x) determines a con
tinuous infinity of Lorentz transformations, one at each 
spacetime point x. Perhaps it is worth adding for em
phasiS that IjJ does not operate in some "abstract spin 
space" detached from spacetime, it transforms space-
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time vectors into spacetime vectors. 

The physical interpretations of p and R are fixed by 
specifying interpretations for the e". The quantity 

(4.5a) 

is to be identified as the probability current of the Dirac 
theory. It follows that the timelike vector 

(4.5b) 

can be interpreted the (local) "world velocity" of a 
Dirac particle, while p is the probability density in the 
local rest frame determined by v. The tensor compo
nents of the probability current relative to the frame 
{y,,} are 

(4.5c) 

and the local conservation of probability is expressed by 

D· (pv) = o,,(pv") = O. 

The spacelike vector 

Pi Pi -
s = -e3 = -RY3R 

2 2 

(4.6) 

(4.7a) 

can be identified as the (local) spin vector of the Dirac 
theory. The corresponding "current" 

Pi -
-IjJY31jJ =ps 
2 

has components 

(4.7b) 

(4.7c) 

Of course, s cannot be interpreted directly as the elec
tron spin because angular momentum is a bivector. The 
"proper spin density" of the electron is pS, where S is 
the (local) spin bivector given by 

Pi Pi - Pi -
S= "2e2e1 = "2 RY2Y1R = "2 Riu3R =iSl'. (4.8a) 

These assorted equivalent expressions are easily relat
ed by using RR = 1 and the appropriate definitions. The 
tensor components of S are 

(4. 8b) 

which we get by applying (2.12) to (4. 8a) and introducing 
the "alternating tensor" defined by 

E"VO/8= _ iy" Ayv Ay'" A y8 = - (Y5y"yV y"'y8)(O)' (4.9) 

The right side of (4. 8a) or (4. 8b) shows that S is the 
dual of the bivector sv = s Av. Thus, given II, s, and S 
are equivalent descriptions of the spin in the sense that 
either one determines the other by (4.8). 

In (4.5), (4.7), (4.8) the elL defined by (4.3) have been 
given a physical interpretation by relating them to the 
electron spin and velocity. It is important to realize 
that the index Il in (4.3) is a "free index," that is, it 
need not be related to any coordinate system. However, 
the physical interpretation requires that the y" indexed 
in (4. 3) be identical to the set Yo, Yb Y2, Y3 = iYoY1Y2 speci
fied in the Dirac equation (3. 13). It will be noted that 
the "change of representation" transforming (3. 13) to 
(3.10) does not alter the elL since J;y"iiJ=IVy,,/~/. 
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Something can now be said about the physical inter
pretation of the Dirac wavefunction in its canonical 
form (4. 2a). The quantity p has been identified as the 
proper probability density. The unimodular spinor R 
determining the Lorentz transformation (4.3) can be 
specified by six scalar parameters. Five of those pa
rameters determine the velocity and spin directions of 
the electron, which, of course, also determines the 
"spin plane" containing the vectors ej and e 2 orthogonal 
to l' and s. The remaining parameter is the phase of the 
wavefunction. Geometrically, the phase determines the 
directions of e j and e2 in the spin plane. Physically, the 
phase is related indirectly to the electron energy
momentum by derivatives of the wavefunction; this will 
be considered in the next section. To sum up, except 
for the phase and the parameter 13 in (4. 2a), the Dirac 
wavefunction determines (or is determined by) the elec
tron probability current and the spin direction. 

To get an interpretation of 13, additional physical as
sumptions are needed The bivector 

en - e 
lV! = -2-1/!Y2 'Yj1/! = - exp(iP)pS me me 

(4.10) 

is usually interpreted as the magnetization or magnetic 
moment denSity of the electron. The right side of (4.10) 
was obtained by using (4. 2a) with (4. 8a) and shows that 
the ratio of magnetic moment to spin density differs 
from the usual gyromagnetic ratio e/me attributed to the 
electron by the factor exp(ip). Equation (4.10) shows 
that 13 can be interpreted geometrically as the angle of a 
"duality rotation" of S into M. It also lends a physical 
significance to (3, but, as explained in Ref. 3, other 
features of the Dirac theory make a fully satisfactory 
physical interpretation difficult to come by. 

Proof that the expressions (4.5), (4.7), and (4.10) are 
equivalent to conventional expressions for probability 
current, spin and magnetic moment in the Dirac theory 
is simply a matter of computation using the unique cor
respondence between 1/! and the column spinor 'lI estab
lished in Sec. 3. The computations have been discussed 
in Appendix A of Ref. 3, so it suffices to display the re
sults in Table I in the form of expressions for the so
called bilinear covariants using both mathematical sys
tems. Table I uses the notation ;r; = 'lI t Yo where 'lIt de
notes Hermitian adjoint, in addition to conventions al
ready explained, especially in connection with (2.5) and 
(2.10). 

The term "observable" is used here to refer to tensor 
quantities such as Pl'IJ.' ?vIIJ.V, and slJ. which (in prinCiple, 
at least) are amenable to experimental observation. The 
relations of wavefunction to observables given by (4.1), 
(4.5), (4.7), (4.10) are much simpler and easier to 
use than those in Table I. So the table is useful only for 
comparison with the conventional formulation. 

Table I helps reveal the role of the unit imaginary i' 
in the matrix formulation of the Dirac theory. Observa
bles are always reducible to real numbers. Some of the 
bilinear covariants in Table I are formed from anti
Hermitian products of the YIJ.' so a factor i' is needed to 
make the quantities real. This apparently trivial 
mathematical fact has a physical Significance. To dis
cover that significance, it should be noted first that if 
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never enters any expression for observables of the Di
rac theory (such as those in Table I) except as a multi
ple of the wavefunction 'lI, and second, that i' enters 
only in the combination i'n with Planck's constant. Also, 
note that 

(4.11) 

is easily proved from (4. 2) and (4. 8). Interpreting 
(4.11) as a matrix equation and using (3.7) and (3. 6b), 
one shows immediately that 

S1/! = h'li'lI, (4.12) 

that is, h'li is an eigenvalue of the bivector S describ
ing the spin. Equation (4. 12) can be used to eliminate 
the explicit appearance of i'li in equations of the Dirac 
theory. For example, if r is some matrix operator, 
since S= ~SlJ.vYIJ.Yv' (4.12) yields 

(4. 13) 

showing the factor i'li to be equivalent to a contraction of 
the spin tensor SIJ.V with some other tensor. As Table I 
illustrates, the factor i'li appears explicitly only in 
those expreSSions for observables involving the electron 
spine Equation (4. 12) shows us that the factor ~ i'n in the 
Dirac theory is in fact a representation of the electron 
spin by an eigenvalue of the spin tensor. The eigenvalue 
is imaginary, because the spin tensor SIJ.V is skew-sym
metric. The i' is a representation of the direction of the 
spin tensor, because the conventions of Dirac theory 
correspond, in a devious way, to the generator of rota
tions in the physical "spin plane" with the generator of 
rotations in the abstract complex plane. Of course, the 
factor ~li is just the magnitude of the spin tensor. 

The spin tensor saB, which is crucial to the under
standing of i'li, is not mentioned in standard accounts 
of the Dirac theory, so some explanation is in order. 
Standard accounts (e. g., p. 59 of Ref. 7) either im
plicitly or explicitly introduce the spin (denSity) tensor 

i'li -
psvaB ="""2 'lIyV AyaAy~ 

where use has been made of the identity 

yV 1\ yOi AyB = 'Y5'Y IJ.EIJ.VCiB 

(4.14) 

(4.15) 

and the expression for slJ. in Table I. Contraction of 
(4. 14) with Vv and comparison with (4. 8b) gives the 
desired relation 

(4.16) 

TABLE r. Bilinear covariants as observables. 

j[;\)1 = (w'J;)(O) = P cos{3 

j[;Y"i[; = (YIJ.if;"Yo$)(o) ="YIJ. 0 (pv) = pVIJ. 

e i'n -1 .,. en ( ,I. J:) (,.", \ M M 
;;-;:Tif;,ylJ. Yv'J'=2mc YIJ.Yv'l'Y2"Yj'l' (0)= "YIJ. 1'",' = "V 

i'n- n ~ ""2 \)II' IJ. Y51/J =2{Y "if;Y31jJ)(O) = I' IJ. • (ps) = ps" 

i[;Y5\)1= (iw0)(0) =- psin{3 
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The pS0l8 must be interpreted as the components of the 
electron spin angular momentum density in the local 
rest frame determined by the particle velocity v. 

Having ascertained that the imaginary unit i' func
tions in the Dirac theory as a representation of the elec
tron spin direction, it is evident that charge conjugation 
must have a geometrical interpretation as well as the 
usual physical one. Indeed, it has already been dis
covered in Sec. 5 of Ref. 8 that charge conjugation en
tails a rotation of the "observables" et, e2, e3 defined by 
(4.3) about an axis in the spin plane. Reference 9 
pointed out that this transformation in "the space of 
observables" of the Dirac theory is isomorphic to the 
operation of charge conjugation in isospace, so by re
garding them as one and the same, one gets a space
time interpretation of isospace relating spin to isospin 
and indicating a connection between the pseudoscalar 
and isospin properties of the pion. This speculative 
idea has not thus far been pushed by the author. Still, 
in view of the uncertainties of strong interaction theory, 
it seems sufficiently promising to merit mention once 
again. 

5. OBSERVABLES AND OPERATORS 

A number of statements about observables, opera
tors, and eigenvalues are frequently put forward in one 
form or another as general principles of quantum the
ory. The difficulties these principles face when applied 
to the Dirac theory shows that they are not so general 
after all. Surely, since the Dirac theory is the most 
firmly established version of quantum theory, only 
those prinCiples which are required by or are at least 
consistent with the Dirac theory can be regarded as both 
fundamental and general. 

Consider, for example, the EHOO-principle that "the 
Eigenvalues of Hermitian Operators correspond to 
Observed values". In the relation PVk = ¥yk<v = <vt YoYk<V 

(k = 1,2,3) from Table I, the matrices YOYk are Hermi
tian. Since (YOY3)2 = 1, the eigenvalues of YOY3 are ± 10 
So if <V is an eigenstate of YOY3, we have YOY3<V = ± <V or 
Y3<V=±Yo<v;whence, pV3=<VY3<V=±<VYO<V=±pvo. But this 
says that the velocity of the electron equals the speed of 
light, which is inconsistent with the Dirac equation, not 
to mention experimental evidence. Notwithstanding the 
absurdity of the result, application of the EHOO-princi
pIe to the socalled "velocity operators" YOYk has been 
perpetuated in accounts of the Dirac theory for forty 
years, along with fruitless attempts to explain away 
the problem. This and many other similar difficulties 
are easily resolved by admitting that EHOO is not a 
general principle of quantum mechanics and, in particu
lar, does not apply to operators composed of the Y IL' 
The role of the Y IL in the Dirac theory is clear in the 
multivector formulation; the Y IL are simply an othonor
mal set of vectors. In the expression Y IL . (pv) = pv IL ap
pearing in Table I the interpretation of the YIL as opera
tors is trivial and has nothing to do with quantum 
mechanics; the YIL simply pick out the Jlth component of 
the vector v by inner multiplication. Nor is the non
commutive multiplication rule for the Y IL justified by any 
principle concerning the impossibility of simultaneous 
eigenvalues in the Dirac theory; it has straightforward 
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geometrical Significance already discussed in Sec. 2 
and in Refs. 1 and 5. It should be evident that the Y/L 
have the same geometrical role in all the relations of 
Table I. 

To the extent that propOSitions about Hermitian 
operators and eigenvalues are significant in the Dirac 
theory, they are special properties of the "kinetic 
energy-momentum operators," customarily written 

(5.1) 

in the matrix formulation. It is often said that Pk 
(k = 1, 2, 3) corresponds to the kinetic momentum ob
servable, but this is inaccurate and leaves room for 
miSinterpretation. Rather, the operator Pk determines 
a relation between the wavefunction and the kinetic 
momentum observable. Those relations of the wave
function to basic observables which are determined by 
PIL are given in Table It The table gives both the multi
vector and matrix expressions for the observables. The 
relations in Table II, like those in Table I, can be 
proved by~ the method of Appendix A in Ref. 3. The 
operator P IL is defined implicitly for both the matrix 
and multi vector formalisms by the expressions for the 
Gordon current. The expression for PIL used in the table 
differs from (5.1) in that it is "hermitized" to give real 
quantities for the observables. 

Tables I and II give a complete set of relations of the 
wavefunction to the fundamental (local) observables in 

TABLE II. Observalbe with the kinetic energy-momentum 
operator. 

Gordon 
current 

Energy-
momentum 

tensor 

Proper
Energy
momentum 
density 

klL =~A \It =i'liM~81L \It - (81L ~)\It} -£.AIL ~>¥ 
C 

= (;JP"I{!}(O) = (~ {liO IL I{!Y2Yj -~AILl/J} t 
TVIL = ~yVplL\It = (Yoif yVplLI{!)(O) 

pplL =vvTVIL=v'[(P"I{!}Yo;J](1) 

= (1J e- i8p"I{!}(0) = p{RplLR}(O) 

Kinetic TOO = >]/po\It = (I{!tpol/J)(O) 
Energy density 

{Relative) Tok = \Ittpk\It = (I{!tpl{!)(O) 
kinetic mo-
mentum density 
(k = 1,2,3) 

Total 
Angular mo
mentum 
tensor 

J"0I8 = T ILOI xIl- T 1L8x" _ pS v<,:V1L0I8 

= ~{ylL (pOIxIl- pax") - (i'Ii/2)y1L ~ y'" AyB}\It 

= (Yo;; { I'lL (pOIxIl- p8 x") I{! 

- (If/2) I'lL ~ y'" A yBI{!Y2Yj})(0) 

Proper Total vjJ.JILCt8=p(Pflx+isv)· (yBl\y"') 
Angular mo-
mentum 
density 

{Relative) Total J"ii = \It t{pixi _ pi xi - (i'1i/2)yi fI yi}\It 

Angular mo- = \Itt; \It = (",ti ,,) 
mentum k 'i' t'i' (0) 

density = (I{!t{(Pixi _pixi)I{! _ (If/2)yi I\yi l/Jy y}) 
(i,j,k) = (1,2,3) 2 t (0) 
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the Dirac theory" Actually, Table II adds only one rela
tion which is mathematically independent of the seven 
independent relations in Table I. It relates the energy
momentum tensor to the gradient of the phase of the 
wavefunction. The nature of this relation is best seen by 
expressing the (proper) kinetic energy-momentum in 
the form 

(5.2) 

The quantity 20jlRR = 2(vjlR)R-1 can be regarded as the 
logarithmic derivative or angular velocity of the family 
of Lorentz transformations determined by R according 
to (4.3). The quantity 25· (0 "RR) is the projection of 
this angular velocity onto the spin plane; it describes 
two effects: the rate at which the spin plane precesses 
and the rate at which the phase (angle of rotation in 
the spin plane) changes. Only the last effect appears in 
the Schrodinger theory, where the energy and momen
tum are completely determined by the phase. In spite 
of the fact that the "proper energy- momentum density" 
pp~ is a fundamental quantity in relativistic continuum 
mechanics, it is rarely considered in discussions of 
the Dirac theory. Indeed, the expression for PPjl in 
terms of the matrix wavefunction is so unwieldy that it 
has not been included in Table II, though it is not dif
ficult to obtain from matrix expressions for T ILV and 1'tJ. 

in Tables I and ll. 

The significance of Eq. (5.2) lies in the insight it 
gives into the role of the operator i'lfa IJ. in the Dirac 
theory. The i'lf has been replaced in (5.2) by the physi
cal and geometrical quantity it represents, the spin 
bivector 5. Moreover, (5. 2) shows that in relating the 
wavefunction to energy and momentum the i'fi in the 
operator i'lia ~ functions as a projection operator, 
eliminating from a" ~ the derivatives of p and f3 and re
taining only the angular velocity of R in the spin plane. 
These specific facts about i'lfa" in the Dirac theory 
should be compared carefully with general propositions 
about Hermitian operators and observables in quantum 
mechanics. For the most part, such propositions have 
been developed to generalize properties of i'If(i". It 
may be concluded that in so far as they relate the phase 
of a wavefunction to the energy and momentum of a 
particle, the propositions are well grounded. Beyond 
this, their validity is problematic. Certainly none of 
the usual propositions recognize the essential relation 
of i'/[ to the spin. And, as shown earlier, they produce 
nonsense when applied to the Dirac matrices. 

"Hermiticity" is often said to be an essential attribute 
of operators corresponding to observables. The validity 
of this view should be judged by examining the role of 
hermiticity in the Dirac theory. Several different but 
interrelated roles can in fact be distinguished. In the 
Dirac matrix algebra hermiticity is gil'en a geometrical 
significance by adopting the standard representation in 
which the Yk (f? = 1,2,3) representing spacelike vectors 
are anti-Hermitian, while Yo representing a timelike 
vector is Hermitian. Thus Hermitian conjugation serves 
to distinguish a specific, though arbitrarily chosen, 
rest frame in spacetime. It should be noted that assign-
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ment of this role to hermiticity is not entirely arbi
trary; it is in large part dictated by Eq. (2.1) which 
relates the matrix representation to the indefinite 
metric of spacetime. Hermiticity also plays a role in 
the association if i'lf with the spin through the require
ment met in Table I that only real bilinear covariants 
are to be interpreted as observables. Neither of these 
roles is recognized in the usual discussions of opera
tors in quantum mechanics. Moreover, when the matrix 
algebra and complex numbers are replaced by space
time algebra, the indirect representation of geometrical 
and physical features by hermiticity is eliminated. 

The significance of Hermitian matrices is quite dif
ferent from the significance of Hermitian differential 
operators in the Dirac theory, though these two kinds 
of hermiticity are continually confounded in the litera
ture. The distinction appears in a third role of hermiti
city. A study of the relations in Table II reveals that 
hermiticity insures that the operator i'n(j" relates en
ergy and momentum directly to the phase and not to the 
amplitude of the wavefunction. This is the role of 
hermiticity in the Schrodinger theory and seems to be 
the feature responsible for the successes of abstract 
operator formulations of quantum mechanics. 

A misplaced emphasis on operators in quantum 
mechanics has continued to cover-up the meaning of 
hermiticity and the relation of complex numbers to spin. 
The relations of observables to the wavefunction ex
pressed in Tables I and II is fundamental to the Dirac 
theory. They are only indirectly and imperfectly ex
pressible as relations of observables to Hermitian 
operators. By using the relations in Tables I and II 
along with the Dirac equation, the wavefunction and the 
operator i'If(i" can be completely eliminated, resulting 
in a formulation of the Dirac theory as a set of con
servation laws and constitutive equations for observa
bles. This reformulation has been carried out in Ref. 
3 and brings to light other features of the Dirac theory 
which are hidden in the conventional formulation. 

Having determined that the purportedly fundamental 
correspondence between observables and operators is 
neither adequate nor necessary in the Dirac theory, the 
significance of eigenvalues in the theory should be ex
amined closely. To begin with, it should be emphasized 
that the fundamental assumptions of the Dirac theory do 
not require any reference to eigenvalues, so acceptable 
assertions about the physical significance of eigenvalues 
must be derived rather than assumed. Consider the ap
pearance of energy eigenvalues. Solution of the Dirac 
equation for a bound electron, together with the corre
spondence of energy to the wavefunction in Table II, 
gives a discrete spectrum of values for the energy. It 
is true that these numbers can be regarded as the eigen
values of an energy operator, but this fact is not needed 
either to identify the numbers as observables or to ex
plain the existence of a spectrum; the fundamental rela
tion of the energy to the phase of the wavefunction 
suffices. 

There is another property of energy eigenvalues 
which may be physically significant but goes unremark
ed in standard expositions of quantum mechanics, be
cause they deal with the total energy without examining 
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the energy density. The global (or total) energy (E; 
= f d 3xPoE of an electron in a stationary state is subject 
to fairly direct experimental measurement. The exis
tence of a stationary state requires only that (E; be in
dependent of time. However, the stationary state solu
tions of the Dirac equation entail the additional property 
(E; = E, that is, the energy density has the striking 
property of being everywhere a constant multiple E of 
the probability density. It may be noted that this is 
what one would expect if it is surmised that the sta
tionary solutions of the Dirac equation describe an en
semble of particle motions each with the same energy 
E. This suggests that the physical significance of eigen
values in quantum theory is to be found in the fact that 
they correspond to local observables which are homo
geneous in space and constant in time, rather than in 
their connection to Hermitian operators. 

A local observable may well be homogeneous and con
stant without being the eigenvalue of some Hermitian 
operator. For example, without specifying any Hermi
tian operator, one might nevertheless say that an elec
tron is in a velocity eigenstate with eigenvalue 11 if the 
local velocity 11 = RyoR is homogeneous and constant. It 
is easy to show that only the free particle "plane wave" 
states are eigenstates of the velocity in this sense. 
They are also eigenstates of spin and momentum in the 
usual sense, but they are quite unphysical because they 
require uniform density p. The phYSical free particle 
solutions of the Dirac equation are wavepackets, for 
which it can be shown that the local velocity cannot be 
constant. So it may be that some phYSically significant 
local observables cannot be associated with phYSically 
significant eigenvalues. 

Angular momentum operators have an important place 
in the systematic analysis of quantum theory. The 
angular momentum operators i k in the Dirac theory are 
defined implicitly by the expreSSions for the (relative) 
angular momentum density in Table II [where the values 
of (i ,j, k) are understood to be cyclic permutations of 
(1,2,3)]. The Jk are commonly defined by requiring 
first that they satisfy the well-known commutation rela
tions of angular momentum operators and second that 
they commute with the Dirac Hamiltonian for a central 
field and so are conserved quantities (see, for example, 
Ref. 10). The Jk are then found to have the form given 
in Table II. Such an approach gives the impression that 
assumptions about "angular momentum algebra" are 
essential to the interpretation of Dirac theory. On the 
contrary, it was shown in Ref. 3 that given the Dirac 
equation and the relations of the wavefunction to the 
particle velocity in Table I and the energy-momentum 
tensor in Table II, expressions for the spin and the 
total angular momentum are unambiguously determined 
by introducing the conventional definition of orbital 
angular momentum. Then the form of }k in Table II can 
be obtained simply by writing the resulting expressions 
in conventional operator form, and manifestly without 
an appeal to assumptions which could be called "quantum 
mechanical. " Evidently, the physical significance of the 
Jk is derived from the relation they express between the 
wavefunction and the angular momentum tensor. But 
nothing in this relation implies that, as is usually sup
posed, the eigenvalues of J2 = JkJk should be interpreted 
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as the square of the magnitude of the angular momen
tum. This is not to question the importance of }2 or the 
angular momentum algebra in calculations or the classi
fication of states; the aim here is only to point out that 
some problems of interpretation exist. Further ques
tions about the interpretation of angular momentum 
quantum numbers will be considered later. 

Probably the most profound problem posed by the 
Dirac theory for conventional interpretations of quantum 
theory lies in the difficulty of reconciling the usual 
interpretations of the Heisenberg uncertainty prinCiple 
with the properties of electron spin. As the nature of 
this problem has already been explained in Ref. 3, it 
will not be discussed here. 

6. RELATIVE OBSERVABLES AND THE 
INTERPRETATION OF ENERGY 

The most important observable in the Dirac theory is 
the total energy (E;, for this quantity has been sub
jected to the most thorough experimental investigation, 
especially in the hydrogen atom, and it is primarily by 
inferences from the experimental results that the identi
fication of other Dirac observables, such as velocity, 
spin, and momentum have been confirmed. To identify 
different physical effects contributing to the energy and 
study the relation to other observables, the energy must 
be decomposed into a sum of terms. The usual treat
ment associates observables with operators rather than 
directly with the wavefunction and, strangely, is unable 
to separate different physical contributions to the energy 
except as perturbations of the nonrelativistic limit. In 
contrast, the approach here is to eliminate the wave
function along with the operators of the Dirac Hamilton
ian to get an expression for the energy density of a 
Dirac electron in terms of the local observables identi
fied in Tables I and II. The results are not complete in 
the sense that a fully satisfactory physical understand
ing has been achieved. However, the linear contribution 
of external fields is identified and exact expressions for 
the Thomas and Larmor precessions are found. Also, a 
number of peculiar features are discovered which are 
hidden by the operator formulation. Comparison with 
the usual results will be made in another paper. 

Energy is a relative observable, that is, its signifi
cance is relative to some inertial frame. However, an 
atom binding an electron determines an inertial frame, 
and relative to that frame the electron's energy has an 
absolute Significance. This frame should be kept in 
mind, though the following discussion makes no assump
tion about bound states, and the results hold for any 
inertial frame designated by a specific choice of the 
timelike vector Yo. 

As an aid to physical interpretation and in prepara
tion for the "nonrelativistic limit, " the observables in 
Tables I and II will be expressed as "relative observa
bles" and related by formulas derived in Ref. 3. The 
procedure used for introducing relative variables is ex
plained in detail in Ref. 5, so the results and nomencla
ture of Ref. 5 are freely employed with only the briefest 
comments. 

The "relative" velOCity v of the electron is related to 
the "proper" velocity 1J defined in (4. 5) by the equation 
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Vo Ill\.v =-V 
10 C ' 

where 

- (1 2/ 2)-112 Va = v . Yo = - v c . 

Thus 

vyo =vo(1 +v/c) =L2, 

(6.1a) 

(6.lb) 

(6. lc) 

where L is the spinor in Eq. (6.15) below, which deter
mines the "boost" of Yo into v. The" relative" probabil
ity density in the inertial system of Yo is 

Po = (pv)· Yo = pvo. (6.2) 

A spacetime point x can be designated by a time too c-1X O 

= c-1x' Yo and a position x = x I\.Yo, whence 

xyo =ct+x, (6.3) 

and the derivative 0 =Ox can be expressed in terms of 
the derivatives 

0t=C-100 =C-1yO'O and V=Vx=yol\O 

by the equation 

YoO =c-1ot + V. 

(6.4a) 

(6.4b) 

Accordingly, the equation for probability conservation 

o,Jpv") =0' (pv) = 0 (6.5a) 

can be written in the familiar relative form 

atpo + V' (Pov) = O. (6.5b) 

Similarly, the proper time derivative 

d 
d =-=(1·0 

T dT - (6.6a) 

is related to the socalled "hydrodynamic derivative" 

dt=Ot+ v . V 

by the equation 

Vo 
d = 1.' .1] = - d t • 

T c 

(6.6b) 

(6.6c) 

Now consider the expression of mechanical quantities 
in terms of relative variables, The kinetic energy
momentum vector p = y"p", whose components are re
lated to the wavefunction by (5.2), can be decomposed 
into an energy 

~ =cp· Yo (6.7a) 

and a momentum 

=Et-p·X+Ctp- ~x-pl\x. 
c 

The scalar part of this equation is just the relation 

p . x = ~t - P • x, 

while the proper bivector part is 

E 
pl\x=ctp- -x+xl\p. 

c (6. 9a) 

From this, one immediately sees that the relative vec
tor part of p 1\ x is 

while the relative bivector part is 

[pl\x ](2) = X I\p =ix xp = iL, 

(6.9b) 

(6 0 9c) 

showing that pAx is an appropriate generalization of the 
usual orbital angular momentum vector L = s x p, or 
better, the corresponding angular momentum bivector 
x/\p. In accordance with (6.8), the "relative orbital 
angular momentum density" is 

PoL=poxxp. 

For the proper spin vector s, defined by (4.7), 

5")'0 = So + s 

where 

s=sAyo 

and, since s.v=1Jo(so-S'v/c)=O, 

so=s· Yo =c-1s· V. 

(6.10) 

(6. Ha) 

(6. Hb) 

(6. Hc) 

Using (6.1) and (6.11) in (4.8), one has for the proper 
spin bivector 

S=isv =i(syo)(yov) 

=i(so +s)vo(1- vic) 

=illo(S- sov/c- sAy/c) 

= vOsxv+ivo(s-sov/c). 
a 

Hence, 

S =SI +S2 =SI +is2, 

where 

Vo Vo. 
SI = [S](o = -s XV= -v· (zs) 

c c 

(6. 12a) 

(6. 12b) 

p=Pl\.yo (6.7b) is the relative vector part of S, and 

by using the algebraic relation 

E 

PYo=c+ p· (6.7c) 

(Here the energy-momentum p has been expressed in 
"momentum units" instead of the "energy units" used in 
Ref. 5.) The (kinetic) momentum density in the inertial 
frame of 'Yo is thus 

PoP = pVoP = pV • yoP I\. 'Yo· 

Now from (5.3) and (6. 7c) 

px'= (PYo){Yox) =(~ +p)(ct- x) 
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(6.8) 

S2 = iS2 = [S](2) = ivo(s - c 1sov) (6. 12c) 

is the relative bivector part. From (6.9) and (6.12) one 
finds that the relative bivector part of the proper "total" 
angular momentum J'=' P x + S at a point x is 

(6.13) 

so 

(6.14) 

is the total (relative) angular momentum density, ex
pressed as a sum of orbital and spin parts. 

The trouble with representing spin by the relative 
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vectors 8 or 82 is they do not have constant magnitude, 
one of the principle properties of the proper spin sand 
S. There is an alternative definition of "relative" spin 
which does not suffer this defect. In the manner ex
plained in Ref. 5, the spinor R introduced by (4.2) can 
be factored in the form 

R",LU, (6.15) 

where the spinor U determines a spatial rotation and 
L determines a boost of Yo to v. Now define a relative 
spin bivector :0 and vector I] by 

lfU' [J . :0 '" '2 1(13 '" II] • (6. 16) 

Using (6.15) in (4.8) one easily shows that :0 is related 
to S by a boost: 

-S",L:0L, :0 ",iSL, 

sv '" Ll]i, I] ",isvL '" isLyo' 

(6. 17a) 

(6. 17b) 

When expressed in terms of relative velocity, the rela
tion of I] to 8 is found to be [see Eq. (4.38) of Ref. 5], 

(vo-1) v5 
8"'1]+--2-(1'VV=I]+ 2( l)l]·vv, 

v C Vo + 

cSo=s·v=vov·l]. 

Substitution of (6.18) into (6. 12c) yields 

82=VO((1- C2(;I~VO)I],VV): 
so (6. 14) can be written 

poJ=POXXP+Povo(l]- C2(;I:VO) 1]. vv). 

(6. 18a) 

(6. 18b) 

(6.19) 

(6.20) 

This shows the correct way to combine a with the 
orbital angular momentum to get the total relative 
angular momentum density. Especially in discussions 
of relativistic approximations, it is important to be 
clear about which of the several different representa
tions of spin is employed. 

From the kinetic energy-momentum vector p it is 
convenient to form the an energy-momentum vector P 
defined by 

e -P=P+ -A =2y"S' (a RR) 
C '" 

(6.21) 

where A = 1''' A" is the electromagnetic vector potential 
and the right side of the equation has been obtained 
from (5.2). The quantity of chief interest in this sec
tion, the density PoE of the total energy (E) = f d3xPoE, 
is related to E by 

E = cyo . P = 2cS· (ooRR) '" E+ V, (6. 22a) 

where (6.21) has been used, E is the kinetic energy de
fined by (6. 7a), and 

V= eA· Yo (6. 22b) 

is the usual electric potential energy. The correspond
ing total local momentum is 

e 
P=P!\yo=p+-A (6. 22c) 

c 

where A=A 1\1'0' Combining (6. 22a) and (6. 22c), one 
has 
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pYo "'E/c +P. (6. 22d) 

Equation (6. 22a) explicitly exhibits the dependence of 
the local energy E on the time derivative of the spinor 
R. Instead of analyzing this expression directly, it is 
advantageous first to study the energy in the local rest 
system determined by the velocity v. Since by (4.5), 
(4.7), and (4.8) the local velocity and spin are functions 
only of the spinor R, equations of motion for these 
"mechanical quantities" along a "streamline" in space
time with tangent v are determined by an equation of 
motion for R, which can be put in the form 

d.,R = tnR or n = 2 (d.,R)R, (6.23) 

where n is a bivector and d T is the proper time deriva
tive defined by (6. 6a). Expressed in terms of the 
"angular velocity" n, the equations of motion for veloc
ity and spin are 

d.,.v = t[n, v] = n· v, (6. 24a) 

d~=Hn,sJ=n. s, (6. 24b) 

dTS '" Hn, S]. (6. 24c) 

By using (6.23) along with (6.21), one finds that the 
local energy in the local rest frame is given by the pro
jection of the angular velocity onto the local spin frame, 
that is, 

e 
v·p=(nS)(O)=n·s=v,p+-v·A. (6.25) 

c 

The plan now is to attain a physical interpretation of 
the energy density by analyzing the "proper angular 
velocity" n. To accomplish this, some physical input is 
needed besides the relations of observables to the wave
function, which is all that has been used so far. That 
input comes from the Dirac equation, which was used 
in Sec. 6 of Ref. 3 to get the following expression for 
n in terms of local observables: 

n=n+v' (mcvcosi3+~A)S-l, (6.26) 

where 

(6. 27a) 

in which F=O!\A is the external electromagnetic field 
and 

(6. 27b) 

w" '" (peill)"la" (peiBS) = 0 "S + S(i)" Inp +ii) ,,(3). (6. 27c) 

Substituting (6.26) and (6.27) in (6.25) and recalling 
the expression (4.10) for the magnetic moment density 
M, one gets the following expression for the "kinetic 
energy density" pEv in the local rest system 

(6.28) 

Lest the reader believe that physical interpretations 
are being arbitrarily imposed here, it should be pointed 
out that the identification of pEv as kinetic energy density 
is a consequence of adopting the conventional inter
pretation of the operator (5.1) as "kinetic energy
momentum operator" and of the "Dirac current" ~y" >¥ 
= pv" as probability current. Unconventional as the 
present discussion may appear, it is based on conven-
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tional assumptions of the Dirac theory and conventional 
principles of relativistic continuum mechanics. The 
ultimate aim is to discover the full consequences of 
those assumptions. 

According to conventional principles of relativistic 
continuum mechanics, the quantity P€jc 2 should be in
terpreted as the electron mass density. If the Dirac 
theory in fact describes a statistical ensemble of parti
cle motions then v must be only a local average (not an 
actual) particle velocity, and a deviation of the rest 
mass density from pmc2 due to statistical effects is to 
be expected. Be this as it may, the term pmc 2 cosJ3 has 
the appearance of a rest mass tensor, and one might 
guess that the unfamiliar factor cosJ3 is needed to meet 
the constraint v2 = 1 in a statistical average of particle 
velocities. The interpretation of the second term in 
(6. 28) requires less speculation, for AI· F = ~F "vAI" " 
will be recognized as the classical expression for the 
increase in mass due to the electromagnetic interaction 
of a dipole" Interpretation of the last term is difficult, 
but may be crucial to a complete understanding of the 
Dirac theory. Considering the expression (6. 27b, c) for 
C in terms of the spin and the corresponding spin depen
dence of the momentum flux exhibited in Eq. (3.22) of 
Ref. 3, it may be guessed that this last term be inter
preted as the enhancement of mass due to the local spin 
flux. 

To relate (6.28) to the energy density PoE, note from 
(6.1) and (6.7) that 

hence the total energy density can be written 

PoE = c pv • p + Po v . P + Po V 

= II1C
2p cosJ3 +cp(?2S](O) + Pov· P +Po V 

or 

(6.29) 

(6. 30a) 

PoE = mc2p cosJ3 + ill' F - c·ie· 1'VI + Pov, P + Po V. (6.30b) 

Use of the expressions (6.26), (6.27) for Q to get the 
energy density in the form (6.30), which is amenable 
to physical interpretation, is equivalent to the usual 
practice of expressing the energy density in terms of 
the Dirac Hamiltonian, and then systematically replac
ing the operators and the wavefunction by local observa
bles. To get on with the interpretation of (6.30), it is 
worth remarking that the magnetic moment of the Dirac 
electron was first identified theoretically and experi
mentally precisely by isolating the contribution of the 
term AI· F to the total energy (by a different method, 
of course). But there is another contribution to the en
ergy due to the interaction of the spin with the external 
field arising from the Thomas precession. Ordinarily 
the contribution of the Thomas precession is identified 
only as a correction to the nonrelativistic approximation. 
But the formalism used here makes it possible to dis
cuss the role of the Thomas precession exactly. 

In Sec. 4 of Ref. 5 the generalized Larmor and 
Thomas precession of a classical rigid point particle is 
discussed. All the results obtained there apply im
mediately to the present problem if only the proper 
velocity of a particle there is identified with the velocity 
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v of a streamline in the present formulation of the 
Dirac theory. This paragraph recalls those results 
which are most pertinent to the present discussion. The 
angular velocity Q defined by Eq. (6.23) determines the 
precession of the velocity and spin through Eq. (6.24). 
It will be convenient to decompose Q into relative vec
tor and bivector parts; thus 

Q = 2 (dTR)R = a +iJ3 

Q'" [Q](!) = Q. 1'01'0, 

it3 = [Q] (2) = Q /\1'01'0' 

(6,31a) 

(6. 31b) 

(6.31c) 

Introducing the factorization (6. 15), one finds for the 
spinor U the equation of motion 

(6,32) 

for which the angular velocity can be expressed in the 
several useful forms 

w=LQL- 2Ld
T
L=WL+WT 

. (.:I Vo ) =1 ,..,+ c(l +71
0
) axv , (6.33) 

(6.34) 

2 
1'0 . 

2(1 ) 1vxdTv c +Vo 

((dTv) /\ v 1\ 1'0)1'0 
1 + Vo 

1,2 (v) 
= (1 0 ) iv x a + - x J3 • 

C +1'0 C 
(6,35) 

These equations give the decomposition of w into a sum 
two terms, the generalized Larmor precession w L and 
the Thomas precession w T, which is due solely to the 
acceleration of the particle. One can solve (6.33) for 
Q in terms of w: 

(6.36) 

which is the more useful when one has the formula 

(6.37) 

Applying (6. 32) and (6.33) to the relative spin vector a 
defined by (6.16), one obtains the equation of motion 

Vo L T d.p = - dta = w . a = w . a + w . a 
c 

= (-J3+ C(11!~vO) vxa)xa, (6.38) 

a key formula derived by Thomas. Now it must be em
phasized that to speak of the Thomas precession in the 
Dirac theory, it is essential to introduce the relative 
spin a defined by (6.16); this is the spin obtained, as 
required by Thomas, from the proper spin S by a 
"deboost" into an inertial system, a system in which the 
acceleration of the particle is zero. It makes no sense 
to speak of the Thomas precession of the spin vectors s 
or 82 defined previously. 

The formulation of the Thomas precession just given 
admits an immediate generalization, simply by replac-
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ing the proper time derivatived d T by the derivative d T 

by the derivatives 0 .. =Y .. '0. Then (6. 31a) is replaced 
by 

(6.39) 

from which (6. 31a) can be recovered since O=v"O .. and 
dT=v"o". Similarly, (6.32) generalizes to 

where 

Also, 

0" = L(w .. + 2Lo .. L)L 

and 

O .. Cf=W .. ·Cf= (- 1' .. + c(t:v
o
) VXQ! .. )XCf, 

or, equivalently, 

o .. L = ° Jia) = ~[w .. , L], 

and, differentiating (6. 17a) and using (6.41), 

O .. S= Ho .. , S] =L(o"L - Hw!, L])f. 

(6.40a) 

(6.40b) 

(6.40c) 

(6.41) 

(6. 42a) 

(6. 42b) 

(6. 42c) 

We are now prepared to separate the energy
momentum due to variations in velocity from other con
tributions to the total energy-momentum. Using (6.39) 
in (6.21) followed by (6.17), (6.41), and (6.42), we 
find 

where p~ is defined by 

p~ = fi[o"UiCf3U](0) = [w .. L](o) =w,,' L. 

From (6.43) one sees that 

v .P=v"P" =0· S= (w- w T
). L =w L

• L 

is just the generalized Larmor precession energy, 
whereas, from (6.44), 

v • p' = w . L = W L • L + W T. L 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

includes also the Thomas precession energy. Removing 
the potential energy contribution from (6.44) by writing 

I pI e A t>f • -] e p .. = ,,-- "="lO .. U1Cf3U (0)--A", c c (6.47) 

(6.48) 

It is convenient to replace 0 by n in the formulation 
of precession energy. This is perfectly permissible 
since, as is easily shown by substituting (6.26) into 
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(6.24), it does not alter the precession of the velocity 
and the spin. The replacement does not affect the 
Thomas precession; it merely changes the definition of 
the generalized Larmor precession from (6.34) to 

wL = (LnL h. (6.49) 

Corresponding changes in other quantities will also be 
indicated by overbars. 

Now switching from 0 to S1 and substitUting (6.45) and 
(6.48) into (6.30a), the energy denSity is put in the form 

(6.50) 

The term cpw· L =Po[(c/VO)(w L +wT)L](o) includes both 
the generalized Larmor and Thomas precession ener
gies. It is important to note that the change in the 
definition of the kinetic momentum from p to p' is es
sential to make the Thomas term explicit. The term 
epow{' L vanishes for stationary states, since by 
(6.40c) w{=O if coov=Otv=O. 

To study the dependence of the precession energy in 
(6. 50) on relative observables, express F in terms of 
the electric and magnetic fields E and B relative to Yo; 

F=E+iB, hence iF=-B+iK 

Also write 

(6.51) 

C = Ct + C2 =Ct +iC2 (6.52) 

where Ct =[CJl and C2 =iC2 =[Ch. The definition (6. 27b) 
shows that C depends on o"S and S; these quantities can 
be expressed in terms of 0 .. Land L by using (6. 42a) 
and (6. 17a), but this step will not be carried out, be
cause it is not clear how to derive any physical inSight 
from it. The terms which are difficult to understand 
will be kept lumped together. Now using (6.51) and 
(6.52) in (6. 27b) and then in (6.33), one gets 

- e ( ~ ~ cpw· L =- - (1' B+ (1 ) Cf· (Exv) peos[3 
me e +110 

( 
Vo ) p cos[3 + (1·C2 - (1 )(1. (Ctxv) --c +vo In 

e ( 1'0 ) - - (1. E- (1 ) (1. (Bxv) psin[3 
me c +vo 

~ 'l!o ) sinp + Cf· C1 + (1 ) (1. (C2 xv) p-- . 
e +110 m 

(6. 53) 

The terms in first line of (6.53) except for the factor 
cos[3 are exactly the terms derived by Thomas (see Ref. 
5), who evaluated the precession energy under the as
sumption that n = (e/mc2)F. Thomas wisely evaluated 
the energy only in the nonrelativistic approximation 
where vo(l +vott::Zf; (and, fortunately, cos[3::z1). In high
er order approximations the effect of the external field 
through terms in the second line of (6. 53) is probably 
important, though it is not clear how to make this ex
plicit. It might be guessed that because of the smallness 
of sin[3, the unfamiliar terms in the last two rows are 
generally insignificant, but it will be seen that the (1 • E 
term may be of the same order of magnitude as the 
Cf' (Exv) term in the first row. 

For an electron in a central field, 
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eE~- VV=- V/~ 
Ixl 

·th V' dV 
WI = dlxl ' 

in which case the second term in (6.53) can be written 

e p V' 
~ --- --(1. L* 
m"e2 (1 +vo) Ixl ' 

(6. 54 a) 

where 

L* = x x (mvo v) cos(3. (6. 54b) 

The term (6. 54a) has the well-known form of the spin
orbit coupling; however, L* differs from the orbital 
angular momentum L = x x p, because the relation p 
= m1l0V assumed by Thomas does not hold in the Dirac 
theory. To estimate the magnitude of this discrepancy 
the correct relation of p to v will now be found. 

The correct relation of the kinetic energy-momentum 
p to the particle velocity 11 in the Dirac theory was 
found in Sec. 5 of Ref. 3 to be given by 

pp ~ mepv cosj3 - do (pS) +0 'p(iS) 00{3. (6. 55) 

To express this as a relation among relative observa
bles, multiply by Yo and recall (6.7) and (6.1) to get 

% + pmevo(l + ~) cos(3 - p-l0 . (pS)Yo - (0(3) . (is)yo. 

(6.56) 

But, by virtue of (6.4) and (6. 12a), 

and 

1'00 . (pS) = [1'00 (pSllo+1) ~ [(00 + V)P(Sl +is211o+1) 

=V· (PS1)+00(PS1)+V, (pis2) 

1'0(0(3)· (is) = [yo (0 (3)iSJ<o+1) = [(00(3 + V(3)(isl - S2)](0+1) 

= - S2 . V(3 - S2 00(3 + (V(3) . (isl ). 

Hence the scalar part of (6.56) can be written 

£ = 1f1C27!0 cos{:3 - ep-1V . (PSI) + e S2 . V{J, 

while the vector part can be written 

(6. 57a) 

p = mvvo cos(3 - p-1V X (PS2) + Sl x V(3 + p-10o (PSI) - S200(3. 

(6. 57b) 

Using (6. 57b) to eliminate mvvo cos(3 in (6. 54), one in
deed gets the desired spin-orbit term with L instead of 
L*, but there are several additional terms as well. 
Some understanding of the additional terms can be 
achieved by comparing with results known in the litera
ture, but to do so it is necessary to take the nonrelativ
istic limit, since it is only in connection with that ap
proximation that the Thomas precession has been dis
cussed previously. This will be done later. 

The discussion of the Dirac energy density in this 
section has concentrated on a detailed interpretation of a 
few terms. A satisfactory interpretation of all the terms 
has not been found, but let us review the general ap
proach. The effective mass density given by (6.28) dif
fers from what appears to be a rest energy term 
pmc2 cos(3 by a term commonly called the internal en
ergy density. Accordingly, it is natural to call the 
"generalized Larmor" term en· S = ewL 

• :0 the internal 
energy of the system. The magnitude of the internal 
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energy depends, of course, on the interaction with ex
ternal fields, which (6. 30b) expresses to terms linear 
in the external field F by epwL 0:0 = M· F +e-1C· M. The 
kinetic energy density Po v· P of the system is also in
fluenced by external fields, which was found to terms 
linear in the field by separating the Thomas preceSSion 
energy from other contributions to the kinetic energy 
with Pov· P = Pov. p' + pew T. :0 - epow[' L:. The Larmor 
and Thomas precessions were combined in (6. 50) to get 
the total influence of external fields (aside from the 
potential energy Vof course). Nevertheless, it is very 
important to be able to separate contributions to the 
mass density from contributions to the kinetic energy. 

7. OBSERVABlES IN THE NON RElATIVISTIC LIMIT 

The exact constitutive relations found for relative 
observables in the last section are rather complicated 
and difficult to interpret. The relations simplify greatly 
in the nonrelativistic limit to be determined here; still 
they remain nontrivial. It will be shown that the local 
momentum and the Gordon current are equal in that 
limit, but they differ from the local velocity by a 
"magnetization current. " In a subsequent paper this re
sult will be shown to have important implications for the 
interpretation of spin-orbit coupling and the Pauli and 
Schrodinger theories. Also, for future use, the non
relativistic form of the spin-electric energy density is 
found. 

The adjective "relativistic" was criticized in Ref, 5, 
but it will nevertheless be employed here, because it is 
almost universally used in connection with the topic 
under discussion. It may be well to recall, therefore, 
that sometimes the word "relativistic" means that the 
relative speed I v I is of the order of the velocity of light 
e; sometimes it means that accelerations are small, 
and sometimes it means that an expression or quantity 
is completely independent of the relative velocity. The 
term "nonrelativistic" will be used here especially to 
mean Ivl «c. Furthermore, it should be emphasized 
that the so-called "nonrelativistic limit" of the Dirac 
theory involves a number of other assumptions-reason
able assumptions about the magnitude of external fields, 
and about which quantities are slowly varying functions 
of position, in particular, about the curious quantity P. 

It will not be necessary to spell out such assumptions, 
because they will be implicit in the approximate equa
tions written down. From (6.16) one gets in the non
relativistic limit 

, 1 v2 

1!0 = (1- v2jc2tl/2 =1 +"2 e 2 + ... "'1. (7.1) 

Using this in the several equations defining the relative 
spins one finds 

S"'S2"'(1, 

S""S2:::::0 ''''is, 

so« I S I, 
sr«sz"" Islz=-S2=tti 2

• 

Also, of course, 

Po =pl'o ""p, 
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(7.2b) 

(7.2c) 

(7.2d) 
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and (6.20) I'educes to the familiar expression 

PoJ "'pJ "'p(XXp + a). 

From Eq. (2.18) of Ref. 3, one gets 

- mcp sin{h c-1a t(pso) + V' (ps). 

Hence for stationary or slowly varying states one has 

sini3~ =-! V· (ps) . 
mc p 

(7.3a) 

To this may be added the condition 

!sini3I'" 1131 ~ Ivl/c, (7.3b) 

which seems reasonable in view of the numerical factor 
I s 1/ mc ~ 1i/2mc on the right side of (7. 3a). Better justi
fication will be given in a subsequent paper. 

Employing the above approximations, one finds that 
(6. 57b) reduces to the important equation 

p ~ mv- p-1vx(ps) ~ mv- p-1 V . (pS). (7.4) 

Higher order terms must be carried to get the ap
propriate approximation to (6. 57a), since the correc
tions to the large "rest energy" term me2 are of in
terest. Accordingly, recalling especially (6. 12b), one 
finds 

€ - mc2 '" ~my2 - ~me2 {32 + p-1V' (ps xv) + es' V{3 

1 2 1 (V. (PS»)2 1 ( 1 "'zmv +- +p- V· - -aVo (ps) 
2m p m 

+pvxa). (7.5) 

This is an appropriate place to discuss the physical 
interpretation and examine the N. R. Limit of the Gordon 
current k, whose components are defined in Table II. 
In Sec. 5 of Ref. 3 the Gordon current was found to be 
related to the velocity and magnetization or spin by the 
exact equation 

j 2epv ~ ~k +0' M~ ~k +eO' (pe i6S), (7.6) 
mc mc 

and to the proper energy-momentum density by 

k ~ pp cos{3 - pq sini3, (7. 7a) 

where 

q ~ y"v . a" s ~ - 'I" s . 0,,11. (7.7b) 

Given the conservation law (6. 5) for the Dirac current 
j ~ epv and the identity O· (0' M) = 0, one finds from 
(7.6), the conservation law 

O· k ~ a "k" ~ O. (7.8) 

Accepting the conventional interpretation of j as the total 
charge current and identifying 0 . M as a magnetization 
current, one is lead by (7.6) to interpret (e/mc)k as a 
convection current. In this way the Gordon current is 
given a phYSical interpretation, however, the signifi
cance of its close relation to the energy-momentum ex
hibited by (7.7) remains obscure, though it is clearly 
tied up with the significance of {3. Since, as has already 
been mentioned, sini3 should be regarded as a small 
quantity, (7. 7) shows that the Gordon current is nearly 
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proportional to the energy-momentum density. How
ever, it is not possible in the exact Dirac theory to 
identify (e/mc)pp as a charge current denSity, because 
it does not have vanishing divergence. One can ex
press O· (pp) in terms of other observables by taking 
the divergence of (6.55), obtaining immediately 

O· (pp) ~ - mcpv . (Om sinJ3 +{O . (piS)}. 013. 

But, as shown in Sec. 5 of Ref. 3 the Dirac equation 
also implies 

o . (ipS) ~ mcpv sin{3 + (Of:l) • (pS) + pq. 

Hence, one gets the exact relations 

o· (pp) =pq. oi3~pv' {(Om· Os}~- ps· {<om· Ov}. 
(7.9) 

Regarding fl as small, one gets immediately from 
(7.7a) 

k "'pp. (7.10) 

By (6.7) and (7. 5), the "time component" of the Gordon 
current is, in the N. R. limit, 

€ 
Yo· k "'P-;; "'mcp, 

while the "space component" is 

k2k/\yo~pp· 

And, if {3 is slowly varying, one gets from (7.9) 

o· (pP)"'motP+V, (pp)=O. 

Substituting (7. 11b) into (7.4), one gets 

epv~ ~k+ VX (p~ s), 
m m 

(7. 11 a) 

(7.llb) 

(7.12) 

(7.13) 

the N. R. expression for a charge current expressed as 
a conduction current plus a magnetization current. 

Returning now to the expression (6.53) for the inter
action energy denSity, we are particularly interested in 
the N. R. limit of the two terms explicitly involving the 
electric field. Let us refer to these terms collectively 
as the spin-electric energy denSity and denote them by 
POESE ' Recalling (7.3b), we find that (6.53) gives us 

e e 
POESE ,,=,- --2pa' (Exv) - - a' Epi3. 

2mc mc 
(7.14) 

Using (7. 4) we can determine how the first term in 
(7.14) couples to the momentum instead of the velocity. 
Thus, using the fact that S2 ~ tli2 implies s· (OkS) ~ 0, we 
find that 

mpa' (Exv)-ps· (EXp)~s· [Ex(vXpsll 

~ - s2E. Vp + E· ss . Vp + pE· (a· va). (7.15) 

By virtue of (7. 3a) the last term in (7.14) can be written 

e e 
- -a' Epi3~ -2-a' EV· (ps) me m c2 , 

(7.16) 

which reveals that it gives a contribution of the same 
order of magnitude as the next to last term in (7. 14). 
With the help of (7.15) and (7.16) we can write (7.14) 
in the form 

POESE~--2 e2 2{ps·(EXp)+S2(pV·E-V·(pE))} 
mc 
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- 2 e2 2E·{S(S.Vp+2V·(ps»+s,vs}, (7.17) 
me 

Discussion of this result will be deferred until a sub
sequent paper, when we will be in a position to com
pare it with results obtained by conventional methods. 
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Consistency in the formulation of the Dirac, Pauli, and 
Schrodinger theories 

R. Gurtler*t and D. Hestenes 
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Properties of observables in the Pauli and Schriidinger theories and first order relativistic 
approximations to them are derived from the Dirac theory. They are found to be inconsistent with 
customary interpretations in many respects. For example, failure to identify the "Darwin term" as 
the s -state spin-<Jrbit energy in conventional treatments of the hydrogen atom is traced to a failure 
to distinguish between charge and momentum flow in the theory. Consistency with the Dirac theory 
is shown to imply that the Schriidinger equation describes not a spinless particle as universally 
assumed, but a particle in a spin eigenstate. The bearing of spin on the interpretation of the 
Schrodinger theory is discussed. Conservation laws of the Dirac theory are formulated in terms of 
relative variables, and used to derive virial theorems and the corresponding conservation laws in the 
Pauli-Schriidinger theory. 

1. INTRODUCTION 

In quantum mechanics three different equations are 
widely used to describe the motion of a single electron, 
namely, the Schrodinger, Pauli, and Dirac equations. 
Each of these equations must be supplemented by physi
cal assumptions which prescribe how to calculate ob
servables from the electron wavefunctiono The three 
waveequations are intimately related; the Pauli equation 
being an approximation to Dirac equation for small elec
tron velocities, while the Schrodinger equation approxi
mates the Pauli equation by neglecting magnetic inter
actions of the spin •.. 

Obviously, the observables associated with the three 
equations should be related to one another by the same 
approximations. In fact, however, quite a few incon
sistencies in this regard are to be found in the litera
ture. Consider, for example the usual expreSSions for 
probability denSity p and probability current in the 
Schrodinger theory, 

(1. 1a) 

(1. 1b) 

In the SchrOdinger theory, Eq. (1. 1b) plays a triple role 
role; besides the probability current PUk, it determines 
the charge current epuk associated with a charge denSity 
ep and a kinetic momentum denSity mpuk associated with 
a mass denSity mp. 

In the Pauli theory the same expressions (10 la, b) are 
usually used for probability density and current, W 
being understood as the two component Pauli wavefunc
tion instead of the Schrodinger wavefunction (e. g., Ref. 
1). In both the Schrodinger and Pauli theories the wave
equation implies the conservation law 

(1.2b) 

and the ak are the usual Pauli matrices. The fact that 
(1. 2a) is the correct expreSSion for the charge current 
has been established for a long time, 2 though its im
portance seems to be frequently unappreciated. 

Following history, textbooks show how to get from the 
Schrodinger theory to the Pauli theory by heuristic 
arguments (e 0 go, ReL 1lo Reversing the procedure, the 
Schrodinger theory can be derived rigorously (rather 
than heuristicly) from the Pauli theory, with some con
sequences that seem to have been completely overlooked. 
When the magnetic field is small or zero, the Pauli 
wave equation is identical to the Schrodinger equation 
and posesses solutions of the form 

W= (~). (103) 

So from (10 1a) we have p= q,tq,= ¢t¢ and from (1.1b) 
we get an expression for PUk with ¢ replacing w. Since 
¢ is a complex function satisfying the Schrodinger equa
tion, and since its relation to the probability density and 
current has been derived, it would seem that we have 
arrived at the Schrodinger theory 0 

But here's the rub! we must take account of fact that 
Eq. (1.3) means that the electron is in an eigenstate of 
the spin. So what we have proved is that the Schrodinger 
theory is irlentical to the Pauli theory when the electron 
is in an eigenstate oj the spin. Of course, this is at 
variance with the usual view that the Schrodinger theory 
describes a particle without spin, but it is a rigorous 
consequence of requiring that the theory be derivable 
from the Pauli theory. The difference is important! 
Though Eq. (1.3) yields some of the usual features of 
the Schrodinger theory, it also implies nonvanishing 
values for (1. 2b), specifically, if a3 is diagonal as 

(10 1c) usual, then 

Though ep is still interpreted as charge density, the 
Pauli theory differs from Schrodinger theory in that epuk 

must be supplemented by a "spin magnetization current" 
cV x m to get the total charge current 

i=epu +cVxm, 

where 

(1.2a) 
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(104) 

Equation (1.4) leads to nonvanishing values for the 
magnetization current V x m. Hence, the expression for 
the charge current J given by (10 2a) does not reduce to 
epu when the passage to the Schrodinger theory is made. 
That is, the usual expression for charge current in the 
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Schrodinger theory obtained by multiplying (l.lb) by the 
charge e is inconsistent with the assumption that the 
Schrodinger theory is derivable from the Pauli theory. 
To put it bluntly, everyone to date has been using the 
wrong expression for charge current density in the 
Schrodinger theory. Of course there is no way that this 
error could be revealed directly by experiment, because 
the only direct experimental means of testing for the 
existence of a magnetization current is by introducing 
a magnetic field. But in that case everyone knows enough 
to discard the Schrodinger theory and use the Pauli or 
Dirac theories. However, the existence of a magnetiza
tion current has important bearing on the interpretation 
of the Schrodinger theory even in the absence of a mag
netic field" For instance, it implies that there is a non
vanishing charge current in the s-states of hydrogen, 
eliminating one of the reputedly fundamental differences 
between the Schrodinger and Bohr theories. It also leads 
to the conclusion that the appearance of complex num
bers in the Schrodinger theory is inseparably related to 
the existence of the spin, the factor in being significant 
in the theory only because fih is an eigenvalue of the 
matrix representing the spin. This is difficult to recon
cile with conventional interpretations of the uncertainty 
principle. 

Though it is supported experimentally, the expression 
(1. 2a) for the charge current was originally introduced 
into the Pauli theory as an ad hoc assumption. So it is 
important to know that it can be justified on deeper 
theoretical grounds. The charge current in the Dirac 
theory is given by the wellknown expression 

(105) 

where ~ is now the four component Dirac wavefunction. 
The Dirac equation implies the conservation law 

il,,}" =0 (1.6) 

as well as the decomposition 

(1. 7a) 

where 

k" = itt {iiiil"~ _ (Cl"iii)~} -~A"iii~ 
2 c 

(1.7b) 

is the so-called Gordon current,3 and 

(1.7c) 

is interpreted as the magnetic moment density due to the 
electron spin. In the nonrelativistic limit, the time and 
space components of (1. 7b) reduce, respectively, to 
(1.1a) and (l.lb), while the nonvanishing components of 
(1. 7c) are given in (1.2b), so the space components of 
(1.7a) reduce exactly to Eq. (10 2a). Thus, the expres
sion (1. 2a) for the charge current in the Pauli theory is 
fully justified by the requirement of consistency with the 
Dirac theory. It is important to realize that the partic
ular combination of currents in (1. 7a) is a consequence 
of the Dirac equation, whereas the limiting result (1.2a) 
is not a consequence of the Pauli equation. 

The interpretation of the Dirac current (1.5) as a 
charge current is well established experimentally. But 
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the Dirac current is also interpreted as a probability 
current by dropping the charge e. Here we run into 
another inconsistency with the Schrodinger theory, for 
the Schrodinger current (1. Ib), which is supposed to be 
a probability current, corresponds to the Gordon cur
rent (1. 7b) and not, as we have seen, to the Dirac cur
rent. One way to resolve this difficulty might be to 
identify the Gordon current as the probability current in 
the Dirac theory. The required conservation law 

(1.8) 

is indeed satisfied, but then new problems of normaliza
tion and interpretation arise in the Dirac theory. The 
only alternative is to conclude that (1.2a) rather than 
(10 Ib) determines the correct probability current as 
well as the charge current. This does not mean that the 
Schrodinger current should be dispensed with. Indeed, 
by comparison with the Dirac theory, it can be shown 
to be proportional to the momentum density, and (1.2a) 
suggests it can be interpreted as a convective charge 
current. 

The main objective of this paper is to establish a con
sistent identification of observables in the Dirac, Pauli, 
and Schrodinger theories. This will be accomplished by 
beginning with the formulation of the Dirac theory in 
terms of local observables as given in Refs. 4 and 5, 
and obtaining the corresponding formulations of the 
Pauli and Schrodinger theories as limiting cases. The 
unusual formulation of quantum theory employed here is 
fully equivalent mathematically to the conventional one. 
However, it brings to light certain problems in physical 
interpretation which, as already argued in Ref. 4, may 
require for their resolution some modification of cur
rent theory. No such modification of quantum theory 
will be attempted here. But we cannot resist expressing 
the opinion that the Dirac theory is best interpreted as 
describing statistical ensemble of particle motions and 
pointing out from time to time how this may help the 
understanding of mathematical relations in the theory. 
Though some of the unusual physical interpretations we 
suggest are open to dispute and hopefully at some time 
to experimental test, the mathematical steps alone show 
what is required to establish consistency among the 
Dirac, Pauli, and Schrodinger theories. 

A formulation of the Dirac theory in terms of local 
observables like the one given in Ref. 4 is sometimes 
called a "hydrodynamic formulation" of quantum theory. 
Hydrodynamics provides a ready-made terminology for 
the description of continuous distributions and flows of 
mechanical quantities such as energy, momentum, 
angular momentum, and charge; as such it is useful in 
quantum theory, but it should be understood that the use 
of hydrodynamic terminology does not imply that any 
claSSical model or interpretation has been presumed. 
A hydrodynamic formulation of Schrodinger theory was 
first given by Madelung7; it has been discussed since by 
numerous authors, recently, for example, by Wilhelm. 8 

Complete hydrodynamic formulations of the Pauli and 
Dirac theories were first given by Takabayasi, 9 though 
other authors, notably Costa de Beauregard,10 achieved 
partial results earlier. These formulations of the 
Schrodinger, Pauli, and Dirac theories, though fully 
consistent with more conventional formulations of quan-

R. Gurtler and D. Hestenes 574 



                                                                                                                                    

tum theory, are inconsistent with one another in their 
identifications of observables, In Ref. 6 it was shown 
that if the Schrodinger theory is regarded as an ap
proximation to the Pauli theory, then it necessarily con
tains spin (albeit in a degenerate form). Here we show 
how the identification of observables in ReL 5 must be 
adjusted to be consistent with the more fundamental 
formulation of the Dirac theory in Refs, 4 and 5, 

Section 2 obtains the Pauli theory as the nonrelativistic 
approximation to the Dirac theory and discusses re
lativistic corrections. The usual physical interpretation 
of these results is held to be incorrect because of in
sufficient attention to the identification of observables, 
especially failure to bring the nonrelativistic limit of 
the Dirac (charge) current into the discussion and 
distinguish it from the momentum density. The Darwin 
term in the energy is proved to be a spin-orbit energy 
for s-states in exact accordance with the original argu
ment of Thomas. 

Section 3 summarizes the definitions and interrela
tions of observables in the Pauli-SchrOdinger theory 
which are required for the sake of consistency with the 
Dirac theory. Some implications of the consistency re
quirement for the Schrodinger hydrogen atom are pointed 
pointed out to show that the conventional interpretation 
of the SchrOdinger theory must be drastically revised, 
but no attempt is made to carry any such revision to 
completion, 

Section 4 expresses the hydrodynamic equations of the 
Dirac theory in terms of relative observables, uses 
them to derive a virial theorem, and obtains their non
relativistic limit. 

The nomenclature and results of Refs. 4, 5, and 11 
are used throughout this paper. The reader is advised 
to become familiar especially with Ref. 5 before at
tempting to follow the arguments here in any detail. 

2. NONRELATIVISTIC APPROXIMATIONS TO THE 
DIRAC THEORY 

In the literature two methods have been widely used to 
generate nonrelativistic approximations to the Dirac 
theory, namely, separation of the Dirac wavefunction 
into large and small components, 12,13,14 and the F - W 
transformation. 15 To facilitate comparison with our ap
proach, we translate the first of these methods into 
multivector language. Then we criticize the physical in
terpretation usually accorded to the method and give 
reasons for interpreting it differently, Our arguments 
also have bearing on the F-W transformation and sug
gest rather different mathematical methods for generat
ing relativistic corrections, but we do not pursue either 
of these points in any detaiL Our objective is only to 
show in multivector language how the Pauli equation and 
relativistic corrections to it can be obtained from the 
Dirac equation and provided with a consistent physical 
interpretation. 

The definition of electron energy in the Dirac theory 
differs from the definition in the nonrelativistic theories 
by including the rest energy, We can remove the rest 
energy while retaining the definition of the energy in 
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terms of the wavefunction by changing the wave equation 
with the transformation 

(2.1 ) 

whereupon the Dirac equation (3.11) of Ref. 5 becomes 

(2.2) 

To express (2.2) in terms of relative variables we 
multiply it by eyo and, recalling the definitions (6,4) and 
(6,22) of ReL 5, obtain 

I1(Ot + eV)I/YiU3 = me 2 (1/J* -I/J) + (V - eA)I/J, 

where 

(2.3) 

The wavefunction I/J can be expressed as the sum of an 
even part I/Je and an odd part I/Jo, that is, 

(2.5a) 

where distinction between "even" and "odd" is best made 
by the equation 

(2.5b) 

As is easily shown by the method of Appendix A in Ref. 
4, this separation of IjJ into even and odd multivector 
parts is exactly equivalent to the usual separation of the 
wavefunction into large and small components in the 
matrix version of the Dirac theory, but we shall see 
only later what this separation means physically. After 
substituting (2. 5) into (2. 3) and separately equating even 
and odd parts we obtain the coupled equations: 

notl/Jeiu3= - e{nV'ljJoiU3 + ;AljJo}+ VljJe' (2.6a) 

l1ot ljJ)u3 - VljJo + 2me2 ljJo = - e0VljJeiU3 + ;AljJe}. (2.6b) 

Equations (2.6) can be solved to lowest order by 
neglecting the first two terms in the left of (2.6b) in re
lation to the third, yielding 

ljJo = - 2~e {nVljJeiU3 + ;AljJe}. (2.7a) 

If we use this to eliminate ijio from (2. 6a), then after ex
panding, simplifying and USing the identity 

AljJe + V (AljJe) = (VA' V)ljJe = (iB + 2Ao V)ljJe, 

we arrive at the Pauli equation 

n " 1 { 112 2 e
2 A2} °tljJe Z0'3=2m - V' +C"2 ljJe 

en { +-2 - iB + 2A· v}ljJe i 0'3 + V</!e 
me 

(2.7b) 

For readers who are still not completely at home with 
the multivector algebra used here, we prove that (2.7) 
is equivalent to the usual matrix form of the Pauli equa
tion. This is most easily done by replacing each vector 
O'k in (2.7) by a corresponding Pauli matrix ak according 
to the rules 

0'1- al=(~ ~), 
C] - a _(0 -i') 

2 2- i' 0 ' 
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U3-a3=(~ ~1)' 
The i' here is a mathematical square root of - 1 with no 
geometrical interpretation; however, i' multiplied by 
the unit matrix is a matrix representation of the 
pseudoscalar i, a fundamental geometrical entity. This 
follows from (2.8), thusly: 

. ,. ., (1 0) 
l = "1 "2"3 - a1 a2 a3 = l 0 1 . 

By (2.8) I/!e corresponds to a matrix l/!; which becomes 
a column matrix we by operating on an eigenmatrix III 

of a3 ; so we make the correspondence 

I/!e-I/!;, we=l/!;u1 whereUl=(~)o 
From (2.8) we also have 

B:= "IBI - alBI '" a' B. 

(2.9a) 

(2.9b) 

Hence regarding (2.7) as a matrix equation and multi
plying it on the right by ul> we get, by (2.8) and (2.9), 
the Pauli equation in its usual matrix form: 

i' notwe := 2~ {- fi2'17 2 + ;: A2}We 

+ 2en 
{- a 0 B+ 2i' A" V}we + VWe' me (2.10) 

Now we return to the multivector formalism and the 
coupled equations (2. 6a, b). 

To obtain higher order approximations to (2. 6a, b) in 
a systematic way and to discuss the usual physical in
terpretation of the results, it is convenient to introduce 
operators K, p, and Pk defined by 

KI/! '" nOt l/!i"3 - VI/!, 

PzP'" - PiVl/!i"3 - ~AI/!= "k Pkl/!, e 

The Pauli equation (2. 7b) can then be written 

A 1 A2 1 A2 en B 
KI/!e = 2m P I/!e = 2m P I/!e - 2me l/!e"3' 

where we have used the obvious operator notation 

p2 ",p' P=pJk' 

Equations (2. 6a, b) can be put in the form 

KI/!e =e!I//Jo, 

(1 + K/2me2 )</!o = (1/2mc)P</!e' 

(2.11) 

(2.12a) 

(2.12b) 

(2.13) 

(2.14) 

(2.15a) 

(2.15b) 

Assuming IKI/!I «2me211/!1, (2, 15b) can be solved for i{Jo 
in the form 

1 A A 

"'- (1-K/2me2 )p1/! • 2me e 
(2.16) 

Substituting this into (2. 15a) and using the identity 
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(2.17) 

USing (2.13) in the first and second terms on the right
hand side of this equation and the identity 

enp(El/!)i"3 = en-2(VE)</J + en(E· P - iE X P)</!i"3 

in the third term, we arrive finally at the first order 
correction to the Pauli equation: 

A. 1 A2. eli. 1 A2. 
KWe = 2m P I/!e - 2me B</!e"3 - 8m3e2P ~)e 

(2.18) 

With (2.8) and (2.9) it is easy to show that (2.18) is 
equivalent to the usual matrix equation obtained in Refs. 
12-14 as the first order relativistic correction to the 
Pauli equation. The usual physical interpretation of 
(2.18) proceeds by identifying Pk as a "kinetic momentum 
operator" and, neglecting the difference between p2 and 
p2 given by (2.13), interpreting the first and third terms 
of (2.18) as the first two terms in the expansion of a 
relativistic "kinetic energy operator" 

A2 A4 
(pA2 + m2e4)1/2 _me2=L __ P_+ 0'0. (2.19) 

2m 8m 3e2 

The second and last terms of (2.15) are interpreted as 
spin precession energies, with the latter (spin-orbit) 
term being reduced in magnitude by a factor of t at
tributed to the Thomas precession, The V x E term is 
usually neglected; in any case it does not contribute to 
the energy directly, With neglect of the vector potential, 
the Eo p term in (20 18) can be shown to contribute to the 
energy the negative of half the amount of the V' E term. 
So, for the purpose of calculating the energy, these two 
terms in (2.18) can be replaced by a Single term (- etz-2/ 
8m 2e2 )('I7. E )</Je, the so-called "Darwin term," which is 
usually regarded as a quantum-mechanical effect without 
classical interpretation. The contributions of the last 
four terms in (2,18) to the energy levels of hydrogen 
can be evaluated by perturbation theory from the hydro
gen solutions to the Schrodinger equation; it has been 
found16 that, as one might expect, they combine to give 
the (114 term in the expansion of the Sommerfeld fine 
structure formula, 

To sum up, the usual interpretation regards (2.18) as 
an approximate separation of the Dirac energy into 
kinetic and interaction energies, Simple and natural as 
this interpretation appears from the operator formula
tion of (2. 18), it is inconsistent with the identification of 
kinetic energy and momentum already made in the exact 
Dirac theory 0 Nothing in the Dirac theory justifies the 
interpretation of (2,19) as a "kinetic energy operatoL" 
Indeed> if the operator Pk is to be interpreted as the 
"kinetic momentum operator," then on the basis of "re
lativistic invariance" alone, the operator K defined by 
(2.11) must be regarded as the "kinetic energy opera
tor, " which is certainly inconsistent with the interpreta
tion of (2.18) reviewed above. 
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Nevertheless in the "Schrodinger approximation" to be 
,~ ~ 

discussed later, K <Pe = {2m )"1p2<Pe, showing at least that 
the usual interpretation of {2m )"1p as an approximate 
kinetic energy operator is consistent with the Dirac 
theory. 

Section 6 of Ref. 5 gave an exact derivation of the 
Larmor precession energy and found that it arises from 
the electron mass density. Of course, in a statistical 
theory it is possible to identify in the mass density con
tributions from the kinetic and interaction energies of 
the statistical ensemble, but this is not allowed in the 
conventional Dirac theory, where the best that can be 
done is to determine how the mass is affected by ex
ternal fields. New interpretations cannot emerge from 
approximations to an exact theory. 

It was also shown that the Thomas precession energy 
came from the kinetic momentum, and to identify it the 
kinetic momentum was separated into two parts in Eq. 
(6.48) of Ref. 5. Heretofore, no one has paid attention 
to the fact that a similar separation was made implicitly 
in the derivation of (2.18). So much emphasis is laid on 
the correspondence between operators and observables 
that it is sometimes overlooked that an operator must 
act on a wavefunction to produce an observable quantity. 
This simple fact obviously implies that a change in the 
wavefunction while an operator is kept fixed will gen
erally change the correspondence with observables. 
Exactly this kind of change was made in arriving at 
(2.18). The operator Pk introduced in (2.12) can indeed 
(with due attention to its relation of the energy-momen
tum tensor) be regarded as a momentum operator when 
it acts on the Dirac wavefunction <p. It follows that the 
operator equation Pk<P= Pki/Je + PkiJ!o corresponds to a 
separation of the momentum into two parts. But only 
PkiJ!e is associated with momentum in (2.12) and (2.18), 
though Pk<Po is negligible only in the zeroth order (Pauli) 
approximation; this amounts to a change in the inter
pretation of the theory by identifying a different quantity 
as momentum. As a result, the Larmor and Thomas 
precession energies appear (magically) as interaction 
terms 0 Of course, as long as only the total energy is 
being measured experimentally it does not matter what 
part of it is called kinetic; only the coupling with ex
ternal fields is important. However, the spin and mo
mentum are related to one another by the angular mo
mentum conservation law, and the interpretation of one 
cannot be changed without affecting the other. When this 
is taken into account, arbitrariness in the interpreta
tion of various contributions to the energy is eliminated. 

Before (2.18) can be correctly interpreted, the re
lation of iJ!e to the Dirac observables must be deter
mined 0 The physical meaning of the decomposition if; 

= <Pe + iJ!o is revealed by the decomposition 

~'=pl/2exp(i;3/2)LU (2.20) 

obtained from Eqs. (4.2) and (6.15) of Ref. 5. The 
spinor L can be expressed in terms of the relative 
velocity v by taking the square root of (6. lc) in Ref. 5 
to obtain (e.g., Eq. (18.14) of Ref. 17) 

L= V~/2 (~+ 0'1') 
..f2 0' e 
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V 1/2 
h 0 d vo= (l_v2/e 2 )1/2. (2,21) were 0'= (V

o
+ 1)1/2 an 

Hence (2.20) can be written 

iJ!= exp(ii3/2) (.!. + CiV)pl/ 2U (2.22) 
.f2 2 eO' 

where of course Po=pvo' The separation of (2.22) into 
even and odd parts is easily accomplished by noting that 
v and i are odd (i.e., YoVYo=-v and YoiYo=-i),while 
U is even (i.e., YoUyo= U); hence 

". 1 (cos~i3+ .va . lQ) 1/ 2 U 
~'=- -- Z-Sln?1-' p ev'2 O' e - 0, (2.23a) 

1 (isin~i3 +va lQ) 1/ 2 U i/Jo=-=- --- -COS21-' Po • 
v'2 0' e 

(2.23b) 

For Iv / e « 1, LY '" (2 )"1/2, in which case it is clear from 
(2. 23) that I <Po I « I <Pe I only if 13 is simultaneously small 
(modulo 'IT of course). Thus 13 small is a prerequisite 
for the Pauli equation to obtain as the N. R. limit of the 
Dirac equation. We do not attempt to explain this fact 
here, we merely record it as another clue to the physi
cal interpretation of the mysterious parameter 13, and 
we note that (2.23) shows exactly how the separation of 
<P into even and odd parts depends on v / e, a fact which 
we now exploit. 

Expanding (2. 23a, b) in {3 and I v 1/ e and keeping terms 
to first order only in both quantities, we get 

<Pe "'pl/2U"'p~/2U= X, 

<Po'" hii3+v/elx. 

(2. 24a) 

(2. 24b) 

Substitutting these in (2. 7a) and multiplying on the right 
by 2X, we obtain 

( ii3+ !)p= - _1_ {fiVXiC13 + ~AX}X = _1_ (PX)Xo (2.25a) 
e me e me 

Separating this into relative vector and pseudovector 
parts, we get 

fi [ -] e A V= - - VXiC13 X (1) --
mp e 

(2.25b) 

and 
1z - 1 h _ 

13= --[VXC1 X] = - - -V, (XC1 X) mep 3 (0) me 2 3 

= __ I_v. (ps) (2.25c) 
mep , 

where we have used (6.16) and (70 3a) of Ref. 5 to iden
tify the relation of the spin to the Pauli wave function X 
as 

Iz - tz _ 
ps =2 pUCi3 U = 2 XCi3 X. (2.26) 

The result (2.2 5c) is just an approximate derivation of 
(7. 3a) in Ref. 5, which has already been shown to hold 
under more general assumptions. Equation (2. 25b) is 
the correct expression for the electron velocity in terms 
of the Pauli wavefunction. This reveals the physical 
significance of Eq. (2. 7a) in the Pauli theory. 

We are now in a position to examine the physical 
significance of the spin-electric coupling terms in (2.18) 
by expressing them in terms of local observables. The 
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last three terms in (2.18) are equivalent to the single 
term in (2.17) 

ell ~ en2 
- 4m 2c2P(Eif'e)i0'3= - 4m2c2 V(Eif'e) 

which we have reexpressed by using (2. 12a) and neglect
ing the vector potential A. In the present approximation, 
we can replace if'e in (2.27) by the Pauli wavefunction 
X=p1/2U, whereupon, after multiplication on the right 
by X, (2.27) becomes 

en ~ . _ e1f2 -) 
--4 2 2 (PEX)Z0'3 X= --4 2 2 (PVE + E· Vp + 2(E· VUW mc mc 

+ 2;c E(2:::C (VX»:). (2.28) 

But if (2. 25a) is multiplied by is and (2.26) is used, one 
finds, neglecting A, 

(2.29) 

Noting that S2 = M.2, that (E·V u)O is a bivector, and 
that iEvs =E' vis - (E Xv)s, we obtain, on substituting 
(2 0 29) and (2.28) and taking the scalar part, 

e e 
- --2-pS' (E Xv) - --S' Ep,B, 

2mc 2mc 

(2.30) 

Of course, the perfect divergence V· (pE) in (2.30) has 
a vanishing contribution to the total energy so, with 
sin/'l= f3, (2 0 30) is seen to differ from the expression 
(7,14) of ReL 5 for the spin-electric energy density 
essentially by a factor i in the last term. We shall not 
look into the reason for this discrepancy, because it 
does not affect matters of interpretation which concern 
us now, 

The importance of the last term in (2,30) depends on 
the magnitude of /'l relative to tv t / c, and that can be 
determined only by computation from the solution to the 
wave equation. The hydrogen atom solutions to the 
Pauli equation gives S constant, in which case (2.25c) 
gives {3= - (mc t 1 S ' V lnp; so if p is a sufficiently slowly 
varying function of pOSition, we have /'l« tv t /c, and 
(2,30) is equivalent to (7,14) and (7.17) in Ref. 5, giving 
us in this approximation 

(2.31) 

This shows that the hydrogen spin-electric energy given 
by (2.18) is identical to the one arrived at by Thomas 
from purely classical considerations (see Ref. 1). This 
fact is disguised in (2.18) by the use of operators and 
the failure to distinguish between velocity and 
momentum. 
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The mysterious Darwin term is completely explained 
by (2. 31). Since V· E is proportional to a delta function 
vanishing everywhere except at the origin and p is non
vanishing at the origin only for s -states, the Darwin 
term contributes only to s-states. But P= 0 for s-states, 
so (2.31) shows that the Darwin term gives the entire 
spin-orbit coupling for s-states. Even though the mo
mentum density pp vanishes for s-states, spin-orbit 
coupling is possible because the charge current epv 
=em-1VXps is finite. The numerical coefficient of the 
Darwin term is notable; as (2.31) shows a factor 1f2 /8 
arises from the "Thomas factor" i and the spin S2 = {n2 • 

For other than s-states the distinction between veloc
ity and momentum is not so important, being responsi
ble only for a term - ~em-2c-2E' ss· V p which was 
neglected in relating (7.17) of Ref. 5 to (2.31) here. 
This is to say that the magnetization current makes an 
important contribution to the energy only for s-states, 
where it is the entire current. 

The identification of Thomas preceSSion in the Dirac 
theory is justified in current textbooks solely by noting 
the factor ~ in the spin orbit term of (2.18) which re
mains after associating a factor ~n with the spin. The 
identification of the "Thomas factor" is correct, as we 
have shown by the same general argument as Thomas, 
based primarily on the fact that the proper spin S is 
always orthogonal to the proper particle velocity v. But 
it's appearance in (2.18) is rather fortuitous, because 
the separation of the Dirac momentum into PkiJ!e + Pk~Jo 
which makes the Thomas preceSSion explicit in (2,18) is 
equivalent to the exact separation made in (6048) of ReL 
5 only to first order. It must be remembered that, as 
cautioned in Ref. 5, it is possible to talk of the Thomas 
precession only when 6 = UiO'/j is taken to be the spin. 

3. OBSERVABlES IN THE PAUlI-SCHRODINGER 
THEORY 

In the introduction we pointed out that the interpreta
tion of the Schrodinger theory as a theory of an electron 
without spin is inconsistent with the view that it is an 
approximation to the Dirac theory. Consistency requires 
lllat the Scllrodinger theory be regarded as describing 
an electron in an eigenstate of SPill. Here the term 
"eigenstate" can be taken in the usual sense. But we 
think that the sense suggested in Sec. 5 of Ref. 5 is 
more revealing, Accordingly, Ice say thai an electron 
is in all eigenstate of the spin if and only if the local 
spin vector s = D0'3[; is uniform, L e" constant in time 
and homogeneous in space. 

To emphasize the fact that the Schrodinger theory is 
identical to the Pauli theory for an electron in an eigen
state of spin, we speak of the "Pauli-Schrodinger (P
S) theory," The P-S theory has already been discussed 
in Ref. 6, and everything mentioned there is consistent 
with the Dirac theory. But the derivation of the P-S 
theory from the Dirac theory which has been carried out 
in the preceeding sections reveals some important fea
tures of the P-S theory which were not mentioned in 
Ref. 6. This has particularly Significant consequences 
for the interpretation of the Schrodinger theory. 

Let us summarize the aSSllmptions of the P-S theory 
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which we have derived from the Dirac theory in Sec. 2. 
The P-S wavefunction X can be written in the form 

X=p~u, (3.1a) 

where 

uut =1, (3.1b) 

ut=y/lyo=U (3.1c) 

and 

p= xtX= xxt (3.2a) 

is a scalar to be interpreted as the probability density. 
The wavefunction X is determined by assuming that it is 
a solution of the Pauli equation (2. Th) or (2.13). As 
emphasized in ReL 6, the Pauli equation reduces to the 
Schrodinger equation when the magnetic field is suf
ficiently small. Besides the probability density (3. 2a), 
the fundamental observables of the P-S theory are the 
energy density pE, the momentum density pp, the spin 
density ps, and the charge current j = epv; they are 
expressible in terms of the wavefunction by the equations 

pE = n(a tX iO'3X. t)(O) = pn(a pi0'3ut)(0)' (3.2b) 

rz tnt 
PS="2X0'3X ="2puO'p , (3.2c) 

(PkX)Xt ", - {tio" xi 0'3 + ~AkX} xt == PPk - io,,(ps), (3.2d) 

m-I(f>x)xt ", - m-1{rzvxi0'3 + ~AX}xt ==0: p(v + ic{3L (3,2e) 

This completes the list of assumptions derived for the 
P-S theory. 

For purposes of comparison, we use (2.8) and (2.9) 
to express the observables (3.2) in the usual matrix 
notation. Writing 'l'= XU l1 as in (2.9a), for the matrix 
wavefunction, introducing pk'l' '" - (i' no" + (e/c )Ak)'l', and 
using Re to denote "real part," we get 

p= xtX= (XtX\O) = \]It'l', 

pE = h(l'Vi0'1\Q) = Re{i'Iz\]l tilt \]I}, 

h( t tit 
PSk=PS'O'k=2" O'kX0'3 X )(0)="2\]1 Ok\]l, 

PPk = P(UtpkU)(O) = (XtpkX) (0) = Re{\]Itpk'lf, 

PVk = pv' O'k = m-1 (Xt O'kPX) (0) 

(3.3a) 

(3.3b) 

(3. 3c) 

(3.3d) 

= rn-1 Re{\]ItO'kO'jPj'l'}. (3.3e) 

Equations (3.3) can be used instead of (3.2) to relate 
observables to the wavefunction, but (3.2) is easier to 
work with. For example, using m-1p=m-10'"pk, we get 
immediately from (3.2d) and (3.2e) 

pp - iV(ps) = mp(v + ic(3). (3.4a) 

Since V(ps)=v' (pS)+iVX (ps), the vector part of (3.4a) 
is 

mpv= pp + vx (ps), 

while the pseudovector part gives 

mcpf3= - V· (ps). 

(3.4b) 

(3.4c) 

In Sec. 7 of Ref. 5 the fundamental relation (3. 4b) was 
derived from a "constitutive equation" determined by 
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the Dirac equation. In Sec. 2 we saw that a decoupling 
of (3Ab) from the waveequation was brought about by the 
separation of the Dirac wavefunction into large and 
small components" So (3.4b) must be introduced into 
the P-S theory as an assumption independent of the P
S waveequation. It has already been pointed out in Sec. 
7 of Ref. 5 that (3. 4b) expresses the separation of the 
total charge current j =epv into a convection current 
em-Ipp and a magnetization current VX (em-Ips) written 
as Eq. (1.2) in the introduction. The phySical signifi
cance of (3. 4c) is not as obvious as that of (3.4b). In
deed, since the function f3 is given in terms of p and S 

by (3. 4c), it need not be introduced into the theory at 
all. However, we have already observed the peculiar 
role of f3 in the Dirac theory 9 so it should be interesting 
to see how it enters the P-S theory. 

From the set of basic observables (3.2) other ob
servables can be constructed. Chief among these are the 
"orbital angular momentum density" 

pL= xx (Pp)= pxxp (3.5) 

and the "total angular momentum density" 

pJ=p(L+sL 

Since, according to (3Ab), p*mv, the moment of 
charge differs from the moment of momentum. To ex
press this difference we introduce the orbital momentum 
density 

pL* "'xx (pmv)=mpxxv. (3.7) 

By virtue of (3.4b), the relation between the two orbital 
moment densities can be put in the form 

(3.8) 

Other important observables appear when we use the 
Pauli equation to derive equations of motion for the 
local observables. With p and v related to the wave 
equation by (3.2d,e), it is easy to show that the Pauli 
equation implies the conservation laws 

i\p + V· (m-1pp)= 0, 

atp+v. (pv)=O. 

(3.9) 

(3.10) 

Indeed, either of these equations follows from the other 
by virtue of (3.4b). Equation (3.9) implies the existence 
of momentum streamlines. We can always write the 
equation for momentum conservation on such a stream
line in the general form 

This introduces the force density pf' and the stress N~ 
on a volume element moving with the streamline as 
local observables. In Ref. 6, the Pauli equation was 
shown to lead to the specific expreSSions 

f' =e{E + (p/mc)XB}+ (e/mc)O'ks. ilkB, 

N~ = - M-1pO'jS' ((lAs + SOjo" lnp) 

(3.l1b) 

(3.11c) 

for f' and N~ in terms of the basic local observables of 
(3.2). 

On the other hand, Eq. (3.10) rather than (3.9) 
rather than (3.9) is the charge conservation equation, 
and momentum conservation along a chnrf[e (or l'elocify) 
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streamline has the general form 

pdtP= peat +v· V)p= pf - a"Nk • (3.12a) 

By the method of ReI. 6 it can be shown that the Pauli 
equation leads to the expressions 

f=e{E + (v/e)XB}, 

Nk=peO'k·SVP+O'js· (O'kXOjV). 

(3.12b) 

(3.12c) 

We will not carry out the derivation here, because in 
Sec. 4 the same results will be obtained from the 
hydrodynamic formulation of the Dirac theory. The cor
responding conservation laws for angular momentum 
will also be obtained. Our object here is only to compare 
the conservation laws (3.11) and (3.12) on the momen
tum and charge streamlines. 

The structure of the stress terms (3.11c) and (3.12b) 
appears to be difficult to understand. But (3. 12b) shows 
that the force on a charge streamline is exactly the 
classical "Lorentz force"; this by itself is nearly suf
ficient to show that the electromagnetic interaction in 
quantum theory is the same as in classical theory 0 On 
the other hand, (3.11b) shows that the force on a mo
mentum streamline consists of a "Lorentz force" sup
plemented by a "Stern-Gerlach force." In the light of 
(3. 12b), we conclude that the 'Stern-Gerlach force" 
arises from the circulation of charge relative to the mo
mentum streamlines. The same general conclusion was 
reached in Ref. 4 by an examination of the hydrodynamic 
formulation Dirac theory. But it should be recalled that 
the analysis there is complicated by the fact that there 
are no momentum streamlines in the exact Dirac theory, 
though there are streamlines generated by the Gordon 
current. 

We have summarized how observables are brought 
into the P-S theory. A basic set such as (3.2) must be 
defined in terms of the wavefunction, while the remain
ing observables arise when the wave equation is used to 
construct the conservation laws. In this connection it 
is well to recall that, as shown in Ref. 6, even the spin 
does not have to be introduced by definition in the Dirac 
theory, because it is determined by the conservation 
laws. The conservation laws are equations of motion 
for the observables, and as we have seen with (3.11) 
and (3.12) they have properties which can be interpreted 
physically. In this way the physical consequences of the 
wave equation are revealed. 

So far we have discussed only local observables in the 
P-S theory. The "average" (or "global") observables 
obtained by averaging local observables over spaces are 
easier to study experimentally, so we now ascertain 
some of their properties. 

The average momentum has the classical relation to 
the average velocity 

(p)= I d'xpp=m(v). (3.13) 

This follows from (3.4b) since the contribution of the 
"spin current" vanishes by Gauss's theorem. However, 
by integrating (3.8) we find that the angular momentum 
differs from the average moment of charge according to 
the formula 

(L*)= (L)+ 2(s). (3.14) 
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Multiplying the Pauli equation (2. 13) by 4'e t = X t, taking 
the scalar part and integrating, we get the expression 
for the average kinetic energy 

(/?)=/ P2) _ ~ (Bo S)= (E) _ (V) 
\2m me ' 

where, in particular, 

( A2) r ' ( t-2 ) P =. d x X P X (0)-, 

(E. s)= r d3xpB' s. 

(3.15) 

(3.16) 

(3.17) 

The "operator expectation" (3.15) can be reexpressed 
in terms of the velocity, with the striking result 

f/()= (1mv2)+ (tme 2p2). (3.18) 

In Sec. 4 this result will be obtained from an exact re
lation holding in the Dirac theory. 

According to (2.15) the operator (2mtljJ2 can be in
terpreted as the Idnetie energy operator only if (B· s) 
= 0, that is, in the Schrodinger approximation to the 
Pauli theory. The expression (P) is unsatisfactory from 
our point of view, because it has not been expressed in 
terms of the basic local observables in (2.2). We can 
easily reexpress it in terms of the momentum (2. 3d) by 
using Eq. (4.11) of Ref. 6, which shows us that 

Hence 

(p2)= (p2) _ (s2[2V'2Inp + (V Inp)2]_ s(V'2s». (3.20) 

Equation (3.20) shows, at least, that (p 2/2m) does not 
give the entire contribution to the kinetic energy, so, 
on the basis of general principles of continuum 
mechanics, one is tempted to interpret the spin and 
density terms in (3.20) as a kind of heat energy asso
ciated with the local angular momentum flux, but it is 
difficult to account for the specific form of the terms 
on the basis of this idea. 

Obviously, the kinetic energy is much more simply 
expressed in terms of the velocity by (3.18) than in 
terms of the momentum. Notice that, in contrast to 
(3.15), (3.18) displays no explicit interaction with the 
magnetic field. This is entirely in accordance with the 
idea that the spin arises from a circulation of charge. 
But the problem remains to understand the tJ2 term in 
(3.18). We shall comment on this later. 

A virial theorem for the P-S theory is easily de
rived with the help of (3.12) [but not by using (3.11)!]. 
Since, in Sec. 4 we will obtain a more general theorem 
from the Dirac theory by a similar method, we do not 
give the derivation. Looking ahead, we merely note that 
from Eqs. (4.20)-(4.23) we get, recalling that the rest 
energy is omitted from the Pauli theory, the general 
virial theorem for stationary states 

which for a Coulomb field alone reduces to 

(3.22) 

Equating this to (E) + f/() + (V) and USing (3.18), we get 
the alternative form of the virial theorem 
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m(v2)+mc2(~)+ (V)=O. (3.23) 

Let us consider some implications of the above re
lations among observables for the interpretation of the 
Schrodinger solution of the hydrogen atom. As has been 
explained, we get the Schrodinger theory with spin by 
taking s constant. This determines a preferred direction 
in the theory, so it is convenient to write 

Obviously, 

(8)=S= tnu3 

(3.24) 

(3.25) 

for any solution of the Schrodinger equation. From the 
Schrodinger wavefunctions for the hydrogen atom we get 

(L)=mnu3 =2ms, (3.26) 

where m is the magnetic quantum number. This is 
identical to the usual result 

(L3)=mn, (L 1 )=0=(£2)' 

where the Lk are the usual angular momentum opera
tors, that is, 

<Lk)= Uk· (L)= (Uk· L\ 

The total angular momentum is clearly 

(J)= (m + t)n0'3= (2m + 1)s. (3.27) 

The spin is coupled to other observables by Eq. 
(3.46), which, in the Schrodinger theory can be written 

mpv=pp - SXVp. (3.28) 

For s-states the SchrOdinger wavefunctions imply p 
=0, but (3.28) shows that v*O. In fact, since pis 
spherically symmetric Vp is directed radially, so (3.28) 
implies that the charge streamlines circulate about the 
"spin axis." Thus, the charge distribution oj an s-state 
is not static as it is usually supposed to be when (elm)p 
is wrongly assumed to describe the charge flow. It 
must be emphasized that this conclUSion is solely a con
sequence of requiring that the Schrodinger theory be a 
consistent apprOximation to the Dirac theory. Of course, 
we have already seen that the charge current in the s
state gives the "Darwin spin-orbit energy" when the 
first order relativistic correction is included. 

The correspondence between Schrodinger and Bohr 
theories of hydrogen is significantly improved by cor
responding v rather than pi m with the velocity of the 
electron in the Bohr theory. All observables can be ex
pressed in terms of v rather than p by using (3.28). The 
angular momentum to compare with the Bohr theory is 
therefore L* defined by (3.7) rather than L. Indeed, 
substitution of (3.25), (3.26) into (3.14) yields 

(L*)= (m + 1)n0'3 • (3.29) 

As in the Bohr theory, (3.29) associates a finite angular 
momentum with the s-states. Since spin is separately 
conserved it appears that we can just omit it from the 
angular momentum balance 0 But a deeper analysis may 
show that the half-integral values of the "azimutal 
quantum number" in the Schrodinger theory are re
lated to the spin. 

It is tempting to suppose that the Schrodinger theory 

581 J. Math. Phys., Vol. 16, No.3, March 1975 

describes in some sense a statistical ensemble of Bohr
like orbits. The expression (3.18) for the kinetic energy 
seems. to be very close to what one might expect in such 
a case. Consider the strange quantity {3 which appears 
there. From (3. 4c) we have 

-1 n ( ) 
(3= mc V· (pS)= - 2mc 0'3· Vlnp, 3.30 

so in the SchrOdinger theory (3.12) can be written 

if<)=tm(v2)+2~ «a;;r). (3.31) 

Thus the contribution of (3 to the energy is determined by 
by the derivative of the denSity along the "axis of 
quantization." But the Bohr orbits are confined to a 
plane, while the Schrodinger v-orbits are distributed 
throughout space, though they too circulate about a pre
ferred axis. Perhaps the last term in (3.31) is only 
needed to compensate for this difference; or perhaps it 
represents the entire contribution of the spin to the 
energy. Perhaps the biggest difference between the Bohr 
and Schrodinger theories is that the latter contains spin. 
No doubt the last word on the subject has not been 
spoken. 

4. HYDRODYNAMIC EQUATIONS FOR 
RELATIVE OBSERVABLES 

In Sec. 6 of Ref. 5 the fundamental relative local ob
servables, velocity, spin, energy, and momentum were 
introduced and the basic constitutive relations among 
them were ascertained and discussed. This section de
rives the relative equations of motion for these quan
tities. The resulting equatiOns are exact but probably 
too complicated to be of practical interest. We use them 
only to derive a virial theorem and to find the corres
ponding hydrodynamic equations of the Pauli-Schrodin
ger theory in the non relativistic limit. However, it 
may be possible to use these equations to compute re
lativistic dynamical corrections to the Pauli theory, a 
problem which is difficult to handle with a wave 
equation. 

Le us recall the dynamical conservation laws of the 
Dirac theory. According to Eqs. (2.26) and (3.22) of 
Ref. 4, the energy-momentum conservation law can be 
written 

e 
pd p = - pF· v - a N" 

-r: C /.L' (4.1a) 

where 

Note that N(v)=v"N"=O, so N(n) can be identified as 
the proper stress tensor, describing the flux of momen
tum through a hypersurface with normal n into a particle 
streamline. Equation (4.1a) says that the Lorentz force 
is the only body force on the electron; the "Stern
Gerlach" force does not appear explicitly in (4.1a) be
cause it is not a body force, rather it has been shown 
in 4 to arise from the term a"N", so it expresses the 
influence of the external field on the local momentum 
flux. 

According to Eqs. (2.34) and (2.33) of Ref. 4, angular 
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momentum conservation in the Dirac theory can be ex
pressed by the equation 

pdTS= - o"M" + pv/\jJ + Y"AN" 

where 

iVf(ylJ.)=M" =pS' ylJ.v=pHs, YlJ.l\v]. 

(4.2a) 

(4.2b) 

The last two terms of (4.2a) describe the coupling of the 
spin to the energy-momentum denSity a flux via the 
skew-symmetric part of the energy-momentum tensor. 
Also A'i(v) = 0, so the tensor M(n) gives the flux of 
angular momentum in the direction n onto a streamline. 
Thus (4. 2a) says that the spin is subject to no body 
torques; the "Larmor term" does not appear explicitly 
in (4. 2a), because, as shown in Ref. 4, it describes the 
influence of the external field on the local angular mo
mentum flux. 

The main task of this section is to reexpress the con
servation laws (4.1) and (4.2) in relative form. This 
work completes the job of expreSSing the Dirac theory 
in terms of relative variables which was begun in Sec. 
6 of Ref. 5, so familiarily with the characterization of 
relative variables developed there is presumed. 

Consider first the conservation Eq. (4. la) for energy 
energy-momentum. Using (6.6) and (6.7) of Ref. 5, 
we write 

PdTPYO=C'lPodt(~+P) • 
Also it is easy to show that [Eq. (2.15) of Ref. 11] 

F'l'Yo=va[c'lE'v+ E+c' l vXB]. 

Hence after multiplication by Yo, Eq. (4.1a) can be 
separated into the two equations 

(4.3) 

(4.4) 

POdtE= PocE'v - dlJ.Ng, 

Poritp= Pae(E + c'l vx B) - dlJ.NIJ., 

where we have introduced the notation 

(4.5a) 

(4.5b) 

To get the flux terms expressed in terms of relative 
local observables, we use (4 0 26L 

Introducing the frame of relative vectors 

Ok=YkYo=-Yoh=yoyk (1<=1,2,3), 

and recalling (6. 4b) of Ref. 5, we have 

c' lHg = - pslJ.?tP+ PLV ylJ.Hts1 (0) , 

c' l N" = psI''''' (3 - ajPLz) ylJ.ijS1 (ap 

and, recalling (6.1) and (6.12a) of Ref. 5, we have 

V 1) 
LFyO,\sl(o) = ca [va)sl + 52)1(0) = ca V' ov8 1 

[z,ykOvS](a) = [lIYoYoy kav5La) 

= 1'a[(l + V / c)Ok?)Sl + 52)](0) 

= z'O{iVOk 0 Sl) + c' l (vl\ak)' ilvS2}. 

Hence, 

(4.6a) 

(4.6b) 

lV:;=-cpsoilt{3+Pav'i\S1O (4.7a) 

l~ = Nok = - cpSkiltp+ Pa{Ci\Sl • ak + (v I\ak)' i\52}, (4.7b) 
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W=cpso""{3- POajv' OjSl (4.7c) 

Nk = Nk = CpSk"" {3 - PO{C""Sl • ak + O"j (V 1\00k)' 0jS2}' (4.7d) 

It will be noted that these flux terms are expressed in 
terms of several quantities which are not independent of 
one another. By (6.12), (6.18), (6.19) of Ref. 5 and 
(2.18) of Ref. 4, so, s, S10 S2' and (3 can all be 
expressed in terms of 0 and v. In terms of 0", the flux 
terms (4.7) appear very much more complicated, but 
simplify considerably if one retains only first order 
relativistic corrections. Equations (4.5) for energy and 
momentum coupled to the equation of motion (6.38) of 
Ref. 5 for a are appropriate equations to study if one is 
interested in the dynamical role of the Thomas preces
sion. Instead, however, we here obtain equations of 
motion for S1 and 52' because they have the general form 
of conservation laws. To keep the general features of 
the equations apparent, we do not express slJ. and (3 in 
terms of "1 and 52' as would be necessary if we were 
looking for solutions. Therefore, we regard (4.7) as a 
satisfactory expression of the flux in terms of local ob
servables. So substituting (4.7) into (4.5), we get 

POdte = PocE' v + i\{psoi\{3 - c"lPav' i\Slt 

- ilk{- cpskilt;3+ Cplts. O"k + Pa(v 1\00k)' i\52} (4.8a) 

POdtp= Pae (E + c'lv x B) + i\{ - PSa'V f3+ c'l O"jv. iljS l} 

+ il"{CpSk",, {3 + cPo"" Sl ' O"k + POO"j (v /\ak )· ilj5 2}. (4.8b) 

We now get equations of motion for Sl and 52 by taking 
the relative vector and bivector parts of (4. 2a) to get 

priTs l = -ilJA1"]1 + p[VI\/)]l + [Y"I\N"ll' (4.9a) 

priTS2 = - il,.(k]")2 + p[Z,I\P)2 + [Y/\NIJ.12 • (4.9b) 

Now to express the right side of (4.9) in relative ob
servables. In the process we keep in mind the facts that 
Ok' S = Sk while O"k' V = ilk, as follows from the definitions 
of S and V in (6,11) and (6,4) of Ref. 5· 

CY"I\N" = c[ Y"N"12 = [Y" Yo (c'lNg - NIJ.)L 

= _ N° + C'lO"kl~ - O"kl\Nk• 

So from (4.7), 

[Y"I\ N" 11 = - c'lW + C'20"kl~ 

= - pSo"" f3+ c·1PaO"jv· iljS l 

- c'l pSOt{3+ c'lpO{OtSl - c·lv· nt5 2 )}, 

[Y"I\ H" )2= - c'lO"kl\N
k = - c'lO"kl\Nk 

(4. lOa) 

=-pS/\ 'V{3-PO'VI\Sl +C"lPaO"j/\(V' ilj S 2 )o (4.10b) 

Also 

1'/\/) = ll'a(1 + V/c)(E/c - p)l(l) +(2) 

From (4.2bl we get 

MO=pHs l +52 , yOI\V)=PVoZHV,Sl] + }lv,52 ]) 

= Pa{v I\Sl =V' 52}' 

and, since 

y k l\l' = [ykYoYal'12= - [O"k1'0(1 -v/c)12 
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= - Vo{Uk - C-
1ukAv}, 

we also get from (4.2b), 

M" = - POUS1 + 52, Uk - c-1iUk Xv] 

=Po{ukAsl + Uk' 52 -C-1S1 X (Uk Xv) -c-1Uuk Av,52]}. 

(4.12b) 

Hence, 

caj.JMIl]l = at (Pov' 52) + cV· (P052 ) - 0.., (POS1 X (Uk xv», 

caJMIl ]2= at (POVI\Sl) + cV 1\ (POS1) - ak( PoH ukl\ v, 52])' 

So, at last Eqs. (4.9a,b) can be written 

Pod ts1 = - ate Pov' 52) - cV' (P05 2) + 0.., (POS1 X (uk xv)) 

+ PO(c-1EV - cp) - cpso V {3 + POUj V' OjS1 

- pSOt{3+ PoOtSl - c-1pov' (,,\52), (4.13a) 

pod t52 = - at (pov I\s l) - cV 1\ (POS1) + 0..,( PoU ukl\v, 52]) 

- Pov I\p - cpsl\V {3- cPoV AS1 

+ POujA(v· (ljS2)' (4. 13b) 

With Eqs. (4.8a,b) and (4.13a,b) we have completed 
the formulation of the Dirac hydrodynamic equations in 
terms of relative observables. No one can fail to notice 
how much more complicated these equations are than 
their proper counterparts (4, la, b) and (4, 2a, b). So, 
for most purposes it is clearly best to deal with the 
proper equations, 

The relative hydrodynamic equations become much 
simpler in the N.R. limit, To attain this limit, as we 
saw in Sec, 7 of Ref. 5, we need only express all spins 
in terms of 5 or S with the identifications 

S2=5=i9, cs1=v·S, cs o=9'V, 

take Po=p, and regarding cl ~I '" lvi, neglect all terms 
of relative order c-1 or less. Then from (4. 8b) we easily 
get the momentum conservation equation 

(4.14a) 

where the momentum flux Nk is the limit of (4,7d) 

Nk =pcsk Vj3+ uj p5' (OjVI\Uk), (4. 14b) 

and from (4. 9b) we get the angular momentum conserva
tion equation in terms of the spin 

pdt5 = ppAv - O'kANk - o..,j'v1k> 

where the spin flux ,""lk is given by 

Mk =' pHs, Uk" v] - pUkA(5' v). 

(4.15a) 

(4. 15b) 

In addition, from (4. 8a) we get the energy conservation 
equation 

(4.16) 

As already mentioned in the last section, these are the 
hydrodynamic equations of the Pauli theory. 

As an application of the relative hydrodynamic equa
tions we derive a virial theorem for the Dirac theory, 
though actually it is hardly more difficult to derive the 
theorem directly from the proper hydrodynamic equa
tions. Differentiating x'p and using (4.5b), we get 
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dt(x'p)=V'P+ X' [e(E + c-1v XB) - p~10llNjL]. 

But, by (4.7d) 

-x· (a NIl)=-o (x'NIl)+O'k'~ Il Il 

= - (JIl(X' NIl)+ cpS'V{3- pvo(cV' Sl +v· (V, 52))' 

So 

POdt(x· p)= PoVo P+ epox· (E + c-1vx B) - aj.L(x· Nil) 

+Po(v: s·V{3-cV·91-V· (V, 52»), 

and since 

J d3xPod t (x' p)= at J d3xpox' p= 0t(x' p), 

we have 

at(x' p)= &. p) + e(x' (E + c-1vXB» - at ((x;:)) 

+ ((v: S.V{3-CV.SI-V~52»))' (4.17) 

Hence, for stationary states we have 

(v· p) + e(x' (E + c-1vx B» 

= - ((v: SO V{3- cV· 91 -v, (V· 52)))' (4.18) 

This can be related to the energy by taking the expecta
tion value of (6.30) in Ref, 5 to get 

n· 5 cos{3 ( -) ~) (E)= c~ +mc2 ~ + (v'p)+ (V). (4.19) 

Now we recall from (6,~7a) in Ref, 5 that n= - 01\1' 
+ V' (i 0{3). To express nos in terms of relative varia
bles, note that the divergence of v 0 5 = 0 gives 

(OAv)o 5= (vI\O)' 5= (v05)(0)' 

Hence 

- (Ol\v)o 5 = - v o[ (1 + vic )(00 + V)(91 + 52)] (0) 

Also, 

= - ~[v' 00Sl + cV' 91 +v· (V· 52)]' 
C 

S· (v' (iO{3» = [SviD{3] (0) = S' 0{3= soOo + 9' V {3. 

Hence, we have the general formula, 

- {cs e } cpn·s=po :::..:::JL°o{3-V·chS1+-9·V{3-CVS1-V·(V·52)· 
. Vo Vo 

(4.20) 

Taking the expectation value of (4.20) and comparing 
with (4.18), we find jar stationary states 

(~~ s)= (Uo 9' V{3- cV' Sl -v' (V, S2~ 
/-L ~\ 

=-(v.p)-e<x'(E+c-1VXB»=\Wv~ j' (4.21) 

Recall that the last term in (4.21) is equal to the first 
by (6.17) and (6.49) of Ref. 5; the factor elvo would be 
miSSing, as (6.38) of Ref. 4 shows, if WLwere defined 
as the angular velocity corresponding to the total time 
derivative instead of the proper time derivative. Thus, 
(4.21) is exactly a virial theorem for the generalized 
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Larmor precession energy, or as it was called in Sec. 
6 of Ref. 4, the internal energy. 

Substituting (4.21) in (4.19), we obtain the result that 
for any stationary state in the Dirac theory 

(E)= mc2/COSf,)+ (V) - e(x· (E + c-1vx B). 
'\ Vo 

A Coulomb field has the special property that 

ex· E = - x· V V = V. 

(4.22) 

(4.23) 

Hence for a Coulomb field alone, (4.22) reduces to the 
simple form 

(E)= mc2(C~:f,)= mc2 f rJ3xp cosf,. (4.24) 

This ought to tell us something important about the 
interpretation of f" but we do not know what. At least 
we can use it as additional support for our contention 
that f, must, on the average, be a small quantity. Thus, 
if (E) does not deviate much from mc2, then, since Vo 

~ 1 everywhere, (4.29) implies that (cosi3):::: 1. This 
being true, we can expand Vo and cosf, in (4.24) to get 
the approximate expression 

(4.25) 

This, as should be expected, is just the virial theorem 
one obtains by using the Pauli theory. It should be 
compared with 

(4.26) 
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which is obtained immediately by integrating (7.5) of 
Ref. 5. 

*Some of this work appeared in a thesis, Arizona state 
University, 1972. 
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On Chapman-Kolmogorov equations for neutron population in a 
multiplying assembly* 

A. Belleni-Morante 
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(Received 30 July 1974) 

We prove that the Chapman-Kolmogorov system for neutron population in a multiplying assembly 
admits a unique positive and norm invariant solution belonging to the Banach space of summable 
sequences. We then show that the standard kinetic equation can be deduced in a rigorous way from 
such a system of a countably infinite number of partial differential equations. Finally, we indicate 
how the Chapman-Kolmogorov initial-value problem can be approximated by a problem in a 
finite-dimensional space. 

1. INTRODUCTION 

Chapman-Kolmogorov equations for neutron popula
tion in a multiplying assembly at zero power have been 
extensively investigated in the literature (Refs, 1 to 12), 

In this paper, we shall examine such a system by 
using the theory of semigroups of linear bounded trans
formations (Refs. 12,14,15). We shall first prove ex
istence and uniqueness of a solution in a suitable Banach 
space and, successively, we shall derive some proper
ties of physical interest in a rigorous way, 

Following Ref. 12, the Chapman-Kolmogorov system 
under consideration has the form 

i. P(n, t) =- pnP(n, t) + pt b(s}{n + 1 - s)P(n + 1 - s, t) 
at ~o 

+qlP(n-1,t)-P(n,I»), t>o, n=0,1,2,"', (1) 

where we let P( - 1, t) =' ° and where 

P(n, t) = the probability that n neutrons are in the 
multiplying assembly at the instant t; 

p = 1/ " where I is the average lifetime; 

b(s), s = 0,1,2,'" =the probability that s neutrons 
are emitted if one neutron is absorbed; 

"Eb(s)=l, O.:s: b(s).:s: 1; 
5:::0 

q=the probability per unit time interval that a non
fission source emits a neutron, 

System (1) must be supplemented with an initial condi
tion of the form 

P(n,O)=Po(n), n=0,1,2,"', 

where 
~ 

,0 Po(n) = 1, O.:s:Po(n).:s:l. 
"=0 

Conditions (3) have an obvious physical meaning, 

2. DEFINITIONS AND PRELIMINARY REMARKS 

(2) 

(3) 

Due to (3), we now introduce the Banach space X = [1 

of all numerical vectors f={j(n), n=O, 1, 2,···} with a 
countably infinite number of real components f(n), such 
that (Ref. 13, p.127) 

00 

IIJlI=6[f(n)[ < 00, 

n==O 
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Further, let us define the following operators: 

[A/]" = - pnf(n) + p t b(s}(n + 1 - s)f(n + 1 - s), 
.. 0 

[Sft=qf(n-1), n=1,2,3,···, [Sf)o=O, 

[Hj)" = pnj(n), n=0,1,2,"', 

[Kj]n=pt b(s)(n+ 1- s)j(n+ 1- s), 

n=O, 1,2,,", 

(4) 

(5) 

(6) 

(7) 

where [Aj]n indicates the (n + 1)th component of the vec
tor Aj and where the domains of A, S, H, and K are 
given as 

00 

D(A)={f:jEX, .0 [[Aj]nl < oo} (8) 
n=O 

D~=X, 00 
00 

D(H)=D(K)=D={j:fEX, .0 niJ(n)i < oo}, (10) 
"=0 

We note that D==D(H} is the "largest" subset of X on 
which H can be defined, whereas the largest subset on 
which K can be defined contains D [see (11)]. However, 
we take D(K) = D by definition since we are interested in 
the operator (- H + K) for which D( - H + K) = D(H) n D(K), 

Given any jE D, we have 

N " 
.0.0 b(s)(n + 1 - s) [j(n + 1 - s) 1 

n=O 5=0 

N N 

=.0 L: b(s}{n + 1 - s) ij(n + 1- s) i 
s=O n=s 

N ~ ~ 

.:s::B b(s).0 m lJ(m) 1 ~.0 m lJ(m) I < 00 (11) 
S=O m::l 

since 2::=ob(s)=1. Hence, jED(A) and, consequently, 
Dc D(A) and - H + KC A, We also observe that definition 
(10) is justified by the fact that the mean number of neu
trons (n)=2::'onj(n) is finite provided thatjC: D.=Dn X., 
where 

X.={j:jEX, f(n)~O, n=0,1,2,,,.} 

is the (closed) positive cone of X (Ref. 16). 

Moreover, let Do be the linear manifold spanned by 
the canonical base of Xo Do is the family of all vectors 
of X with a finite number of nonzero components, it is 
dense in X and it is contained in D, By definition, Ao is 
the restriction of A with domain D(Ao) = Do> 
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Following Ref, 15, we finally put 

Gr = -H +rK, D(Gr)=D 

where r is a real parameter, such that 0.,,; r < 1. 

3. PROPERTIES OF H AND OF K 

We have: 

(12) 

Lemma 1: For every a> 0, (al + H)"1 EB (X) (Ref. 13, 
p.149), (al+H)"1[X]CX., II(aI+H)-l ll .,,;l/a;HEC(X) 
(Ref. 13, p.164), H(XJeX+, D(H)=D:J Do is dense in 
X; H is the closure of Ho, where Ho is the restriction of 
H to Do. 

Lemma 1 follows directly from the definition (6) of H 
and from the explicit expression of (al + H)"1 

(13) 

wheren=0,1,2,'" anda>O (see also Ref, 15, p.6). 

Lemma 2: K[DJeX+; IIKJ1I.,,; IIHfll, fE D; IIKfl1 =IIHJ1I, 

fe D+. 

Lemma 2 follows from the definition (7) of K and from 
inequality (11). 

Starting from Lemma 1 and from Lemma 2 and follow
ing Ref. 15, we obtain (see also the remark at the end 
of p. 3 of Ref. 15) 

Lemma 3: Gr E g (1,0) (Ref. 13, Chap. 9), 0.,,; r < 1; the 
semigroup Zr(t) =exp(tGr) is such that: (i) Zr(t)[xJe X+ 
for any t~O; (ii) [Zr(t)f]n"';[Zr.(t)ft n=0,1,2,oo., 
fE X+ and r"'; r'. 

If we now put 

Z(t)f=li~Zr(t)f, t~ 0, fEX (14) 

we have: 

Theorem 1: (a) Z(t) is a semigroup such that IIZ(t)II"'; 1, 
Z(t)[xJc: X+; (b) the limit (14) holds uniformly in e..ach 
finite interval of t, i.e., IlZ(t)f-Zr(t)fll<E, tE[O,t]; 
provided that 1 - 6 < r < 1 where 6 = 6(E,f} does not depend 
on te [0, tl; (c) if G is the generator of Z(t), then Aoe 
- H + Kr: Gc: A; (d) if there is a semigroup {Z'(t), 0.,,; t} 
such that Z'(t)[x ]ex+ and its generator G' is an exten
sionofAo, then(Z'(t)f]n~[Z(t)ftfEX+, n=0,1,2, •••• 

Theorem 1 follows from Lemma 3 (Ref, 15, pp. 7 to 
10). 

Remark: The preceding lemmas and Theorem 1 sum
marize some basic results obtained by Kato in Ref, 15. 

4. THE INITIAL-VALUE PROBLEM 

Due to the results of Theorem 1, the initial-value 
problem 

du = Gu(t) _ qlu(t) + Suet), t> 0, 
dt 

lim u(t) =uo E D(G) 
/-0+ 

admits a unique solution of the form 

u(t)=exp[t(G-ql+S)]uo, uoED(G), t~O, 

where 
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(15) 

(16) 

exp[t(G-ql+S)][XJeX+ and lIexp[t(G-ql+S]II.,,;l, 

t ~ 0. 
In fact, we have (Ref, 13 p.495) 

exp[t(G+s)lt=t T(J)(t)f, t~O, 
where 

T(O)(t)f = exp(tG)f= Z(t)f, 

(17) 

(18) 
T(j+l>(t)f=J;/Z(t-S)STU)(s)fdS, j=0,1,2,o .• , 

and Where, according to (5), IISfll=qllfll, fEX, S[XJc 
X+. It follows from relations (18) 

T(j)(t)[xJcx+, IIT(j)(t)J1ld(qt)j/j!]llfll (19) 

where we used (a) of Theorem 1. We conclude that 
exp[t(G+s)][xJex+ and that Ilexp[t(G+S)]II.,,;exp(qt), at 
any t ~ 0. Since I is the identity operator, qI commutes 
with (G +S). Consequently, (Ref, 13, p.495) 

exp[t(G + S - ql}l=-exp(- qt) exp[t(G + S)], t ~ 0. (20) 

Hence, exp[t(G + S - qI)][XJe X+ and Ilexp[f(G + S - ql}]II"'; 
1 at any f ~ ° as announced. 

We conclude that, given any U o E D(G)n X+' the solution 
of system (15) is such that u(t) E D(G) n X+ at any t ~ ° 
and II u(t)II"';lluoll. 

Remark 1: In particular, let us assume that uo={po(O), 
Po(1}, Po(2)""}E D+=D(H)n X+=D(-H + K)n X+ and 
that Iluoll = 2:;'0 Po(n) = 1. Relations (3) are then satisfied 
and (n)(O) = 2::=1 nPo(n) < 00, where 

~ 

(n)(t) =6 nP(n, t), t ~ 0, (21) 
n=l 

is the first moment of the neutron population. 

It also follows that u(t) ={u(O; t), u(l ; f), u(2; t), ..• } 
~ D(G) n x+ c: D(A) n x. at any t ~ 0, since G r: A due to (c) 
of Theorem 1. In other words, Gu(t) =Au(t) at any t ~ ° 
and system (15) becomes just the "physical" system 
(1) + (2). Thus, system (1) + (2) admits a positive solu
tion u(t) EX, such that Ilu{t)II=L:=ou(n; t).,,; 1 at any t? 0, 
Obviously, the preceding results remain valid if Ito 

E Don x. and Iluoll = 1. 

5. PRESERVATION OF THE NORM OF u(t) 

In order to prove that 

Ilexp[t(G + S - ql}lfll=IIJ1I, fe X+, t ~ 0, (22) 

we introduce the space x* of all bounded linear forms 
on X (Ref. 13 p.134): 

X* ={r* :f* = (r*(n), n= 0,1,2, .. , }, 11/*11< oo}, 

1IJ*11={suplJ*(n)l, n=0,1,2,.,,}. 

Given a vector fe Do = D(Ao), we have 

(j* ,Aof) = P ~f*(n) (- nf(n) + ~ b(s)(n + 1 - s)f(n + 1 - s») 

; ~-l 

=p 6 [-mf!'(m)1t(m) +6f!'(n) 
m=O n=O 

(~1 b(n+ I-m)mf(m) ) 

+ t f*(n) t ben + 1 - m)mf(m) 
m=l 
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where, sincefEDo, n=n.(f) is such that f(n) = 0, 
n = n + 1, n + 2, •. o. It follows easily from the preceding 
equality 

(f*,AJ) = (g*,f), fEDo, 

where 
~ 

(23) 

g*(m) = - pmf*(m) + pm ~ b(s)f*(m + s -1). (24) 

Since g* E X* provided that {sup 1 g*(m) I, m = 0,1,2,' .. } 
< 00, we conclude that (Ref. 13, p.167) 

[Atf*]m=g*(m), D(Ao)={f*:f*EX*,g*EX*}o (25) 

Let us now investigate whether or not the equation 

(26) 

has a nontrivial solution f* E D(At), where a is a suit
able positive number. We obtain from (26) and from (24) 

af*(O)=O, 

~ 

(a + pm)f*(m) =pm 6 b(s)f*(m + s -1), 
5=0 

m=1,2,3,·0., 

where 11f*1I={suplf*(m)l, m=1,2,3,.0.}<000 

It follows from system (27) that 

(27) 

Ilexp[t(G+S)ltIl=exp(ql)llfIl, t~O, fEX., 

Ilexp[t(G+S-qI)1t11=llfil, 1~0, fEX •• 

Relation (33) implies that 

lIu(t)II=.tu(n;I)=lIuoll, uoccD(G)nX., t~O. 
n=O 

(32) 

(33) 

(34) 

Remark 2: Let U o be as in Remark 1. Then, (34) im-
plies that u(t) = exp[t( G + S - qI) Juo is the physical solution 
of system (1) + (2). In other words, u(t) = {u(O; t), 
u(l,t), ••• }={P(O,t),P(l,I),···}EX.and Ilu(t)11 
= L::=o P(n, t) '" 1, in agreement with the physical meaning 
of the P(n, f)' So 

6. FINITE-DIMENSIONAL APPROXIMATION OF (15) 

We shall nOw indicate how the initial-\'alue problem 
(15) can be approximated by a suitable problem in a fin
ite-dimensional space X(~). Let us in fact define X(~) as 
the set of aU (;\ + l)-tuples of real numbers f~) =(f~)(n), 
n-O 1 ... ,} with norm 

- " A 
~ 

Ilf~)II~ =~ If~)(n) I. 
",0 

Moreover, let us introduce the operator Q(~) EB (X,X(~» 
as follows: 

Q(~)f=g(~), i" =V(n), n=O, 1,'" ,;\}, D(Q(~»=X, 

(35) 

f*(1) = (la + If! t b(s)f*(s) (28) where it is easy to prove that 
s:::l 

~ 

cp*(m) = (la + mr1 6 b(s)(m + s -l)cp*(m + s -1), 

m=2,3,"', (29) 

where cp*(m)=f*(m)/m, m=2,3,···. Hence, if system 
(27) has a nontrivial solution f* E X*, then system (29) 
has a solution such that 1 cp*(m) 1- ° as m _ + co. Then 
there exists an integer Iii, such that Il = {sup 1 cp*(m) I, 
m=2,3,···}=lcp*(m)l. Consequently, we have from 
(29) 

~ 

I qJ*(m) I '" Il (la + mr1 ~ b(s)(m + s -1) 
s-=o 

(30) 

where v=L::=osb(s) is the mean number of neutrons emit
ted if one neutron is absorbed and where we took into ac
count the relation L:;:'o b(s) = 1. It follows from (30) that 

Il'" Ill(m + v -l)/(m + la)], 

which leads to Il = 0, provided that a > a 0 = (v - 1)/ to 
Hence, if a > aD> cp*(m) = ° and f*(m) = 0, m = 2,3," 0, 
andf*(l)=O due to (28). We conclude that gq. (26) ad
mits only the trivial solution provided that a > a o. Con
dition (ii) of Theorem 3 of Ref. 15 is then verified and, 
as a consequence, we have 

Ilexp(tG)J11= 11J11, t~O, lex., (31) 
Moreover, exp(tG) is the only semigroup whose gener
ator is an extension of Ao. It also follows from relations 
(18) that 

IIT(j)(t)fil=[(qf)ijjI]IIJ1I, t~O, fEX. 

and, consequently, 
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(36) 

Hence, the sequnce {X(U ,X(2), ••• ,X(~\ ••• } is a se
quence of Banach spaces approximating X (Refs. 17,18, 
and 19, p.202). 

FinaUy, let us define the following operations from 
X(~) into X(~): 

[S(~)f~)]n=qf(~)(n-l), n=1,2,,0',A, 

[s(~)f~)]o=O, D(S(~»=X(:\.), 

[G;xlf~l]n=-pnf~l(n)+rpt b(s)(n+s -1) 
5=0 

/,xl(n+s_l), n=O,l,"';\-l, 

x 
[G;uf~)t = - p;\f"(;\) + rp6 b(s)(;\ + s -1) 

·s=l 

where D(G~Xl)=Q(Xl[D] (see Sec.2) and where r is a 
fixed value of the real parameter, such that 0", r< 1 
[see (12) of Sec. 21, 

We have from (37) and from (38) 

and also 

lim11Q(X1Sf -S(A)Q(A)fll x =0, fE X, 
~-~ 
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limll Q(~)G,J - G;~)Qn)fll~ = 0, fE D, 
~~~ 

since lim[ (A + 1) If(A + 1) Il = ° as A - 00 provided that 
fE D(Gr)=D (see Sec. 2). 

(40) 

Finally, it is not difficult to prove that G!~) is a gen
erator of class (j (1,0) in X(~) just as Gr E(j (1,0) in X. 
As a conclusion, we have (Refs. 17, 18, and Ref. 19, 
p.205) 

limlIQ(U exp[t(G
r 
+ S - qI)lf - exp[t(G!~) + S(~) 

~~~ 

(41) 

uniformly with respect to t in any finite interval [0, n, 
where I(~) is the identity operator in X(~). 

Due to (b) of Theorem 1, if we choose r close enough 
to 1, we obtain from (41) 

IIQ(~)[expt(G + S - qI)lt - exp[t(G!~) + S(~) 

(42) 

uniformly in any finite interval of t, provided that A is 
large enough. 

Let us now consider the following initial-value prob
lem in X(~): 

d 
dt u(~)(t) = [G~~) + S(~) - ql~)lu(A)(t), t> 0, 

(43) 
1imllu(~)(t) - u6~) II~ = 0, ub~) E D(G~).»; 
t .... o+ 

then, if we choose U6~) = Q(~)uo, the solution u(t) of prob
lem (15) is such that 

IIQ(~)u(t) - u(~)(t)ll < E, (44) 

uniformly with respect to t E [0, n, provided that A is 
large enough. 

Relation (44) has an obvious interpretation. The first 
(?t + 1) components of the vector u(f) E X can be approxi
mated by the corresponding components of u(~) E X(~) 
with an error not larger than 'an arbitrarily small E> O. 

We dwell on the fact that (43) is an initial-value prob
lem in a finite-dimensional space. As a consequence, 
it is not difficult to obtain a numerical solution of sys
tem (43). 

7. THE KINETIC EQUATION 

We are finally going to show how an equation for the 
first moment of the neutron population (n)(t) can be de
duced from (1) in a rigorous way. 

If we multiply both sides of (1) by n, we obtain 

oP (n t) ~ 
~-'-= - pnPl(n, 0 + pnLJ b(s)Pl(n+ 1 - s, f) at pO 

+ q[Pl(n -1, f) - Pl(n, Ol + qP(n -1, t), n=1, 2," 0, 
(45) 

where PI (n, f) =nP(n, f), n= 1, 2, .•. , and where we let 
PI (0, t) = O. System (35) must be supplemented with an 
initial condition of the form 

Pl(n,O)=PlO(n)=nPo(n), n=1,2,'o" 

where 0 "" PIO(n) "" n [see (2) and (3) t 
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(46) 

The definition (21) of <n)(t) leads us to introduce the 
Banach space Xl of all vectors fl =VI (n), n= 1,2,' o.} 
with norm 

Ilil II 1 =t Ifl(n) 1< 00. 

n-=! 

Remark 3: Xl may be identified, if necessary, with 
the closed subspace of X composed of all vectors of X, 
such that f(O) = 0. 

We also define the following operators: 

[HJJn=p(n-1)fl(n), n=1,2,"', (47) 

[BJ1 Jn=ptsb(s)fl (n+l-s), n=1,2,· .. , (49) 
5=1 

[SJlln= qfl(n -1), n=2, 3,"', [sJlll =0, (50) 

where [HJlJn indicates the nth component of the vector 
HJl E Xl and where 

D(Hl) = D(Kl ) = Dl = VI :fl EX" .6 n Ifl (n) 1< oo}, 
":::=1 

(51) 
D(Bl) =D(Sl) =Xlo 

Remark 4: HI and Kl operate on each fl E Dl r Xl just 
as Hand K do on each fE: DC: X. In other words, HI and 
Kl are respectively Hand K evaluated by an "Xl-obser
ver. " This can be verified by comparing [HJJn and 
[KJJn with [Hftl and with [Kfln~lo 

As far as Bl is concerned, we have 

~ n 

IIBJllll ""p.66 sb(s)lf(n+1-s)1 
n=1 s=1 

~ ~ 

=P6 sb(s)~ If(n + 1 - s) 1= (vll)llflll" (52) 
5=1 n=s 

where Xl+ =Vl :/1 C Xl ;fl(n) '" 0, n= 1,2, ••. } and where 
v =2:;:1 sb(s) (see Sec. 5). 

Finally, we obtain from (50) 

SJXlJc: X l +, IISJllll = qllfilip (54) 

By using definitions (47)-(50), the abstract version 
of system (45) + (46) becomes 

ftu l = (-HI +Kl +Sl - qIl)Ul(t) + (Bl -PIJul(t) + qIlv(t), 

I> 0, (55) 
limllul (I) - uloll = 0, 
t-O+ 

where u lO ={Plo(l), P lo(2), ... } and where vel) ={u(O; f), 
u(l; t), ••• } is just the u(t) of the preceding sections con
sidered as an element of Xl' 

Since HI and Kl are just the operators Hand K consi
dered in Xl (see Remark 4), a semigroup {exp(fGl), 
I'" O} exists, such that 

exp(tGl)[xlJ' Xl>, II exp (tGl)fl III = IIfl II " fl F X l +, (56) 

where Gl is a closed operator and where 
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(-HI +Kl)C GlcAl" (57) 

Here, Al is defined as follows: 

[AJlln= -pen -l)fl (n) + pt (n-s)fl(n+ l-s)=gl(n), 
5=0 

n=1,2,", (58) 

D(Al) = {{I :fl E Xl' gl E Xl}~ Dl , 

and it is the version of A in Xl [see (4) and Remark 4l. 

Starting from (56) and by a procedure similar to that 
of Sec. 5, we obtain successively for any fl E Xl> 

Ilexp[t(Gl + 51 - qIl)ltlll l = I If 1 Ill' (59) 

(60) 

(61) 

where all the preceding semigroups transform Xl+ into 
itself and where 

Xl = Gl + ~ - qIl + Bl - pI1' D(xl) =D(Gl ). (62) 

Let us now consider the following initial-value 
problem: 

~=XIUl(t) + qIlv(t), t> 0, 

lim ul (t) =uw E D(Xl) n XI +, 
1-0+ 

(63) 

where vet) E Xl + for any t?c 0 and Ilv(t)II I = 1 (see Remark 
2). We have from (63) (Ref. 13, p.486) 

(64) 

and also 

IluI (t)ll l = exp(ii ; 1 )lIuloll l + q Jot expC' ; 1 (t - s») ds, (65) 

since we are dealing with elements of Xl+' 

Equation (64) is equivalent to the following system: 

d iJ-1 
dt Ilul (t)ll l =--Z-Ilul (t)ll l + q, t> 0, 

limilul (t)ll l = Iluloll!" 
1-0+ 

The first of (66) has the form of the standard kinetic 
equation of a multiplying medium with a source q, 

8. CONCLUDING REMARKS 

(66) 

Let U o = {po(O) , PI (0), ... } E Don X+ cDr'! X+ with Iluoll = 1 
(see Remarks 1 and 2), Then, ulO ={Po(1),2Po(2), 
3Po(3), ' •• } E Dl n Xl+ r:: D(Xl) n XI+ and the physical con
ditions (3) and (46) are satisfied since Po(n) '" 0 provided 
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n is large enough (which is indeed physically correct). 
It follows that u(t)={u(O; t),u(l; t),"'} given by (16) is 
a positive solution of (1) + (2) such that Ilu(t)II=L:n=Ou(n; t) 
'" 1 (see Remark 2). Moreover, due to (57), ul (t) 
= {ul (1; t), ul (2; t), ' , , } given by (64) is a positive solu
tion of system (45) + (46). Hence, ul (t) = {u(l ; t), 2u(2 ; t), 
3u(3 ; t), ••• } and, consequently, II ul (t)II I = L:n=l nu(n; f) 
= (n) (t). In other words, if we put wet) ={ w(n, t) = ul (n, 0/ 
n-u(n,O, n=1,2,"'}, we have that w(t)=O at any t?O. 
This result follows from some properties of u,=ur(t), 
where u

T
(!) is the solution of system (15) with G, instead 

of G. (A further paper will be devoted to the study of 
this and of other properties of the "approximate" 
solution u

T
,) 

Remark 5: The procedures of Sec. 7 can be used in 
order to find an equation for the second moment (n2)(t). 
To this aim, we multiply both sides of (45) by n and we 
put P2(n, f) = nPl (n, f), n = 1,2, .. '. Since P2(1, t) = PI (1, f) 
is already known, we introduce the Banach space X2 of 
all vectors f2 = ({2(n) , n = 2,3, . , .} with norm Ilf2"2 
= L:n=2If2(n) I to study the evolution of u2(t) = {P2(2, f), 
P2(3, f), •.• }. We also define the operators H2 amd K2 
(the versions of Hand Kin X 2 , see Remark 4) and we 
then proceed as in Sec, 7. 

*Work performed under the auspices of C,N.R. (Gruppo 
Nazionale per la Fisica Matematica). 
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Wave propagation in media undergoing uniform linear 
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Wave propagation in a homogenous material undergoing uniform linear acceleration is considered. 
The covariant constitutive equations for a holohedral, nondispersive. dielectric material derived by 
Lianis are applied. Expressions are found for initially plane waves propagating in the direction of 
accelerated motion for the case where the material functions are constant. Expressions are also found 
for the radiation reflected and refracted at the surface of a half-space undergoing uniform linear 
acceleration. A detailed energy balance across this interface is also presented. 

1. INTRODUCTION 

The problem of wave propagation in a uniformly linear 
accelerated medium has been considered by Mo.l He ap
plied a theory of local electrodynamics in noninertial 
frames based on the principle of equivalence. The con
stitutive theory used by Mo, as applied to media under
going rigid rotation, has been questioned by Post and 
Bahul;kar. 2 Recently Lianis 3 developed an invariant con
stitutive theory for the interaction of matter with elec
tromagnetic fields based on the theory of general rela
tivity. This theory has been applied to problems in
volving uniform rigid rotation by Lianis 3 and by Lianis 
anrl Whicker4 in order to study the Sagnac effect. 

Previous work involving the reflection and refraction 
of electromagnetic waves on interfaces moving at con
stant velocity has been done by such authors as Yeh, 5 

Pyati, fi and Daly and Gruenberg. 7 Yeh calculates reflec
tion and transmission coefficients using the classical 
expresBion } Re (E x H *) for the time averaged Poynting 
vector. Berger8 discussed the validity of using this time 
averag~d Poynting vector. Daly and Gruenberg pointed 
out that a detailed consideration of the energy balance 
across the moving interface must take into account such 
eff~ct<; as radiation pressure. 

In this paper we consider the problem of wave propa
gation in a material undergOing uniformly linear accel
eration. We apply the constitutive equations for a holo
hedral, nondispersive, dielectric material derived in 
covariant form in Ref. 3. These equations, under cer
tain aRsumptions about the material functions, reduce 
to those used by Mo for this problem. In Sec. 2 we for
mulate the problem and summarize the relevant sections 
of Bpf. 3. In Sec. 3 we consider the problem of electro
magnetic radiation propagating along the direction of the 
accelerated motion as viewed by an inertial observer. 
Expressions are found for the electromagnetic fields for 
the case where the material functions are constant. In 
Sec. 4 we consider the radiation reflected and refracted 
at the surface of a material halfspace undergoing uni
form linear acceleration. Expressions for the reflected 
and transmitted waves as a function of the time of inci
dence T are found for two cases. In Sec. 5 expressions 
for the instantaneous reflection and transmission coeffi
cients at time T are found. A detailed energy balance 
across the moving interface is also considered. The re
sults of this study are summarized in Sec. 6. In Appen-
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dix B we compare the results of the approach presented 
here to those obtained in Ref. 1. 

2. LINEAR UNIFORM ACCELERATION 

Let ty"}={x,y,z, ct} denote the coordinates of an event 
in an inertial Minkowski reference frame and let {x',,} 
={x',Y',z', et'} denote the coordinates of an event in a 
medium comoving reference frame. Here {xm} = {x, Y, z} 
and {x,m}={x',y',z'} are spatial Cartesian coordinates. 
The temporal coordinate is X4 = ct in the inertial refer
ence rame and X,4 = cl' in the medium comoving frame 0 

(Greek indices in this paper take the values 1, 2, 3, or 
4 with the value 4 corresponding to the temporal coordi
nate. Italic indices take the value 1, 2, or 3 and corre
spond to spatial coordinates. The customary convention 
of summation over repeated indices is also used o ) 

Here t denotes the time in the inertial frame, I' the time 
in the medium comoving frame, and e is the speed of 
light in vacuum. For a medium moving with uniform lin
ear acceleration the inertial and comoving coordinates 
are related by the transformations (Rindler, Ref. 9) 

Xl =x,l + c: cosh ~x'4_1 
a c 

(2.1) 

X4 = c/ a sinh a/ ex'\ 

where the origins have been adjusted so that at X4 = 0 = X,4 

their relative velocity is zero. The inverse relations 
are given by 

X" =Xl - C:{vl + {a/ex'l}2 -1}, 
(l 

x'4=~ln{~x4 + v1 + (a/cx4P}, 

(2.2) 

The covariant and contravariant metrics defined by the 
quadratic form 

(2.3) 

where dS is the differential of proper time are, in the 
Cartesian coordinate system x .. , 

IIG"all =diag{l, 1, 1, -1}, 
(2.4) 
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IIGaall=diag{l, 1, 1, -I}. 

We will denote quantities expressed in the comoving co
ordinate system as primed quantities. 

The metric g~a in the comoving coordinate system 
{x',,} is found using the equation 

The result is 

1 

o 
o 

o 0 sinh ~X14 
c 

1 0 0 

01 o 
sinh ~X'4 0 0 -1 

c 

Note also that 

a "r::::g = cosh - x 14 
C 

where g' = detg~ao 

The contravariant metric in the comoving system 
{x'''} may be found by inverting (2.6). 

(2.5) 

(2.6) 

(2.7) 

Now consider a pOint of fixed spatial position in the 
comovingframe x,1=const, x ,2 =const, x ,3 =consL For 
this situation using (2. 1) we find that 

dx1 = sinh ~X'4 dx '\ 
C 

and thus from (2.3) 

dS= dx '4 • 

Using the relations 

dx'" 
U"'={j§" , u",=GaaUa, 

(2.8) 

(2.9) 

(20 10) 

we find that the covariant and contravariant components 
in the inertial frame of the 4 -velocity of a particle fixed 
in the comoving frame are given by 

{u"'}= {sinh~xI4 0 0 cosh~xl4l 
c '" c I 

={~X4, 0, 0, [1 +(~x~r IT 

(20 11) 

Using the tensor transformations 

(20 12) 

the 4-velocity of the same particle in the comoving 
frame is found to be 
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{u,a}={O, 0, 0, 1}, 

{u~} = \Sinh ~XI\ 0, 0, -I}. (20 13) 

To be consistent with Ref. 3 we assume that the mo
tion starts from a reference state at X4 = O. The medium, 
referred to an inertial frame, is undeformed, unpolar
ized, and unmagnetized in this reference state. Let us 
call 

XK = (X, Y,Z) 

the Cartesian coordinates of a material particle in the 
reference state. Then the motion x"'=X"'(XK,X4) is given 
by 

x 2 =Y, 

x 3 =Z, 

X4 = ct. 

(2.14) 

The deformation gradient of the uniformly linear ac
celerated medium referred to the inertial frame x"'n 
the projector tensor S"'p, the relativistic deformation 
gradient cf>"'K' and the relativistic left Green-Cauchy 
tensor are defined by the expressions 

II '" 11=llilX"'(XK,X
4

) II x ,K ilXK , 

S'" P= 0'" P + U"'U p , 

cf>"K=S" ;CP,K' 

(20 15) 

(2.16) 

(2.17) 

(2.18) 

where the metric of the coordinate system in the refer
enCe state is 

IIGKL II=diag(1, 1, 1). 

The integral powers of b are defined in the way that in
tegral powers of tensors are normally defined. The 
zeroth power of b, however, is defined to be equal to the 
projector tensor s. 

Now let E={Ei }, B={Bi}, D={Di}, and H={Hi}be 
the spatial components in some coordinate system e" of 
the electric field, the magnetic induction, the dielectric 
displacement, and the magnetic intensity, respectively. 
The corresponding relativistic vectors with tensoral 
properties in space -time are 

(2.19) 

where the components of the skew-symmetriC electro
magnetic flux tensor cf> "'S are given by 

and 

g* =detgkm • 

also 
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where 7JCt8 is the skew-symmetric electromagnetic poten
tial tensor given by 

(2.22) 

Here e Ct8Y6 and e Ct8y6 are the four-dimensional per
mutation symbols with e1234 = 1 and e1234 = - 1 while e .. 

.~ t~ 
and e'J are the three-dimensional permutation sym-
bols with e123 = e123 = 1. 

Maxwell's equations are expressed in terms of the 
spatial vectors E, B, D, and H. In the absence of free 
charges and currents they are given in all reference 
frames by (we use here the Lorentz-Heaviside electro
magnetic units) 

aB 
curlE+a64 =0, 

divB=O, 

aD 
curIH--=O a 64 , 

divD = O. 

(2.23a) 

(2. 23b) 

(2.23c) 

(2.23d) 

In this paper we consider holohedral, nondispersive, 
dielectric materials. Lianis (ReL 3) has derived consti
tutive equations in covariant form for such materials. 
These equations for linear dielectries are 

2 

f)P=-/-"'i'E (bm)Poa{m)CO, (2.24) 
"",0 

~ BO 
H p=D (bm

)p8o{m l -,.--, 
m=O V - g 

(2,25) 

where a{m) and o{m) are functions of the invariants 111 12 , 

and 13 of the deformation. These invariants are defined 
by (The symbol TrA denotes the trace of tensor A. If A 
is a 4-tensor in space-time then 

TrA =A"" = g"VA v " 

where g"V is the metric of the coordinate system 6".) 

11 =Jl' 12 = ~(Jf -J2 ), 13=~(~ - 3JJ2 + 2J3), (2.26) 

where 

(2.27) 

We also need an expression for the relativistic 
energy-momentum tensor of the electromagnetic field. 
We will use the expression derived by DeGroot and 
Suttorp, Ref. 10, from a microscopic model of inter
action of the electromagnetic field with matter. This ex
pression is 

SCtB= _ rpCtv7JV8 + .l7JuvrpvugCt8 

= (C of) P +H j3 P)(u Ctu8 + ~ gCt8) 

+e8vriACvHouxu
Ct +e",v(j,\f) v B ouxu 8 

3. WAVE PROPAGATION VIEWED BY INERTIAL 
OBSERVER 

(2.28 ) 

Let us consider the problem where we have a mono
chromatic plane wave propagating in the positive Xl di
rection in an infinite slab of material characterized by 
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the constitutive equations (2,24) and (2.25). At time 
X4 = 0 the material starts moving according to equations 
(2,1) and (2.2). We seek expressions for the Band E 
observed by an inertial observer. 

For a homogeneous medium in which the wave is pro
pagating in the xl-direction the vectors B, E, D, and H 
are functions of Xl and X4 only. Clearly then from Max
well's equations Bl and Dl must be space -time con
stants. A spatially uniform static field may be super
imposed on any solution of Maxwell's equations and the 
result is a solution. Therefore, without loss of general
ity we may take Bl = 0, Dl = O. 

For this problem the expressions relating the relati
vistic electromagnetic fields and their corresponding 
spatial vector components are found by substituting the 
velocities (2.12) into (2.19) and (2.21) are making use 
of the expressions (2.20) and (2.22). The required ex
pressions for the relativistic left Green-Cauchy tensor 
and its powers are found by using Eqs. (2.14)-(2.18). 
Substituting these results into the constitutive equations 
(2.24) and (2.25), we find that the nonzero components 
of D and H are related to the nonzero components of B 
and E by the expressions (when the index m in a (m) or 
o{m) takes a specific numerical value, we drop the pa
rentheses for convenience) 

D2= {[1 +(~X4rJ (0'0+0'1 +0'2) -(~X4r(00+01 +(2)}E2 

+(~x1 [1 + (;X4)T/2[(00+ °1 +(2) -(0'0+0'1 +O' 2)]B3, 

(3.1) 

D3={ [1 +(~x4)}O'O+al + 0'2) _(~X4y(00+01 + (2)}E3 

1/2 
[(0 0 + °1 + ( 2 ) - (0'0 +0'1 +( 2)]B2, 

(3.2) 

H z={ r + (;X4) 2 (0 0 + °1 + ( 2) _(~x4r(O'o +0'1 +( 2 )}B2 

+ (~X4) r + (;x4fJ /2l (00 + °1 + ( 2 ) - (0'0 + a 1 +0' 2)]E3 , 

(3,3) 

H3={ [1 + (~X4y (° 0 + °1 + ( 2 ) - (~x4y(ao +0'1 +( 2)}B3 

- (;X4) ~ + (~x4rT /2[(0 0 + °1 + ( 2) - (a 0 + 0'1 + a 2)]E2o 

(3.4) 

Substituting (3.1)-(3.4) into (2. 23c), operating on the 
resulting expression with ajax1, and then using (2. 23a) 
to eliminate E, we find that the components B2 and B3 
must satisfy an equation of the form 

a2B a2B a2B oB aB 
all ox12x1 + 2a12 ox1ax4 + a22 ax4ax4 + bl exl + li2 ox4 = 0, 

(3.5) 

where B is used to denote either Bl or B2 and the coeffi
cients are given in the Appendix. The characteristic 
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equation of (3.5) yields 

dx4 (a/ C)X4,! 1 + «a/ c )X4j2 (g - h)± ,;gh 
dxl = [(a/ C)X4j2g -{1 + l(a/ c)x4F}h 

where we have defined 

(3.6) 

(3.7) 

Obviously (30 5) is hyperbolic and may be transformed 
to its canonical form by the transformations 

The transformed equation is given by 

2- J:...l!.. - oB b oB - 0 
a12 001 oS + bl 001+ 20(3 - , 

where the coefficients are given in Appendix A. 

(3.8) 

(3.9) 

(3.10) 

Let us now consider (3.10) for the special case where 
01o, au a 2 , 0o, 0u and °2 are constants. For this case 
g and h are constants and thus bl = b2 = O. Equation 
(3.10) reduces to 

(3.11) 

and thus we may write 

B=/l(a) + I 2([3), 

where 11 and 12 are arbitrary functions of their variables 
and 01 and (3 are defined by (3.8) and (3.9). First con
sider the case where 

B3=/l (a) + 12 ((3). 

Using (3.12) in (2. 33a) we can show that 

E2 = kl (x4
)/l (01) + k2 (x 4

)/2 (S) - q (x 4
) 

(3. 12) 

(3.13) 

where q(x4) is an arbitrary function of X4. Similarly, for 

B2 =71 (01) + 72 (13), 

then 

E3 = - kl (x4)7l (01) - k 2 (x4 )72 «(3) + q(x4) , 

where we used the notation 

(3.14) 

(3.15) 

(30 16) 

For the problem under consideration we may orient 
the x 2 and X3 axes so that the initial conditions are given 
by 

B2(X1, O)=~ exp(ik~), E 3(Xl , 0)= - Eoexp(ik~), 

(30 17) 

where 

(3 0 18) 
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and all other components are zero. With the definition 
of 01 and (3 given by (3.8) and (3.9) the functions of 01 are 
associated with a wave traveling in the negative Xl direc
tion and the functions of (3 are associated with a wave 
traveling in the positive Xl direction. Applying the ini
tial conditions, we find 

(3.19) 

E B [(a/c)x4
]2 g -{1+[(a/c)x4 )2}h 

3(X, x) = - ° (a/ C)X4,! 1 + l(a/ C)X4]2 (g - h) -/iFi 

Xexp[ik(x l 
- I/k2(y) dy)] + q(x4

) (3.20) 

with the initial condition q(O) = O. Using the constitutive 
equations (3.19) and (3,20) in (2023c), we solve for 
q(x4). 

After applying the initial condition on q(x4) , we find 

(3.21) 

Similarly, if we consider the case of a wave propa
gating in the negative Xl direction, the initial conditions 
are 

(3.22) 

with all other components zero. Applying these condi
tions, we find 

(3 0 23) 

(3.24) 

4. UNIFORMLY ACCELERATED HALF SPACE 

We now consider the case where the half space Xl> 0 
is occupied by a material while the half space Xl < 0 con
tains only free space, At time X4 = 0 the material half 
space begins to move in the positive Xl direction with a 
motion described by (201) or (2.2), At some later time 
X4 = T, the surface x 11 = 0 occupies the position Xl =d. 
We will consider the interaction of a monochromatic 
plane wave propagating in the positive Xl direction with 
this surface for two types of material. First, we will 
consider the case where the material is a perfect con
ductor. Secondly, we will consider the case where the 
material obeys the constitutive equations (2.24) and 
(2.25) with the material functions OI(m) and o(m) being 
constants. 

The conditions across a moving boundary :6( 8") = 0 are 
given by (Ref. 11) 
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where w" is the surface charge-current and IV'L; I 
= .j g' JL; , i L;, j" We have used the notation [ 1 to represent 
the jump of a quantity across the surface L;(B")=O that 
is [A]=N - A- where A+=1imr:_o'1+ and A-=1imr:_~_' 
In our problem 

(4.3) 

Case 1. Perfect conductor 

Without loss of generality the X2, X3 axes may be cho
sen so that the incident wave is represented by the 
expressions 

El <0 =0, E 2(j) =0, E3(j)=Eoexp~~(Xl _X4 )) (4.4) 

Bl(j)=O, B2(j)=-Eoexp(i~(Xl_X4»), B\j)=Oo (4.5) 

The reflected radiation may then be described by the 
expressions 

(4.6) 

(4.7) 

where Maxwell's equations have been used to find (4.7) 
from (4.6) (In this section and the next section the sub
scripts or superscripts rand t are used to denote quan
tities associated with the reflected and transmitted 
waves respectively. They do not take the values 1,2, or 
3.) 

We also use the fact that the wave 4-vector in free 
space k,,=(km, w/e) has zero magnitude, i.e., 

k"k"=O. 

From this condition for the reflected wave we obtain 

(kY=(wr /c)2. 

Now we consider the interaction of the wave with the 
boundary at Xl = d and X4 = T. From (4.3) d and Tare re
lated by 

(4.9) 

Using the expressions (4.4)-(4 07) for the incident and 
reflected waves, making use of the fact that there are 
no fields in a perfect conductor, and using (4.3) and the 
constitutive equations, we find that in order to satisfy 
(4.1) for a general d and T related by (4.9) we must re
quire that 

W wr 
-(d-T)=k d--T (4010) 
ere ' 

(
1 (a/ e)T ) ( kr (a/ e)T ~ 

-{l+l(a/c)TF Eo+ l-(WT/c)ll+ l(a/C)TF}Er =O. 

(4.11) 

The positive root of (4.8) yields wT = w. Using the nega
tive root in (4.10) and (4.11) yields 
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w
y = _ k _ (r -d) ~ 

C r- r+d e 

= (a/ C)T - {.j 1 + [(al e)rj -If w 
(a/c)r+{/1+[(a/c)T 2 -1 c' (4.12) 

(4.13) 

Thus the nonzero components of the reflected radia
tion are given by 

E3 (y) = Er exp[i(:: i'fj (Xl + X4)] , 
(4.14) 

B2 (r) = + Ey exp [i(:: ;)~(Xl + X4)] 

where Ey is given by (4.13). 

Using (4013), (4.14) and the free space relations D 
=E, B=H (in Lorentz-Heaviside units) in (4.2) yields 
the expression 

3(d ) ( (a/c)r ) w w ,T =-2Eo l-11+[(a/e)T]2 cOSC(d-T). (4.15) 

Similarly, the other components of the surface charge
current are found to be zero. 

Case 2. A class of linear dielectrics 

For Xl> ° the constitutive equations (2024) and (2.25) 
lead to the results expressed in Bqs. (3.1)-(3.4). We 
again choose the X2 and X3 axes so that the incident and 
reflected fields in free space are given by (4.4)-(4 07), 
The transmitted waves will be functions of the form 
(3.14) and (3.15). They will be functions that take the 
form of plane waves at the time and position of interac
tion (Xl = d, X4 = r) with the interface 0 Specifically, 

B2(d'T)=-Btexp(i~t -IfiTii d-T»), 
(4016) 

E3(d, T)= +lhTi Btexp(i~t ({i/Tid - T~ 0 

Now our solutions will be of the form of (3.14) and 
(3.15). We are seeking solutions which represent waves 
travelling in the positive Xl direction. That is Our solu
tions should be of the form 

(4.17) 

ImpOSing the conditions (4016) on (4.17) and using 
Maxwell's equations, we find that the transmitted fields 
are given by 

B2(Xl, x 4) = - B teXP{i ~\lg?h(xl - <~x4k2(Y) dy) - TJ} 
(4018) 

E
3
(x\ x 4

) = k 2 (x4 )B t exp{i wet [&h (Xl - I/k2 (y) dy) - T l} 
+ ({1 + [(a/ C)T ]2}g - [(a/ C)T 12h) 

W+T(a/ c)x4F}g - [{a/ e)x4 )2h) 

(4.19) 

where the function k 2 (X 4
) is given by (3 016). 
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For convenience we introduce the notation 

(a/ C)i 
lei) = l"1 + (al C)i j2 0 

(4.20) 

In order to satisfy (4.1) for general values of i (or d), 
we must require 

W wr wt.r;;r;;: ] ) -(d-i)=k d--i=-[vg/hd-i, (4.21 
ere c 

(1 -l(i»Eo + (1 - (); c) l(i»)Er = [1hTi -l(i)]Bt• (4.22) 

Again using (4.8) we find for wr and kr Eq. (4.19). Also 
from (4.21) we find 

~t =(';gJh~~i)~' (4.23) 

Using the constitutive equations (3.2) and (3.3), the con
dition that w'" = 0, and the expressions for the incident, 
transmitted, and reflected waves in (4.2) at Xl = d and 
X 4 =i, and using (4.12) in the resulting equation and in 
(4.22), we find 

[~ -zlBt=Er(1 + l) +Eo(1-l), 

- h[l -Z..fh!i]B t = Ey(1 + Z) - E{}(l-Z). (4.24) 

Solving this set of equations for B t and Er in terms of 
Eo yields the expressions 

2(1 -l) 
B t = {hTi -l+ h[1-'; h/gljEo, (4025) 

E _1 -z {iiTg -Z - h11- {iiTg I] E 
r -1 + Z v h/g -Z + hl1 - 'Ih/g zJ 0, 

(4.26) 

where the function I is evaluated at X 4 =i. For Case 2, 
therefore, the reflected wave is given by (4.14) where 
Er is given by (4.26). The transmitted wave is given by 
(4.28) and (4.19) where w t is given by (4.23) and B t by 
(4.25). 

5. ENERGY CONSIDERATIONS AT THE MOVING 
INTERFACE 

In the problems discussed in Sec. 4 the portion of the 
wave transmitted and of that reflected is a function of 
the time i at which the wave front interacts with the in
terface. The frequency of the reflected and transmitted 
waves is also a function of i. 

In this section we calculate expressions for the in
stantaneous reflection coefficients R and transmission 
coefficients T at time i by using the instantaneous 
Poynting vector at time i in the expressions 

(5.1) 

Here n is a unit vector normal to the interface pointing 
into the medium into which the transmitted wave propa
gates. The vectors Sly), S<n, and Set) are the Poynting 
vectors of the reflected, incident, and transmitted 
waves, respectively 0 The three components of the 
Poynting vector are given by S4m where 5"'8 is defined 
by (2028). Using the expressions (2.11) for the velocity, 
(204) for the metric, and the appropriate relativistic 
fields in (2.28), we find that for the problems of Sec. 5 

595 J. Math. Phys., Vol. 16, No.3, March 1975 

(5. ~) 

Set> =(-E
3 
(t)H

2 
(t>, 0; 0), 

where E3 and H2 are the real part of the appropriate ex
pressions found in Sec. 40 

In this section we also apply the energy-momentum 
continuity conditions as derived by Grot and Eringenl2 

across the boundary 2::(8")=0. For the problems of Sec. 
4 this continuity condition reduces to 

(b. ~) 

where 5,,8 is given by (2.28) and i,,8 is the mecnanical 
4-stresso The tensor i"a is a spacelike tensor, i.e., 

For the problems of Sec. 4, Eq. (5.3) is iaemically 
satisfied except for IJ. = 1 and IJ. = 4. Substituting the 
velocities (2.11), Eqs. (4.3) and (5.4) into (5.3), we 00-

tain the expressions 

[511 ) -Z(i)[514 ] = i ll{1 _l(i)2}, 

lS4l) -Z(i)lS44] = Z(i)ill{1 _Z2(i)r, 

(5.5) 

(5.6) 

where lei) is defined by (4.20), and ill is the normal 
component of stress in the moving medium at the 
interface. 

Case 1. 

For this problem the instantaneous Poynting vector of 
the incident and reflected waves at time T is given by 

S4\n =E02 cos 2 ~ (d - i), 

541 =_E2COS2~(d-i) 
(r) r C ' 

(507) 

where Er is given by (4.13). Thus the instantaneous re
flection coefficient is given by 

R=={[1 -l(i)]/[1 + l(T)]P. (5.8) 

U sing the fact that D = E and B = H in free space and 
expression (4.13) for Ey in (5.7), we can show that 

E22coS2(W/c)(d-T) _T11. (5.9) 
° {1 -l(i>F 

We observe that (5.6) is identically satisfied due w 
(5.9). 

Case 2 

For this case upon using the constitutive equation 
(3.3), the instantaneous transmitted Poynting vector in 
the Xl direction becomes 

S41 (t) ={ [1 + (~T)]h -(~Trg }VhTgb~cOS2~ (d - T) 
+ ~T v1 + [(a/ C)T]2 (g- h) ~Bt" cos 2 ~ (d - r) 

c g c 

(5.10) 

where B t is given by (4.25). 
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The instantaneous Poynting vectors for the incident 
and reflected waves are given by (5.7) where Er is given 
by (4.26). Thus from (5.1) we find 

2 

R _ (1 -leT) fhTi -leT) - hl1 -.fhfi l(T)]) 
- 1 + leT) \I h/g -leT) + hl1 - \I h/g leT)] , 

T~ (iHH h-(~Trgl/Vg 
+~d1 + [{a/C}Tj2 (g-h)~"\ 

c g ) 

( 
2(1 - I(T» )2 

x 1TiTi" _ leT) + h(l - \I hi g leT)) • 

For this case we find that (5.5) yields the results 

T11_( E~COS2(W/c)(d-T) ) 
- (1 + I(T))2[,j hi g -leT) + h(l - \I hi g 1(T))]2 

x (4h+21(T)2g-2~-41(T)g/hTg -41(T)h/hTg 

(5.11) 

(5.12) 

h2 

+ 41(T) fllTi + 21(r)2 - - 2h2 - 21(r)2 + 41(rW -fhTi 
g 

-21(T)2':). (5.13) 

In a similar fashion to Case 1 we find that (5.6) re
duces to an identity upon using (5.13). Specifically, 

(5.14) 

It should be emphasized that the energy-momentum 
continuity condition (5.3) can only be used to show that 
R + T= 1 for the case of a stationary interface. For a 
moving interface the interaction between the mechanical 
stress and electromagnetic energy-momentum tensor 
must be considred. 

6. DISCUSSION 

In this paper we have found expressions for waves 
propagating in the direction of the motion in media un
dergoing uniform linear acceleration. It was possible to 
find the expressions without resorting to the use of iter
ation methods. It is interesting to note that the expres
sion found in Appendix B for E is equivalent to that found 
by Mo' using an iteration method. The expression for 
B, however, differs from that found by Mo. It is also 
interesting to note that the expressions for E and B have 
the same form for materials where O! (m) and o(m) are 
constants as they do for materials for which D = Er E 

and B=XrH. 

The general solution found consists of a function asso
ciated with a wave propagating in the positive x, direc
tion with phase velocity v' and one associated with a 
wave propagating in the negative x, direction with phase 
velocity v 2 • From the viewpoint of an inertial observer 

1- l( a/ C)X4)2g - {1 + [{a/ c)x4]2}h 
v -[(a/c)x4J,j1 + L(alc)x4J2(g-h) -lgh' 

o l{a/c)x4]2g -{1 + [(a/c)x4]2}h 
1'- = (a/ C)X4 /1 + [Cal C)X4j2(g - h) + 'fgh • 

It should also be emphasized that the continuity condi
tions across a moving interface discussed in Sec. 5 in-
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valve both the electromagnetic energy-momentum ten
sor and the mechanical 4-stress. It is not true that the 
sum of the reflection coefficient R and the transmission 
coefficient T is equal to one for moving interfaces. For 
such moving interfaces the energy flow carried by the 
incident wave is in general not carried away by the re
flected and transmitted waves. Such effects as radiation 
pressure must be considered for an accurate energy 
balance. 

APPENDIX A 

The coefficients of Eq. (3.5) are found to be 

(A1) 

(A2) 

(A3) 

b, = a!. (~X4v' 1 + [{a/ c)X4)2 (g - h»), (A4) 

b2 = + a~4{[1 + (;X4) 2Jg _ (~X4)\}o (A5) 

The coefficients of Eq. (3.10) are found to be 

_ 2gh([ (a/ C)X4]2g - {1 + l{a/ C)X·]2}h) 
a'2 = (g _ W[(a/ c)x4)2{1 - [(a/ c)x4F} - gh' 

(A6) 

+ ~X4 v'l + [(a/ C)x4)2 (a~ _ ~a~) 
c ax uX 

leal C)X4]2g - {1 + [(a/ C)X4]2}h 

(A7) 
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gh 

(AS) 

APPENDIX B 

In Ref. 1, Mo considered the problem of Sec, 3 from 
the viewpoint of a comoving observer. He applied a con
stitutive theory and a theory of local electrodynamics in 
noninertial frames to find expressions for the Band E 
observed by this medium-comoving observer, In order 
to compare the results of Sec. 3 to those obtained in 
Ref, 1, it is necessary to obtain expressions for the B 
and E observed by a comoving observer. Such expres
sions may be readily obtained by a straightforward, al
though tedious, tensor transformation of the results of 
Sec. 3 to the comoving frame. Unfortunately the results 
of such a transformation cannot be readily compared to 
the results of Mo, For example, the exponential natural
ly comes out in the terms of an integral of the function 
k2(X4) defined by Eq. (3.16). In order to compare the 
real parts of the two wave forms found, the integration 
must be carried out for all appropriate regions of g and 
h and the results used to compare the real parts of the 
transformed expression to the results of Moo This pro
cedure is conceptually simple, but it is not a trivial 
manipulation. 

To avoid these difficulties, we may simply repeat the 
procedure of Sec, 3 for the case of a comoving obser
ver. Expression (2.13) is used for the velocities and 
the needed relativistic left Green-Cauchy tensor (and 
its powers) is readily obtained from those previously 
found for the inertial observer by a tensor transforma
tion. Again the X'2 and X ,3 axes are oriented so that the 

initial conditions are given by 

B2(XIl, 0) =Boexp(ikx ,1 ), E 3 (X ' \ 0) = - Eoexp(ikx '1 ) 

(B1) 

with all other components zero. Equation (3. lS) is again 
satisfied. 

597 J. Math. Phys., Vol. 16, No.3, March 1975 

The expressions for B2 and E3 which result from this 
procedure are 

(B2) 

sinh (a/ C)X ,4 +:; g/ h cosha/ C X'4 

(B3) 

where 

k1(X4) ={sinh~XI4 + ,;g!hcosh~Xl4}-1. (B4) 

The constitutive equations (2.24) and (2.25) reduce to 
D=EyE and H=XyB for O'o=Ey, 0'1 =0'2= 0, 01 =02=0, 
and 00 =X y. For this case g= Ey and h =X y and thus (B3) 
becomes 

E (XII X'4) = - fE;lx; Eo 
3, s inh (a/ C)X ,4 +:; EylX y cosh(a/ C)X ,4 

(B5) 

By using (5.29) of Ref. 1 in (5.24) of Ref. 1, we find 
that Eq. (B5) is equivalent to (5024) of Ref, 1, 
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Nonlinear differential-difference equations 
M. J. Ablowitz and J. F. Ladik 

Deparrment of Mathematics, Clarkson College of Technology, Potsdam, New York 13676 
(Received I July 1974) 

A method is presented which enables one to obtain and solve certain classes of nonlinear 
differential---<lifference equations. The introduction of a new discrete eigenvalue problem allows the 
exact solution of the self-dual network equations to be found by inverse scattering. The eigenvalue 
problem has as its singular limit the continuous eigenvalue equations of Zakharov and Shabat. Some 
interesting differences arise both in the scattering analysis and in the time dependence from previous 
work. 

1. INTRODUCTION 

It is well known that a number of physically interest
ing problems can be modeled by nonlinear differential
difference equations. In this paper we will be primarily 
concerned with outlining a procedure that allows us to 
find and solve certain important classes of these prob
lems. The method of solution requires knowledge of in
verse scattering. This work is similar, in spirit, to the 
work of Flaschka 1,2 on the solution of the Toda lat-
tice, 3,4 and of Case and Kac, 5 and Case6 on the inverse 
scattering of a discretized Schrodinger equation. 

In particular, we show the following: 

(i) An analysis of a new discrete eigenvalue problem 
leads to the solution of the nonlinear self-dual network 

1 aVn 
1 + ~ -at =In -ln+1 , 

(1. 1) 

(1. 2) 

proposed by Hirota. 7 This eigenvalue problem has as 
its singular continuous limit, the Zakharov-Shabat sys
tem. 8 The relationship is clear viewed from discrete 
to continuous, but not visa versa. 

(ii) An algebraic procedure is outlined which allows 
one to systematically obtain evolution equations such 
as (1. 1), (1. 2) and indeed more general ones. The al
gebraic complexity of the problem requires such sys
tematic procedures as discussed in Ref. 9. In addition, 
we show how such a procedure is applicable to the dis
cretized Schrodinger equation. 

(iii) The inverse scattering analysis is presented for 
the eigenvalue problem associated with (1. 1), (1. 2). 
There are some interesting differences between this 
and the analysis for the discretized Schrodinger equa
tion. We also note that the time dependence of the 
scattering data must be considered quite carefully (see 
also Ref. 10). 

The inverse scattering transform was first dis
covered by Gardner, Green, Kruskal, and Miura, 11 and 
a detailed examination of all the ideas, many of which 
are relevant to this work, is presented by Ablowitz, 
Kaup, Newell, and Segur. 12 

2. TIME DEPENDENCE AND EVOLUTION EQUATIONS 

Consider the discretized eigenvalue problem 

v 1 = zV 1 + Qn(t)v2 + Sn(t)v2 , 
11+1 n n n+l 
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(2.1) 

with the potentials Qn, Rn, Sn, Tn, and the eigenvalue 
Z on the interval I n I < 00. In addition, let the time de
pendence of the eigenfunction 

v n(t) = (~~:) 
obey the differential equation 

(2.2) 

Solutions 111 , v2 with the eigenvalue Z invariant exist 
when the foflowi~g equations are satisfied: 

(z + RnSn)Mn + (zTn + Rn)Bn+l - (Qn + S,jz)C n 

1 
= A (An(z + RnSn)t - Ant(z + RnSn)), 

n 

(Qn + s,j z)An+1 + (TnQn + 1/ z)Bn+l - (z + RnSn)Bn - (Qn + s,j z)Dn 

=~ (An(Qn+S,jz)t-Ant(Qn+S,jz)), 
n 

(z +RnSn)C n+1- (TnQn+1/z)Cn+ (zTn+Rn)Dn+l- (zTn +Rn)An 

1 
= A (An(zTn +Rn)t - Ant(z Tn +Rn)), 

n 

(Qn + S,jz)Cn+1 + (TnQ. + 1/ z)aDn - (zT. +Rn)Bn 

= ~ (An(TnQn+ 1/ z )t- A nt(TnQn+1/z», 
n 

(2.3) 

where An'" 1 - SnTm ("')t '" a/at( . .. ), and .6.( •.• )n 
= ( ..• )n+1 - ( ... In. (2.3) is most easily arrived at by 
putting (2.1) in the form 

z + RnSn (Q n + S,j z) 
l'ln+1 = A v1• + A v2n, 

n n 

(2.4) 

and using (2. 2) to force the consistency 

i = 1,2. 

Equations (2.3) are then obtained by equating coeffi
cients of Vi (i = 1, 2) in the resulting system. We prefer 
the form (2~ 1) so as to more easily see the continuum 
analogy. 
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The purely algebraic procedure needed to deduce the 
differential-difference equations proceeds as follows. 
Expand An, Bm Cm Dn as 

An =A~O)(t)+A~1l(t)z, Cn = C!O)(t) + C~1l(t) z 
(2. 5) 

Bn =B~O)(t) +B~-1l(t)/z, Dn =D~O)(t) +D~-ll(t)/z. 

The structure of (2. 5) is suggested by a careful examina
tion of Eqs. (2.3), the time dependence of the special 
soliton solutions, and the meaning of the linearized 
"dispersion" relation. With the assumed form (2.5), 
Eqs. (2.3) yield a sequence of equations corresponding 
to the powers z2, z, zO, z-l, z-2 all of which must be 
independently satisfied. We found it most direct to solve 
the equations corresponding to the highest and lowest 
powers of z first. The results of these computations 
yield An, ... ,Dn, as well as the required evolution equa
tions. It may be verified that 

Bn = Q.A~ll + Sn_1D~-I) / z, 

Cn = Tn_1A~1lz +R.n~-1l, 

D =-R S D(-1l-I! AKt+D(O)+DH)/z 
n n n-1 U _co A K - - , 

along with the evolution equations 

R nt = (1 - RnQn)(T .n~-1l - Tn_1A~1l), 

Snt = (1 - SnTn)(Qn+1A~1l - Q.n~-1l), 

Qnt = (1- RnQn)(S.A~1l - Sn_1D~-1l), 

Tnt = (1- SnTn)(Rn+1D~-1l- RnA~1), 

(2.6) 

(2.7) 

where A~ll, A~o>, D~-1l, D~O) are all constants obtained as 
n - - 00 (and for convenience we choose A~O) =D~O». 
Special cases are now apparent. Letting Rn = 'f Qn = In, 
Sn='fTn=Vn' andD~-l)=Ail)=I, we find 

Int = (1 ±1;)(± Vn_1 'f Vn), 

Vnt = (1 ± V;)(± In 'fIn+1) 
(2.8) 

which is the self-dual network (1. 1), (1. 2) for the first 
choice of sign. Similarly, if we let Rn = 'f Q~, Sn = 'f T~, 
with D~-ll = - A (1) = i, we find 

R nt = i (1 ± RnR~)('f S~ 'f S~_I)' 

Snt = i (1 ± SnS~)(± R~+1 ± R~) 
(2.8') 

a discretized "second order in time nonlinear Schro
dinger equation. " 

Alternatively, if Rn=O, Tn=l, Qn=Pm Sn=l- an, we 
have 

wQ.,ereupon letting an = exp(Qn - Qn+l)' we see that f3n 
=Qnt; hence 

(2.9) 

(2.10) 

and the Toda lattice equation is deduced. We also note 
that other evolution equations can be deduced by expand
ing An, ... ,Dn in a more general expansion in z, rather 
than (2.5). 
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Finally, we point out that if Rn = Tn = 0 then the evolu
tion equation linearizes to the discretized wave equation. 

It should be noted that the Toda lattice equations can 
be deduced from the discretized Schrodinger equation 
(proposed by Flaschka1,2) in an algebraic manner as 
well. In that case the eigenvalue problem is given by 

(2.11) 

where A is the eigenvalue (we take an - 1, bn - 0 as I n I 
- 00). Suitable time dependence, analogous to (2.2) may 
be written as 

(2.12) 

Differentiation of (2.11) with respect to time and using 
(2.11), (2. 12) yields two equations (coefficients of vn+l' 
and vn ). 

An(bn- A) + ~ (A- bn+1)An+1 +an(B n+1 - B n_1) 
an+l 

= an-lta/an-l - ant' 

- a~An+l +Bn(bn- A) + (A- bn)Bn_l + an_1An_l 
an+1 

= an_l t (b _ A) _ b 
a n nt' (2.13) 

n-l 

Expanding An. Bn as 

An =A~O)(t) +A~1l(t)A +A!2)(t)A2, 

Bn =B~O)(t) +B~1l(t)A +B~2 )(t)A2 (2.14) 

and requiring the coeffic ients of A 3, ••• , A ° to vanish in
dependently yields An, Bn and the evolution equations. 
We find 

An = 2a"A~2)A2 + (2a.A~1l + 2anb.A~2»A 

+ 2a.A~O) + 2A~2)an(a~ + a~_1 - 2 + b~) + 2A~1lanb", 

Bn = B~2)A2 + (B~ll - 2(a~ - 1 )A~2»A 
(2. 15) 

+B~O) +2A~Il(I- a;') - 2A~2)a~bn 

+t(aK-lt+2A(2)(b . .n2 -b a2 ») 
a - "-K-l K+l K , 

-~ K-l 

as well as the evolution equations 

-A(O) (b b) A(1l (2 2 b2 b2) an t - - an n+l - n + - an an+1 - an_1 + .+1 - n 

+A~2)(an(2(bn+la~+1 - b.a~_I) +bn+2a~+1 - bn_la~_1 

+ b~+l - b~ + a~(bn+l - bn) + 2(b. - bn+1», 
b =A(O)2(a2_a2 )+2A(1)(a2(b +b) n t - n n-1 - n n+1 n 

- a~_1 (b n + bn_1» + 2A~2)(a~(a~+1 + a~ - 2 + b~+I) 

- a~_1 (a~_1 + a~_2 - 2 + b~_I) + b;(a~ - a~_I) 

+ bn(a~bn+l - a~_lbn_l»; (2.16) 

for example, if we set A~I) =A~2) = 0, A~O) = ~, we have 

ant = an (b n+1 - bn)/2, 

bnt = (a~ - a~_I)' 
(2. 17) 

which reduces to the Toda lattice (2.10) if we let 

an = exp( - (Qn+l - Qn)/2], bn = - Qnt. 

It should be stressed that the above ideas can be 
extended to find more general nonlinear differential-
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difference equations whose associated eigenvalue prob
lems are either (2.1) or (2.11). 

3. DIRECT AND INVERSE SCATTERING 

In this section we first sketch the important aspects 
of the direct and inverse scattering technique for (2.1) 
assuming Qm Rn, Sm Tn all vanish sufficiently rapidly 
as I n I - 00. The analysis results in a system of coupled 
summation equations, which play the role of the integral 
equations derived by Zakharov-Shabat. 8 

We begin by defining particular solutions of the eigen
value problem (2.1). Let 

<Pn _(~)zn, 
(3.1) 

- (O)_n <Pn - _ 1 Z , as rl- - 00, 

and 

~n-(~)Z_n, 
(3.2) 

~n-G)zn, asn-+ OO • 

It may be shown that for appropriately decaying poten
tials, z-n<p, zn~ are analytic for Iz I > 1, and zn(j), 
z-nijj are analytic for I z I < 1. The asymptotic forms 
(3.1), (3.2) are expecially convenient, and are suggested 
by the fact that if 

is a solution of (2. 1) at z then 

( 
v* ) 

1> = 'fl~~ 
In 

is a solution at z =l/z* when Qn='fR~, Tn='fS~. The 
important Wronskian relation obeys the equation 

1- RnQn W 
H- n+l = 1 _ S T n, 

n n 
(3.3) 

where liVn(tc, v) '" (w1 v 2 - w2 v 1 ). Thus on the unit circle 
n n n n 

- 00 (I-SjT j ) 

H-n(~' ~) = ~ (1 _ RjQi) , (3.4) 

- n-I 1- R;Qi 
Wn(tP,tP)=l! I-S.T.' (3.5) 

•• 
In the important case where Ti = - Si, Q i = - Ri, (3.4) 
and (3. 5) are positive definite, hence the functions 
{~, ~}, {<p, ¢} are, respectively, linearly independent. In 
all other cases we assume the amplitudes of the func
tions keep (3.4), (3.5) of one sign; hence we write on the 
unit circle 

1>n = - a(z, t)~n + b(z, t)~n' 

cPn(z) = a(z, t)~n + b(z, t)~n. 

(3.6) 

(3.7) 

We remark that a, b. a, b depend parametrically on time 
through the potentials. The explicit dependence on time 
is found in Sec. 4. Note also that (3.4)- (3. 7) imply that 
on the unit circle 

_ - 00 1- RiQi 
aa+bb=.n I-S.T.' 

1=_00 J' 
(3.8) 
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and in the special case where Qj = - Ri, Tj = - Sf we 
have 

I a 12 + I b 12 = n 1 + I Ri 12 
i:_OO 1 + I Sj 12 , (3.9) 

since a = a*, b = b* for this choice of potentials. 

The inverse scattering proceeds as follows. Form 
the combinations 

¢ja = - ~n + (lila) ;;; '+'., (3.10) 

and 
<pnfa =~. + (bl a) ~n' (3.11) 

Multiply (3.10) by zn/(z - I), and (3.11) by z-n/(z - ~) 
and integrate about the unit circle. Assuming a(z) and 
a(z) have a finite number of simple zeros inside and 
outside the unit circle, respectively [i. e., 12k I < 1, 
arzk) =0, and Iz kl>l, a(zk)=O], and at these zeros 

1>(Zk) = dk~(Zk) '" dk~k = ¢k' 

<P(Zk) =dk~(Zk) "'dk~k = <Pk, 

we find by contour integration 

tl (Z~~ t) Ck~n,k+ at~) ¢n(I)6(1- I~I) +loo,n 

= ~n~n(I)6( II I - 1) + -2
1 

. f <Pn - dz, 
7TZJ'Z-~ 

where we have defined 

C 
_ dk - dk 

k - " Ck = -, , ak ak 

100 ,n = lim z" ~n(z), 
Izl-oo 

J oo n= lim z-n <Pn(z), 
• IZI"oo a 

:;:: n b -;!, ;" -nb,t 
q>n =Z a '+'n, ~n:::::z ~ \f)", 

(3.12) 

(3.13) 

(3. 14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

and 6(z) is the usual Heaviside function. Note that the 
contributions 100 , n, J "", n are due to the nonvanishing loop 
integrals at infinity. In (3.14) we take I: just outside the 
unit circle [e. g., I: = (1 + E)e j8], and in (3. 15) ~ just in
side th~ unit circle [e. g., ~ = (1 - E)e i8). Substituting for 
~n and ~n the representations 

~n = £ (Kl (n, n;»)z_n' , (3.20) 
n':n K 2(n, n ) 

~n= t(iil(n,n;»)zn', (3.21) n':n K 2(n, n 
multiplying (3.14) by (27Tir1z m -

n-t, (3.15) by (2 7Ti r 1z-m+"-I, 
integrating about the unit circle, and then taking the 
limit I, ~ approaching the unit circle (E - 0), we find 
after some manipulation 

00 

K(n, Ill) - I"" "l5(m, n) - LS K(n, ;z')F(1II + /1'')(1 - l5(m, Il» = 0 
'n':n (3. 22) 

and 
"" 

K(n, nz) - J"" n15(m, n) + 6 K(n, n')F(m + n') = 0, 
? n':n 

(3.23) 

where 
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F(m +n) = ~ ~ zm+n-1dz - 6 (5,,2;;,+n-1, f - N 

2m a K=1 
(3. 24) 

1 f b -m-n-1 ..f!., -m-n-1 F(m 4- n) = -. - z dz + L..J CkZ k , 
27Tt a K=1 

(3.25) 

and 6(m, n) is the Kronecker delta function. The limiting 
forms I~. n, J~. n are found directly from the eigenvalue 
problem (2.1) as Iz 1- 00. In particular, we find 

I~.n = (n Dn (1- ~IQ;») (3.26) 

and 

(3.27) 

In practice it is more convenient to write (3.22), (3.23) 
as forced summation equations. Before doing this, we 
first show how the potentials relate to the kernels 
K(n, m), K(n, m), and why in fact these kernels are in
dependent of z. Using (3.20) and substituting into (2.1), 
we find 

(3.28) 

=0, n'~n+l, (3.31) 

=0, n'~n+1. (3.32) 

Similarly, using (3.21) and substituting into (2.1) yields 

- 00 ( 1 ) 
K 1(n,n) = 0 l-R.Q ' 

l=n , i 
(3.33) 

K2(n, n) '= 0, (3.34) 

R =_ K2(n,n+1) , 
n K1(n, n) 

(3.35) 

=0, n';cn+l, (3. 36) 

(3.37) 

Thus given the K(n, In), K(n, m) we may find Qn. Rn from 
(3.30), (3.35) and Sn, Tn from (3.31), (3.37) for n' 
= n + 1 typically. Similarly, the above relations insure 
the kernels are independent of the eigenvalue z. 

The solution process is best effected by obtaining 
forced summation equations. Letting for m > n 

K(n, m) = .n (1 _ ~.Q .) K(n, m), 
I=n 1 1 

(3.38) 

- 00 ( 1 )_ 
K(n, m) = Fln 1- R;Qi K(n, m), (3.39) 

we have from (3.12), 

K(n, Ill) -( 1)F(m + n) - -£ K(n, n')F(m +n') = 0, (3.40) o n'=ri+l 
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and from (3. 23) 

K(n, m) +(~)F(m +n) + n,"f1 K(n, n')F(m +n') = 0, (3.41) 

which are analogous to the continuous integral equations 
of Zakharov-Shabat. 8 The potentials are obtained from 
the relations 

Qn=- K1(n,n+1), 

Rn,=- K2(n,n+1), 

Sn = - C _ ~nQJ(K1 (n, n + 2) + QnK2(n, n + 1», 

Tn = - (1- ~nQJ (K2(n, n + 2) + RnK1(n, n + 1», 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

without need to determine K(n, n) directly, unlike the 
case in Refs. 5,6. We note in passing that the problem 
when Rn=O, Tn=1 (see Eq. (2.10)] is best inverted by 
procedures analogous to the discretized Schrodinger 
equation, but the results are similar to the above in that 
the potentials depend simply on the kernel. 

In the special case where 

(3.46) 

F(m +n) =± F*(m +n). (3.47) 

In these cases only one of the Eqs. (3.40), (3.41) need 
be used. For example, 

ro 

Kj(n,m)'fF*(m+n)'f 6 Kf(n,n')F*(m+n')=O, (3.48) 
n';.n+1 

00 

K2(n, m) + 6 Kt(n, n')F*(m + n') = 0, 
n'=n+1 

(3.49) 

where 

Rn =± Ki(n,n + 1), (3. 50) 

Sn=- (1± l~nI2) (K j (n,n+2)'fR!K2(n,n+l)]. (3. 51) 

In solving for the kernels it is often easier to use the 
form 

ro ro 

Kj(n,m)'fF*(m-,-n)± 6 6 Kj(n,n")F*(m+n')F(n'+n") 
"'=n+1 n"::n+1 

=0 (3. 52) 

and then find K2 from (3.49). 

4. TIME DEPENDENCE AND SOLITON SOLUTIONS 

The scattering results of Sec. 3 can now be used in 
conjunction with the time dependent equations (2.2) to 
solve the class of nonlinear differential-difference 
equations contained in (2.3) when the potentials Rn. Qm 
Sn. Tn vanish sufficiently rapidly as Inl - 00. Certain 
aspects of the time dependence are quite different than 
previous problems. In the case at hand An. B n, Cm Dn 

are given by (2. 6) and the evolution equations are (2.7). 

In obtaining the required time dependence of the scat
tering data one need only the asymptotic form of the 
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time dependent equations (2.2) (a remarkable fact due to 
inverse scattering!). As n - - 00, (2.2) takes the form 

aVl __ n = (A (llz +A (O»v 
at - - In' 

(4.1) 

aV2n=(D(-l)/Z+D(O»v . 
at - - 2", 

as n-+"", we have 

aVln = (A (1)z +A (0) - t "£"IOgA)V 
at - - k=-~ at kin' 

aV2n = (A (0) +D(1l/z _ t "£"IOgA)V 
at - - k=-~ at "2", 

(4.2) 

where again A k ", 1 - S" Til and A,.. 0 = A" (t = 0). There are 
various ways to proceed, but since the off diagonal 
terms in (2. 2) vanish asymptotically the time dependent 
eigenfunctions are chosen to satisfy 

¢!t) = ¢" exp[(A~llz +A~O»t], 

(4.3) 

where ¢~t), ¢~tl, <p~t), -;P~t) all satisfy Eqs. (2.1), (2.2), 
and ¢n, rpm <Pn, /j;n have the time independent boundary 
conditions (3.1), (3.2) (necessary for the direct use of 
the scattering results of Sec. 3). ¢"' rpm <Pn, -;p" satisfy 
(2. 1) and a set of equations similar to (2.2) obtained by 
use of (4.3). 

Since the Wronskians (3.4), (3.5) are assumed to be 
of one sign [in the important case when Sn = - T:, Qn 

= - R~ (3.4), (3. 5) are positive definite], we may write 

¢~t) = ao-;P~tl + bo<p~t), 
(4.4) 

where ao, bo, ao, bo are time independent. Using (4.3), 
(4.4) a, b, a, b can be shown to satisfy the relations 

(4.5) 

a= Il;=_~A/A,..o' 

b = bo exp[(A:1lz - D~-1l/z)t] 
Il;=_~ A/ Ak, ° 

where ao, ao, bo, bo are obtained from initial conditions. 
The difference between this problem and previous prob
lems is that the scattering data a, a, b, b individually 
depend on the potential through A". Since we wish to find 
the potentials by inversion this could be a serious dif
ficulty. The resolution of the problem hinges on the fact 
!!>-at we need the time dependence of bfa, bla, C", and 
C k which satisfy 

b b a = aO exp[(D~-1l/z _A~1lz)t], 

° 
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! =~; exp[(A~1lz-D~-1l/z)t], 
C" = C",o exp(D:-1)/z" -A:1lz,,)t], 

e" = e",o exp[(A~l~" - D:-ll/z,,)t]. 

(4.6) 

Now F(m +n) and F(m +n) defined by (3.24), (3.25) de
pend only on initial data, and the inversion can be Simp
ly effected. Note that when Rn = 'f Q: = In, Sn = 'f T~ = Vn, 
and D~-ll =A~ll = 1 the formulas (3.48)- (3. 52) with the 
F(m +n), F(m +n) defined using (4.6) lead to the solu
tion of (2. 8) and therefore the self-dual network equa
tions (1. 1), (1. 2). 

We remark in passing that the relationship (3.8) 
written in the form 

aa + bb = ,,~~ 1 -A~"Q" (4. 7) 

is intimately connected with a conservation law of (2.7). 
Using the set of Eqs. (4.5), we have 

aoao+bobo= Ii (1-R"Q")(1-S,,T,,)/[1-Sk (t=0)Tk (t=0]2. 
k=_oo 

(4.8) 

The right-hand side must be independent of time. Form
ulating the expression QnRnt + Qn~n + SnTnt + SntTn from 
(2.7) and summing, we find 

(4.9) 

Thus, 

(4.10) 

as it must. 

In a future paper we will discuss in detail the various 
aspects of the solution. Here we shall only present the 
single soliton results. The results are in agreement with 
those found by Hirota. 7 Assuming Qn = - Rn = - In and 
Tn = - Sn = - V., and A~1l =D~-1l = 1, Eqs. (3.48), (3.49) 
can be used with the appropriate sign. If b = b = 0, and 
only one bound state exist, then 

and (4.11) 

F(m + n) = - ej"z{m+n-l. 

Using (3.52), Kl (n, m) satiSfies, 

~ ~ 

K (n m) + e zm+n-l + ~ 6 K (n n")e C*zm+n'- I :z*n'+n"-1 
1, 1 1 "'=n-l ""=n+l 1, 1 1 1 

= O. (4.12) 

Defining 

Kl(n)= t zimKl(n,m), (4.13) 
m:n+1 

we find 

K
1
(n)=- C\(1- z izilz q-l(Zlz i)n+l , (4.13) 

(1- ZIZt)2 + C1Cj(Z;zt)2n+l 

whereupon Kl (n, m), K2(n, m) are found to satisfy 
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C -zm+n-l 

Kl (n, m) = - 1 + [Clef /(1 __ }lZt)2] (ZlZt)2n+l (4.14) 

and 

Thus using (3.50) and (3.51) we may find the soliton 
solutions. When -Z 1 = ± e-w

, w > 0 and real, 

Rn = - sgnC l ,o sinhw sech(2wn± 2(sinhw)t + <Po), (4.16) 

Sn = ± sgnCl , 0 sinhw sech(2wn ± 2 (sinhw)t + <Po + w), 

(4.17) 

where 

<Po =-log(1 C l ,o 1/2 sinhw). (4.18) 

Note that the solitons can move left or right, and can be 
positive or negative in amplitude. In the more general 
case, complex solitons, as well as paired soliton bound 
states [a soliton "pair" each with the same velocity 
(see also Ref. 8)], exist. 

5. CONCLUDING REMARKS 

In this article we have presented a method by which 
the solution of the self-dual network (1. 1), (1. 2) and 
other closely related problems (2.7) can be solved. 
These equations are actually only one consistency con
dition relating to (2.3); other differential-difference 
equations can be deduced in the same manner as out
lined in Sec. 2. There are a number of interesting 
questions remaining, such as multisoliton solutions, 
bound state (paired soliton) solutions, the continuous 
spectrum, "exploding" SOlitons, the analogy to simi
larity solutions, numerical investigation and the con
tinuous limit. We will report on progress in future 
papers. With regard to the continuum note that the limit 
is actually somewhat singular. 

One possible passage to the continuum is to let 
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Z = 1- i/;h, 

Qn=hwm 

Rn=hpn, 

Sn = hO"nt 

(5.1) 

Tn=hin. 

Substituting (5.1) into (2.1) and taking the limit h - 0, 
we have the continuum equations 

vb:+i!;;vl =QV2' 

v2x - i ?;v2 = rVlt 
(5.2) 

where q = w + 0", r = P + i. This eigenvalue problem, 9 a 
somewhat more general case of Ref. 8 contains only two 
potentials @, r). The discrete problem must contain 
four potentials (Qn,Rm Sn, Tn) in order to obtain interest
ing, second order in time evolution equations. This sit
uation is not obvious when one tries to discretize (5.2) 
naively. 
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Ergodicity of observable and ergodic hypothesis in Markovian 
kinetics 
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The time average of any observable, which evolves following an irreducible Markov process with 
countable states each of which is a persistent state, equals the ensemble average of the same quantity 
if and only if the corresponding master equation does not exhibit the accumulation of its eigenvalues 
around the infinitesimal neighborhood of the point with the value zero and if the steady distribution 
as the eigenfunction with the eigenvalue zero is uniform. The nonuniform steady distribution 
invalidates the ergodicity of observable. The principle of a priori equal weight is identical to the 
ergodicity of observable. 

1. INTRODUCTION 

The individual and the mean ergodic theorems of 
Birkhoff and von Neumann show that the metric-transitive 
dynamical system, which is no longer separable as 
being subject to Liouville's theorem, is ergodic. 1 The 
ergodic theorem provides a useful clue to statistical 
mechanics of a completely isolated system. Neverthe
less, it must be noted that linear and nonlinear statisti
cal mechanics off equilibrium is outside the realm of 
the theorem. Markovian kinetics has been supposed to 
be a model kinetics of linear and nonlinear systems off 
equilibrium. So long as one concerns onself with the 
probability measure in phase space without paying at
tention to a time series of observables which really 
occur in a single system, the ergodic theorem can be 
extended to the ease of the Markov process only in the 
sense that the conserved quantity is the probability 
measure instead of the volume measure of phase space 
in the former dynamical system. 

The ergodicity of the probability measure results if 
the Markov process is irreducible. However, one should 
realize that the ergodicity of the probability measure 
does not necessarily result in the ergodicity of physical 
observables. The probability measure and the asso
ciated ensemble theory are always a mathematical 
trick to deal with the probabilistic kinetics of observ
abIes which evolve in a single system instead of in an 
ensemble of the similar systems. The probabilistic 
kinetics of the Markov process predicts the probability 
that a particular event would be expected at a later 
time only with the use of the definite knowledge of the 
event appearing at a previous time. 

If experimental observation takes place at each fixed 
time interval, the observer necessarily identifies a 
series of definite events and the entropy of information 
on the side of the observer always decreases as time 
goes on. This is a real situation of experimental mea
surement. Above all, one notes that the raw data them
selves have nothing to do with the probability measure 
in phase space. Only after a certain sampling out of the 
collected events has been done, one might expect to 
understand the sampled events in terms of the prob
ability measure of the ensemble theory. 

In the present paper, we investigate the extent to 
which the ensemble point of view of the Markov process 
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holds its plausibility speCifically in comparison to ex
periment. The principal subject to be examined is 
whether or not the time average of an observable is 
identical to the ensemble average of the same quantity. 
If the ergodicity of physical observables is not main
tained, one cannot rely on the ensemble theory for pur
pose of interpreting the collection of events measured 
in a single system over a long time. All one has to do 
is to follow the time evolution of observables by the 
help of the probabilistic kinetics of a single system. 

In order to complete our program, we present in 
Sec. 2 an explicit form of the time average of any ob
servable which follows the master equation of an ir
reducible Markov process. The role of the observer is 
stressed specificially with respect to the entropy of 
information. The argument on the ensemble average is 
given in Sec. 3. Since the time average of observables 
has been evaluated independently of the ensemble 
average, the comparison of both the averages provides 
a reference by which one can test whether the ergodicity 
of the observable is maintained. A principal result is 
that the ergodicity of the observable does not hold if the 
steady distribution is not uniform. A detailed account is 
presented in Sec. 4. 

2. TIME AVERAGE 

We restrict ourselves to the discussion of an ir
reducible Markov process with countable states 

{i}, i = 1, 2, 0 0 0, N, (2.1) 

in which the total number N of the states does not neces
sarily remain finite. The Markov process is supposed 
to follow the master equation 

aat P(i, t I k, to) = ~ W(i - j)P(j, t I k, to) 
, ],#", 

- ~ W(j _ i)P(i, t I k, to), (2.2) 

where P(i, t lk, to) is the transition probability that the 
state i occurs at time t under the initial condition that 
the state at an earlier time to( < t) is k, and W(i - j) is 
the transition probability rate from the state j to io 
First of all, we suppose that the transition probability 
satisfies the translational invariance 

P(i, t + t'll?, to + t') =P(i, t I k, to), 

i, ,,= 1, 2, ..• , N with an arbitrary t', (2.3) 
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because of the definition of the Markov process. 

Suppose an observer performs measurement at each 
time interval of 1'(> 0) in order to identify the states 
which appear at every interval of l' 0 Since the states 
follow the Markovian kinetics obeying the master equa
tion (202), the observer, who has already known that the 
state, say, k was measured at time t=t', can find the 
probability that the state i would be expected at the next 
measurement at t = t' + l' with the use of the knowledge 
of the measurement done at t = t'. The probability of 
expecting the state i at t = f' + l' turns out to be 

Pe(i, t' + l' I k, t') =P(i, t' +7 I k, t'). (2.4) 

On the other hand, if the observer does not have any 
information about the events which occurred before t 
= t' and if he is asked to predict the probability that the 
state k at t=t' would be followed by the state i at t=t' 
+ 7, the result he obtains by the help of the Markovian 
kinetics (2.2) will be expressed as 

p(a)(i t' + l' I k t') = Ci P (i t' + l' I k t') c' , k c ' , (2.5) 

with 
N 

~ Cik = 1 and Cik > 0 (2. 6) 

in terms of the a priori probability Ci
k 

of expecting the 
state k at an arbitrary time without any knowledge of the 
past history preceding the expectation. Once it is agreed 
that an obj ective explanation as a kind of rigorous 
epistemology could be established, the a priori prob
ability {Cik } (k = 1, 2, 0 •• ,N) must remain the same to 
anyone of observers who are not informed of any past 
history. If it were not the same to a certain observer, 
who is of course not informed of any past events, and 
if he is asked to present the logic leading to the differ
ence, the observer would have to explain the origin of 
the discrepancy in terms of a priori preconception 
which can never be tested physically. 

One readily notes the conservation of the a pri ori 
probabilities of expectation as follows: 

The first step comes from the irreducibility of the 
Markov process 

N 

6 P(i, t' + 1'1 k, t') = 1 for an arbitrary k, (2. 8) 
i"l 

and the second step from (206). 

In general, it is beyond the control of any theoretical 
analysis to fix the a priori probability, since one can 
never determine the initial state with a necessary and 
sufficient reasoning. One realizes, for example, that 
the very initial condition of a dynamical system is 
Simply given through a certain untouched agent and 
never be deduced by following a sufficient reasoning. 
However, if only l'vIarkov process is concerned, we can 
prove the following theorem: 

Theorem: Suppose the irreducible Markov process 
with N states {i} (i = 1, 2, 0 •• , N) which follows the 
master equation (2.2). Then, an observer, who is not 
informed of any past history of events, expects an 
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arbitrary Markovian state k at an arbitrary time with 
the a priori probability 

Ci
k 
= liN for k = 1, 2,. 0 0 ,No (2.9) 

Proof: Suppose four different observers A, B, C, and 
D, all of whom are not informed of any past history of 
events before they are asked to perform measurement. 
Furthermore, it is assumed that the a priori probability 
{Ci

k
} (k = 1, 2, 0 0 0 ,N) is common to all the observers. 

This will be verified at the final stage of this proof. 
Next, suppose that observer A asks observer B to pre
dict the probability that the state k at time t = t' is fol
lowed by the state j' at t = t' + l' 0 The probability of 
expectation predicted by observer B is 

p~a)(j', t' + l' I k, t'} = Ci~ e(j', t' + l' I k, t') (2.10) 

with the aid of (2.5). Similarly, let observer A ask ob
server C to predict the probability that the state j" at 
t = t' + l' is followed by the state i at t = t' + 21'. The re
sult of the probability is 

p~.) (i, t' + 21' Ij IF, t' + 1') = Cij"P c(i, t' + 21' Ii", t' + 1'). (2. 11) 

Consequently, if observer A predicts the probability 
that the state k at t = t' is follOWed by the state i at t 
= t' + 21' only with the use of the information which both 
observers Band C prepare by following the Markovian 
kinetics (2. 2), the result will be 

N 

P~·)(i, t' + 27 I k, t'} = 2) P~·)(i, t' + 21' Ij', t' + 7) 
j'=l 

xp~·)(j', t' + 7 I k, t') 

= ~ CikCi}'P (i,t'+27 Ij',t'+1') }i,:,1 c 

XPe(j', t' +1' Ik, t'). (2012) 

The entropy density of information which observer A 
assigns to the probabilistic event is 

(2.13) 

If observer A really measures the state k at t = t' and 
the state i at t = t '+ 21', he will loose the entropy of 
information by the amount of iA(i, t' + 21' I k, t'). Here, it 
must be borne in mind that observer A performs mea
surement even at t = t' + l' in addition to at t = t' and at 
t = t' + 21' since he divides the event continuing from t 
= t' to t = t '+ 21' into two parts at t = t' + 70 

Similar ly, observer D is supposed to predict the 
probability that the state k at t = t' is followed by the 
state i at t = t' + 21' with the aid of the Markovian 
kinetics (2.2). The result is 

p~a)(i, t' + 27 I k, t'} = CikP/i, t' + 21' I k, t') 0 (2.14) 

The entropy density of information which observer D 
assigns to the probabilistic event is 

ID(i, t' + 21' I k, t') = - log2P~·)(i, t' + 27 I k, t~ 0 (2.15) 

If observer D really measures the state k at t=t' and 
the state i at t = t' + 21', he will loose the entropy of in
formation by the amount of ID(i, t' + 21' I k, t'}, The dif
ference in the decrease of the entropy of information 
between observers A and D is just the amount of 

N 

10 = - 6 Ci; log2Ci;, (2.16) 
;"1 
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since observer A is more informed than observer D in 
that observer A can identify which state out of the total 
N states really appears at t = [' +. although observer D 
cannot. Here, it is noted that observer A expects the 
state i at an arbitrary time with the a priori prob
ability aj. As a result, we obtain the expression 

IA(i, t' + 2. I k, t') - 1D(i, tf + 2. I k, t') =10, (2.17) 

This gives 

N 

6 akaj'P c(i, t' + 2T 1/, t' + .)p cU', [I + T I k, tl) 
j "=1 

= 2-loa
k
P c(i, t l + 2. I k, t'). (2. 18) 

Because of the transitivity of the Markov process 

Pc(i, t' + 2. I k, t'l 
N 

= 6 P (i, t l + 2T Ijl, t' + T)P cUI, t' +. I k, t'), 
j'=1 c 

(2.19) 

expression (2. 18) reduces to 

N 

6 a (a·.·,..-2..Jo)P (i,t'+2.\j',t'+.)P U',t'+.lk,tl)=O. 
j"=l k 1 C c 

(2.20) 

Since the states i and k and the time T are arbitrary, 
the result is 

(2.21a) 

or, equivalently, 

priori probability, verifying that it never oCCurs that 
anyone of observers opposes the universality of the re-
sult presented in (2.21). QED 

With the aid of the present theorem, the a priori 
probability of expectation that the state k at t = t l is fol
lowed by the state i at t = t' + T reduces to 

P(4)(i t'+Tlk f')=.!..P (i t'+Tlk t') c' 'N c " ",. 
(2.22) 

One can calculate the time average of any observable in 
terms of the a priori probability of expectation. For 
example, let us consider a physical observable X(t) 
satisfying 

if the state at time tis i with i= 1, 2,. 0 • ,N. 

The time average of the moment 
T 

X(f' + T)X(t') '" lim.!..f X(t l + ')X(t l ) dt' 
T-~ T 

o 
turns out to be 

N 

X(t' + T)X(t ' ) =.6 XiXkP~a) (i, i' + T I k, t') 
t ,k=:l 

(2.23) 

(2.24) 

(2.25) 

because of both the definition of the a priori probability 
of expectation and the translational invariance presented 
in (2.3).3 

aj' = liN for j' = 1, 2, •.. , N (2. 21b) 3. ENSEMBLE AVERAGE 

because of the conservation of the total a priori prob
abilities. It must, however, be remembered that the 
result (2.21) has been obtained only under the ansatz 
that the a priori probability {a

k
} (k = 1, 2, .. " N) is 

common to all the concerned observers. 

In order to prove the objectivity of the result (2.21), 
let us consider the situation that observer A measures 
the two events. One is that the state k at t = i1 is fol
lowed by the state i at t = t1 + 2T. And the other is that 
the state k at t = t2(> t1 ) is followed by the state i at t 
= t2 + 2T. If observer A divides the first event into two 
parts at t = il + T, he can also play both the roles of ob
servers Band C of the previous case. Furthermore, 
the second event permits observer A to assimilate him
self to observer D of the previous case. Since the a 
priori probability {ak } (k = 1, 2, •.. ,N) remains in
variant as far as a single observer is concerned, one 
can follow the same argument as before only with the 
substitution of observer A for each of observers B, C, 
and D. Hence, the result (2.21) is obtained again. The 
necessary and sufficient condition for this statement is 
that the time difference (t2 - t1 ) remains finite, other
wise observer A would miss the second event. As a 
matter of fact, the finiteness of the time difference, 
which is equivalent to the recurrence time, is guaran
teed since an irreducible Markov process with countable 
states has only the set of persistent states. 2 The a 
priori probability {a

k
} characteristic of a group of 

several observers, all of whom are supposed to estab
lish the same a priori probability, have been shown 
identical to the proability characteristic of a single sub
jective observer. This confirms the objectivity of the a 
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The master equation (2.2) is rewritten to a reduced 
form 

(3.1) 

where the vector P and the tensor M have the compo
nents as 

pi ",p(i,tlk,to), i=1, 2". "N, (3.2) 

and 

1
-6 W(l-i) for i=j 

. If! 
lvI' '" 

j Wei _j) for U-j. 
(3.3) 

The eigenvalue problem of the operator M is formu
lated in such a way 

fl.l· Pm = A"'p m' In = 0, 1, 2" , , , N', (3.4) 

where Am is an eigenvalue with the eigenvector Pm' The 
inequality 

N'+ 1 ~N (3.5) 

is always satisfied since the rank of the operator M does 
not exceed N. The eigenvalue Ao is chosen to be identi
cally zero, The corresponding eigenvector Po gives the 
steady distribution of the present Markov process. If 
pure imaginary eigenvalues are absent and if the eigen
value Ao = 0 is not an accumulation point of other eigen
values, the eigenvector Po leads to 

(3.6) 

= lim P(i, t Ik, to) for any i and /<. (3.7) 
(t -t II) - ~ 
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We shall first consider the case that the operator M 
does not have pure imaginary eigenvalues and that AO 

= 0 is not an accumulation point of eigenvalues An with 
n?- 1. If one prepares an ensemble of systems each of 
which follows the master equation (3. 1) and if the 
ensemble is sufficiently aged, then the probability of 
expecting that a representative system out of the en
semble finds itself in the state i at an arbitrary time is 

P(i) (3.8) 

of (3.7). This is rather the definition of the aged en
semble, ,whose existence is supported by the assump
tion that AO = 0 is not an accumulation point. Similarly, 
the probability of expecting that a representative system 
finds itself in the state k at t = t' and successively in the 
state i at t=t' +T is 

p~e )(i, tf + T I k, t'l =P(k)P c(i, t ' + T I k, t'). (3.9) 

One can evaluate the ensemble average of any observ
able in terms of the two-time probability distribution 
function (3.9). 

If the operator M has pure imaginary eigenvalues, 
the transition probability P(i, t I k, to) will oscillate in the 
limit (t - to) - 00. This behavior is speCific to a single 
system. On the other hand, the probability distribution 

,function in the ensemble would not exhibit such an oscil
latory behavior because of the ensemble dephasing. 4 

This is because the phase relation between systems 
constituting the ensemble is arbitrary. As a result, the 
probability of expecting that a representative system 
finds itself in the state i at an arbitrary time is again 
the eigenfunction P(i) of (3.6) which does not, however, 
satisfy (3.7). The two-time probability distribution 
function also reduces to (3.9). 

One notes that a possibility of the eigenvalue accumu
lation to AO = 0 could not totally be disregarded if the 
limit N - 00 is taken. If such an accumulation really 
occurs, one cannot argue that the steady distribution 
(3.6) may be the probability distribution in the aged 
ensemble. 

4. ERGODICITY AND ERGODIC HYPOTHESIS 

The ansatz that the time average of any observable 
should be equal to the ensemble average of the same 
quantity is stated as 

(4.1) 

for arbitrary i, k, t ' and T(> 0) with the aids of (2.22) 
and (3.9). The result is 

P(k) = liN for k = 1, 2, 0 •• , N. 

The present expression tells that the ergodicity of ob
servable is maintained if and only if the eigenvalue AO 

= 0 is not an accumulation point and if the steady dis
tribution as the eigenfunction with the eigenvalue AO = 0 
is uniform. The ergodicity is necessarily invalidated if 
the steady distribution is not uniform. As a matter of 
fact, the principle of a priori equal weight, 1 when it is 
applied to an irreducible Markov process, is identical 
to the assertion for the ergodicity of observable. The 
principle of a priori equal weight and the ergodicity of 
observable are just a tautology with each other. 
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5. CONCLUDING REMARKS 

Even if a statistical mechanical system with a large 
number of degrees of freedom follows an irreducible 
Markov process, the condition of the irreducibility may 
sometimes be too strict specifically from a physical 
point of view. If the irreducible Markov process with 
N degrees of freedom is physically reducible in the 
sense that it may constitute an ensemble of N ' of weakly 
coupled subsystems each of which follows an irreducible 
Markov process with n degrees of freedom satisfying the 
constraint N = N'n, one may hope to regard the large 
irreducible system approximately as the ensemble of the 
small subsystems each of which is irreducible. From a 
mathematical point of view, however, any irreducible 
Markov process is no longer reducible because of its 
very definition. Hence it must be stressed that the re
ducibility quoted here is stated only as a physical 
approximation. If the number N ' of the subsystems is 
much greater than unity, the probability function fixed 
by the Markovian kinetics of a single subsystem would 
be interpreted as the ensemble probability function of 
N'subsystems. The value of a physical observable per 
each subsystem at any moment is thus determined by 
its ensemble average over the subsystems. One should 
note that such an observable must be additive in the 
sense that the observable of the original large system 
is approximated by the summation of the observables 
allotted to each subsystem. The ergodicity of the ad
ditive observable is maintained if the ensemble average 
over the subsystems is independent of time, since the 
time average is just the time average of the quantity 
which has been subject to the ensemble average. As a 
result, even if the steady distribution of a subsystem is 
not uniform, the ergodicity of an additive observable 
would be kept. This statement could be only approxi
mately valid to additive observables which would admit 
the introduction of the physical redUCibility into the 
Markov process which is originally irreducible. 

Once an irreducible Markovian kinetics is established 
of a single system, it will be straightforward to examine 
whether or not the resulting probabilistic kinetics main
tains the ergodicity of observable. If the steady dis
tribution is not uniform, the ergodicity does not hold. 
This observation causes a serious reconsideration of the 
concept of potential which has been introduced into the 
Markovian kinetics by several authors. The kinetics in 
terms of the potential which is related to the prob
ability function of a given Markov process cannot cope 
with once and for all events which evolve in the single 
system. This is because the potential kinetics considers 
the kinetic behavior of only an ensemble of many simi
lar systems and not of an irreducible single system. 

If one comes to stress the probabilistic kinetics of an 
irreducible single system instead of the ensemble 
kinetics of stochastic process, the role of the observer 
who always decreases the entropy of information at 
each measurement must fully be scrutinized. 

lD. ter Haar, Elements of Statistical Mechanics (Holt, 
Rinehart and Winston, New York, 1961) Appendix I, and 
references cited therein. 
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ZIt should be realized that any observer is never unlimited 
with respect to his ability of measurement. If the recurrence 
time is greater than the upper bound of the time interval 
which the observer can measure, the reasoning presented in 
this proof will fail. One compromise, however, would be as 
follows: If observer A is succeeded by observer A (2) as the 
second generation of the former observer A and if observer 
Am is further succeeded by the third generation A(3) and so 
on, the present proof will work only under the ansatz that 
all of observer A and his later generations A (2), A (3), ••• 
have the common a priori probability {a k } (k= I, 2, •.. , Nl. 
Nevertheless, the present ansatz would by no means be self
evident. 

3Since only the events each of which continues over the inter
val T are concerned when the autocorrelation function (2. 24) 
is evaluated, one can prepare a set of two-time events con
tinuing over only the interval T by dividing the event lasting 
from t= 0 to t= 00. If an observer, who is not informed of any 
past history of events, tries to find the time average of the 
moment (2.24), the expected value will be the average of the 
moment over the two-time events belonging to the set. Since 
the two-time event that the state k at t= t' is followed by the 
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state i at t= t' + T is expected with the probability a "FeU, t' 
+ T I k, t') and since the probability of expectation is indepen
dent of the initial time t' because of (2.3), expression (2.25) 
follows. Here, the right hand side of (2.24) is supposed to 
converge. If one concerns oneself with the time average of the 
observable X(f), the interval at which each measurement of 
X(t) is done must be known. If the interval is T, one can also 
prepare the set of the two-time events continuing over T by 
di viding the event lasting from t = 0 to t = 00. If the state k 
at t= t' is followed by the state i at t= t' + T, the mean value 
of X(t) is (Xi + X,)!2. Hence, an observer, who is not in
formed of any past history of events, can find the time aver
age xm in terms of the a priori probability of expectation. 
The result is xm =~ i ,k[ (Xi +Xk)!21a"Fe (i, t' +T I k,f). It is, 
however, not surprising that the average is dependent upon 
the interval T. This is because the state at t=t'+T is always 
affected by the state at t = t', depending upon how the initial 
information would die away in the course of the stochastic 
evolution over the interval T. 

"K. Tomita, T. Ohta, and H. Tomita, Prog. Theor. Phys. 52, 
No. 6 (1974) (to be published). 
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On first order smoothing theory* 
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(Received 22 August 1974) 

This paper is concerned with the validity of an approximation known variously as first order 
smoothing theory (FOST), first order cumulant discard, quasilinear theory, and the adiabatic 
approximation. This approximation has been widely used in turbulent dynamo theory, which provides 
a number of the examples considered below. On the basis of such examples, Lerche and Parker have 
recently contended that first order smoothing is under no circumstances trustworthy; i.e., even when 
the method might have been expected to yield solutions in agreement with those of the exact theory, 
it does not necessarily do so. We show that the discrepancies between the exact and approximate 
theories that they claim to have uncovered are, in fact, nonexistent. It is established, however, from 
one of their examples that FOST may be legitimately criticized on a completely different ground 
connected with the high velocity tail of the probability distribution. 

I. INTRODUCTION 

Lerche and Parker! and Lerche2 
,3.4 have recently cast 

doubt on the validity of a closure approximation often 
used in statistical physics and frequently called "first 
order smoothing theory" (FOST). The present au
thors5 • 6 ,7 and indeed many others (see, for example. 
Ref. 8) have made extensive use of the method in turbu
lent dynamo theory, that is, the theory of electromag
netic induction in fluid conductors in turbulent motion. 
If the claims of Lerche and Parker prove well-founded, 
turbulent dynamo theory will, as they state. suffer a 
serious setback. It is an object of this paper to allay 
this fear by raising a number of difficulties inherent in 
their analyses. 

We will first use the dynamo application to illustrate 
FOST, and to discuss when FOST may be expected to 
yield a good approximation to the exact results. starling 
from the equation 

oB at = curl(u' x B) + l)\72B. (1) 

which governs the induction of magnetic field B by a 
given motion u'. which we will suppose is turbulent and 
of zero mean. one writes B = (B) + B', where (B) is the 
ensemble mean of B, and obtains by averaging (1) 

ai~) = curl (u' x B') + l)\72(B). (2) 

oB' at = curl[ u' x (B) + {u' x B' - (u' X B')} J + l)\72B' . (3) 

FOST rests on the idea that. provided the root mean 
square velocity U =.j (U,2) is "suffiCiently small, " the 
terms in curly brackets in (3) may be neglected, leading 
to 

(4) 

This equation. together with (2) and the relevant bound
ary, initial. and continuity conditions, give a closed 
mathematical system, from which (B) and B' may be 
determined. The consequent simplifications introduced 
by FOST are clearly enormous. 

Lerche and Parker! state that "the general validity 
of first order smoothing has not been established. " but 
they do not give references in which claims for its gen-

609 Journal of Mathematical Physics, Vol. 16, No.3, March 1975 

eral validity have been made. It has certainly been 
argued often that circumstances exist (see below) in 
which FOST will provide the first apprOXimation, in a 
well-defined sense, to the correct results. But Lerche 
and Parker! state that, "There do exist particular in
vestigations (e. g., '" this paper) which demonstrate 
its invalidity under conditions where it might have been 
believed, a priori, to be valid .... After completing a 
calculation in the first order smoothing approximation, 
one does not know whether the answer is close to the 
truth. " It is this severe, possibly lethal, criticism of 
FOST that we wish to contest in this paper. 

In the context of the turbulent dynamo, a comparison 
of the magnitude of the terms in (3) strongly suggestsB 

that (4) will be a valid approximation provided 

either U'« L' /T' 

or U'1« 11/L', 

( 5) 

(6) 

where U' is a characteristic velocity, and L' and T' are 
typical length and time scales of B'. Since the right
hand side of (4) is the source to which B' owes its 
existence in FOST, it appears that we may write 

U':::::U, 

L' :::::X, 

T' :::::T, 

(7a) 

(7b) 

(7c) 

where X and T are the correlation length and time of 
the turbulence. If (7a)-(7c) hold, we may write (5) and 
(6) as 

either U « X/T 

or U« 11/X, 

(5') 

(6') 

Inequalities (5') and (6') should be applied with some 
caution. We may note two cases in which failure of one 
of (7a)-(7c) renders (5') and (6') misleading, even though 
(5) and (6) are faithful guides. First. consider the 
"sudden" approximation in which (5') holds. It may be 
shown9 that. if UX/TJ is sufficiently large, i. e., if (6) or 
(6') is sufficiently violated, I B' I becomes large com
pared with I (B) I, according to (4). Far from being 
negligible, the term u' x B' - (u' x B') in (3) ultimately 
dominates the term u' x (B) retained in (4)! The turbu
lence has the effect of "breaking up the scales"l0 of the 
magnetic field as it evolves in a highly conducting fluid. 
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Eventually L' becomes small compared with A, and (5) 
is violated even though (5') is not. Since neither (5) nor 
(6) are valid when this stage has been reached, there is 
no reason to accept FOST, and the paradox is resolved. 
One might argue the point differently by urging that. 
starting from any initial state, (5) will fail in a time of 
at most O(AIU') "'O(AIU). We are left with one case, the 
low conductivity limit (6) or (6'), for which the ultimate 
breakdown of FOST is not inevitable. As in any kinematic 
dynamo problem, the choice of u' is open, but dynamical 
considerations lead one to believe that U should be 
chosen to be of the same order as AIT and viA, where v 
is the kinematic viscosity. It is, in fact, for this rea
sonll that FOST is impotent in the dynamical theory of 
the inducing turbulence. Nevertheless, it seems clear 
that, if the magnetic Prandtl number viTI is sufficiently 
small, so that (6') holds even though U = O( viA), the 
magnetic fields induced by the turbulence can be studied 
validly by FOST. 

A second difficulty arises from the failure of (5) and 
(6) in the high velocity tail of the probability distribution 
of u'. No matter how well (5') and (6') are satisfied. (5) 
and (6) must both be violated for sufficiently large U'. 
This appears to provide genuine grounds for the criti
cism of FOST and indeed of other approximation meth
ods. One might intuitively expect that, provided the 
relevant parts of the tail are sufficiently improbable, 
global properties of the solution, such as the growth 
rate of the magnetic field, will not be greatly in error. 
This is confirmed in an example given in Sec. III below. 

The objections of Lerche and Parker! were of quite 
a different sort. They arose from a study of two ex
amples both of which were governed by the equation 

(8) 

where E is a constant, I is a scaled time, x is a scaled 
distance. and v is normally distributed with zero mean 
and unit variance. In their first example. /' depends on 
t alone; in their second. it depends on x alone. In the 
first case. they obtained conflict between the exact solu
tion of (8) and FOST, even at O(E2) as E- O. the case in 
which we would have expected agreement between the 
two approaches. This apparent inconsistency led them 
to their criticisms of FOST which we have quoted above. 
We show in Sec. II that the inconsistency they claim 
exists is an illusion, and that FOST must always agree 
with the equations obtained by truncating the exact theory 
at order E2. 

In their second model. for which v = v(x). Lerche 
and Parker! obtained agreement between FOST and the 
truncated exact theory. to O(E2). It appears to us. how
ever. that this example gives rise to serious difficulties 
of interpretation. These are dealt with at length in Sec. 
II. Suffice it to say here that their exact theory seeks to 
apply the Markovian concept of the "gradual unfolding 
of a transition probability" with increasing time (e. g .. 
Chandrasekhar!2) to the gradual unfolding of a transition 
probability with increasing coordinate distance x. This 
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analogy would lead to the replacement of a Focker
Planck equation 

oP 
F=L(v)P, 

where 

L(V)p=02P2 o(vP) 
OV + a;;-' 

(9) 

(10) 

and its fundamental Rayleigh-Greens function solution 

G(v, t; va) = [21T(1- exp(- 2t))}-1/2 

X exp[ - t(v - 110 exp( - t))2/(1 - exp( - 2t)) J. 

(11) 

by 

op 
ex = L (1I)P, ( 12) 

and 

G(v, x; 11
0

) = [21T(1- exp(- 2X))}-1/2 

x exp[ - t(v - 110 exp( - x))2/(1 - exp( - 2x))}. 

(13) 

The physical interpretation of (11) is well known: 
Given that 1'=110 at 1=0, G(v.l;vo)d1' is the probability 
that the velocity 11 will lie between v and v + dv at a 
subsequent time I> O. The restriction to positive 1 in
corporates a physical idea sometimes called "the 
statistical arrow of time. " The notion is reflected 
mathematically in the paraboliC character of (9). which 
has significance only for initial-value problems. The 
physical meaning of a statistical arrow in space is not 
obvious, and it does not appear to be possible to adapt 
the usual derivations of Eq. (9), given for example in 
Ref. 12 or by Uhlenbeck and Ornstein!3, to obtain (12). 

We argue in Sec. II that (12) may have meaning for 
initial-value problems in space, e. g .. for situations in 
which a solution is sought in x> 0 from specified con
ditions on x = O. but that it leads to serious difficulties 
if applied to boundary value problems. including parti
cularly the search for normal modes proportional to 
exp(ikx) in - 00 < x < 00. The dangers are clearly illu
strated by the following two examples. Lerche14 has 
used the method to develop from (1) a theory of induc
tion by a static one-dimensional turbulent motion. that 
is a motion that is independent of time and depends on 
one space coordinate. x. alone over which it varies 
randomly. He concluded that field amplification could 
occur. even for incompressible flows. The relevant 
motion is a special case of the planar analog of toroidal 
flow in spherical geometry. It is well known that toroidal 
flows are incapable of dynamo action and the proofS of 
this fact can readily be adapted to exclude the analogous 
planar motions also. One concludes that Lerche' s claim 
that these flows can regenerate field is untenable. Se
cond. Lerche16 has considered the diffusion of heat in 
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a moving conductor containing no internal sources of 
heat, and governed by 

~ +u' 'VT=1jV2T at . (14) 

He used the analogy described above to examine the caSE 
of static one-dimensional motions by exact methods. He 
concluded that the temperature of the fluid could rise 
spontaneously through its motion, in violation of the 
second law. (See also Refs, 17 and 18. ) 

Lerche2,3.4 has criticized FOST for reasons that arise 
from his application of Kraichnan's direct interaction 
approximation (DIA)ll,19 to induction (1) by turbulently 
moving conductors. When one wishes to release turbu
lent dynamo theory from the straightjacket imposed by 
(5) and (6), DIA offers a number of attractions. As 
Kraichnan19 has emphasized, DIA provides an exact 
description of a possible dynamical system: It therefore 
evades physical absurdities, such as negative energy 
spectra, or the violation of Bochner's theorem2o and its 
generalizations. Also, although solutions are more dif
ficult to obtain than after FOST closure, DIA is not 
intractable. It is perhaps worth bearing in mind, how
ever, that (as its name implies) DIA does not provide an 
exact description of the actual phYSical system, and so 
does not yield precise results. Therefore any criticism 
of FOST based on DIA is itself questionable. 

The first use to which Kraichnan21 put his DIA was to 
magnetohydrodynamic turbulence and, as a by-product, 
his analysis contains the dispersion relationship im
plied by DIA for kinematic dynamo action by a statisti
cally steady isotropic turbulence without helicity, that 
is turbulence possessing mirror-symmetric statistical 
properties. Kraichnan supposed. however, that (B) = O. 
The corresponding theory for nonzero (B) was first 
developed by Lerche, 2 who also examined3,4 the case of 
pseudo-isotropic turbulence, which (though statistically 
isotropic) lacks mirror- symmetry. 

Lerche2 observed that, when (5) or (6) hold (equivalent 
to inequality (27) of Ref. 2), the dispersion relationship 
obtained from DIA reduces to that given by FOST. He 
urged however that the implied iteration procedure for 
small U is not uniformly convergent throughout wave
vector space, and that FOST therefore does not provide 
a reliable approximation to DIA for small U. His case 
rests on an implied hope that certain conditions, proved 
by Hammerstein22 to be sufficient for the existence of 
solutions to integral equations of the type raised by DIA, 
are also necessary. Even if this could be established, 
the discrepancies between FOST and DIA which would 
then arise at large times (or small frequencies) could 
equally well be attributed to a failure of DIA, for it is 
knownll that DIA does not necessarily give reliable re
sults for large times (or small frequencies). We con
tinue to regard Lerche's demonstration2 of the equiva
lence of FOST and DIA under conditions (5) or (6) as a 
valuable proof of the consistency of the two approxima
tions, rather than grounds for critiCiSing either. 

When the helicity is zero, Lerche's dispersion 
relationship [Eq. (25) in Ref. 2] based on the induction 
equation (1) coincides, under DIA, with that obtained23 

from the heat conduction equation (14). Since it is clear 
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on physical grounds that the latter can only admit solu
tions that decay with time, we may conclude24 that 
mirror-symmetric turbulent motions cannot regenerate 
mean magnetic fields by dynamo action, at least as far 
as DIA is a reliable guide. 

Lerche3 attempted to solve the DIA dispersion rela
tionship for nonmirror symmetric flows in the particular 
case of static turbulence, in which the energy spectrum 
E(k, w) has the form ~(k)6(w). His solution led him to 
believe that field amplification could not occur in any 
circumstances, a conclusion that is in direct conflict 
with FOST, which predicts that in general dynamo am
plification of fields of all sufficiently long wavelengths 
would occur. Lerche concluded that the results of FOST 
were not trustworthy. This conclusion is difficult to 
accept in view of the close parallel that exists between 
induction by homogeneous turbulence and induction by 
spatially periodic flows. The mathematics of the latter 
are amenable to preCise treatment, and powerful theo
rems have been proved by Childress25 and Roberts, 26 
including for example the result26 that nearly all (in a 
well-defined mathematical sense) spatially-periodic 
flows will regenerate field for nearly all electrical con
ducti vities. 

It is also disturbing that the method used by Lerche to 
solve his dispersion relationship cast up modes that 
grow even for zero motion. The implication appears to 
be either that the dispersion relationship provided by 
DIA is physically untenable, or that the method used to 
solve it is mathematically untenable, and it seems to 
US27 that the latter explanation is the correct one. 

The remainder of this paper presents arguments in 
support of some of the statements above. We summarize 
these here by reiterating our faith in FOST in an ad
mittedly limited set of circumstances, but one that is 
larger than the "short-sudden" approximation. 1 

II. EXACTLY SOLUBLE PROBLEMS 

The exactly soluble problems discussed by Lerche and 
Parker1 and by Lerche14 ,16 can all be written in the form 

~i =Aij(w)Yj' (i,j=l, 2, ... ,N) ( 15) 

where E is a small parameter, 11 is Gaussianly distri
buted over t with unit variance and zero mean and the 
summation convention is used. It is postulated that the 
probability density P(y i' V. t) at {y J /J and / is governed 
by 

a P = L (v)P _ ~ (dY i p) 
at ay i df . (16) 

This postulate can be supported by physical arguments 
in the case in which I is time, 12,13 but the equation is 
also used when / is a space coordinate x. Attention is 
focused on the means 

(Y i) =' J PYi dNy, 

which according to (15) and (16) obey 

a(v.) ---at = L (v) (v i) + Aij(w) (v), 

(17) 

(18) 

an equation which may be solved uniquely from specified 
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initial conditions and the requirement that (y I) is ex
ponentially small as v - ± 00 (see Sec. III). 

Lerche and Parkerl , and Lerche, 14,16 used an ex
pansion method to solve (18), writing (Yi) as a linear 
combination of the eigenfunctions <Pn(v) of the equation 
L (v)<Pn = - n<pn' the coefficients y /n)(t) being functions 
of t. We will work instead with the moments 

y / n)(t) = 1: (y i)V" dv (19) 

of (y;>, which are linear combinations of the y; (n). 

Suppose, for simplicity, that Au may be written as a 
sum (finite or infinite): 

(20) 

Multiply (18) by v" and integrate over all v, making use 
of the result 

(21) 

Obtain in this way the hierarchy of moment equations 

(22) 

dyUl ~ 
_ y(l'= __ I __ 6 F5A(S) y<s+l) 

I dt 5=0' IJ j , 
(23) 

(24) 

The solution to order E2 obtained by Lerche and 
Parker and Lerche [see Eqs. (19) and (31) of Ref. 1, 
and Eq, (41) of ref. 16], ultimately depends on neglec
ting the right-hand side of (24) (note dy/2)/dt=Ai~)y/2), 
to lowest order), which yields 

y(2) = y<.o). 
I , 

(25) 

This is the particular case to = t of the more general ap
proximation 

(26) 

to which we return below. We note that (26) is not re
quired for closure: (22), (23), and (25) give 

(27) 

dy<l) 
_i_ + y~l\ =A (0) y(l\ + tA <I) y<O) 

dt ' 'J J 'J J' 
(28) 

We will refer to this as the "approximate form of the 
exactly soluble problem. " 

The necessity of regarding (18) as an initial value 
problem with (y;) prescribed at t = 0 becomes apparent 
if we recast that differential equation into an equivalent 
integral form 

(y .)(v, t) = it r~ G(v, t - t'; v')A .. (EV')(Y.) (v', !')dv' dt 
, 0 .J-oc lJ J 

+ 1: G(V,t;v') (y;)(v',O)dv', (29) 

where G is the Greens function (11). It is then clear that 
the solution (y;)(v, t) at time t depends on (Yi) (v, t') for 
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earlier times t' < I only. From (11) we obtain the 
velocity correlation for t> I' 

(v(l)v(l'» = -CC (211)-1/2 v' 

exp(-tv,2)vG(v,l-t';v')dvdv'=exp[-ll-i'IJ. (30) 

Let us now apply FOST. This requires (26) to hold. 
It is sensible to ask whether (26) will lead to (27) and 
(28) if (15) is regarded as an initial value problem, with 
correlation function (30). 

The mean value of (15) clearly gives (27) to order l. 
To rederive (28), we multiply (15) by v(to)' average over 
v, and neglect terms of order E2, to obtain 

d 
dt (v(to)y;(t» 

=A ;~)(v(to)y it)) + fAD) exp( - It - to I) YjO)(t). (31) 

Alternatively. we may write (31) as 

Comparing (28) and (32) we see that the solution 
(v(to)y;(lo» of (32) when solved subject to the initial 
condition 

(32) 

(33) 

is identical to the solution of (28) subject to the initial 
condition 

(34) 

In short, to order r?-, there is no conflict between FOST 
and the approximate form of the exactly soluble problem. 

Suppose that, in place of this initial value problem 
(called "Case A" below), we wish to consider a boundary 
value problem (called "Case B" below). In what follows 
we will often replace I by a space coordinate x. as this 
was used by Lerchel6 in the example we will take as our 
principal illustration. This is a heat conduction problem 
governed by (14), with u' having a single component in 
the y direction that depends on x alone. After trans
formations, we can write this in the form (15) with 
N=2 and 

A <I) =(0 
JJ i 

where p. (A) > 0. In case (A), the correlation function 
satisfies the condition (33) but for x rather than I; in 
case (B). we require instead that 

(35) 

(v(xo)Y;(x»-O. asx-xo-±oO. (36) 

In case (B) the correlation (30), with x replacing t, 
must hold for x - x' both positive and negative. Solving 
(15) and (35) directly, multiplying by v(xo)' and averaging 
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(using this correlation function and FOST), we obtain 

(v(XO)Y1(x» = iE(2\tl 

1: exp[-Ix' -xol-xlx' -xllYl(x')dx'. (37) 

On setting x = xo' we find Yil ). It is bounded at x = ± 00 
and satisfies 

d 2 y(l) 

=--7-J-- - (1 + X)2 Yill = iE(1 + \ -1)YiO). 
dx 

(38) 

This should be contrasted with the result (28) of the 
initial value problem (A) which, with x replacing t, gives 

For both A and B, (27) gives 

d 2 y(O) =--..:...\-- _, 2y(O) _ . y(l) 
dx" "1 -IE 1 • 

(39) 

(40) 

It should be clear from a comparison of (38) and (39) 
that care must be taken to distinguish initial value 
problems of type (A) from boundary value problems of 
type (B). Moreover, although both types of situation are 
apparently amenable to FOST, the exactly soluble 
problem, starting from (18), presupposes that an initial 
value situation (A) is under study. 

We are now in a position to understand some of the 
difficulties encountered by Lerche14 ,16 and Lerche and 
Parker1. If we seek solutions of (39) and (40) that are 
proportional to exp(ikx) where k and \ are O(E) we obtain 
the dispersion relationship 

(41) 

[cf. Ref. 16, Eq. (41)], which if interpreted as an eigen
value problem for X rather than k leads to difficulties 
when E ~k. But (39) is valid for initial value problems 
(A) and not for boundary problems (B) in which yiO) is 
proportional to exp(ikx) for all x. The correct equations 
are therefore (38) and (40), which yield 

(42) 

as though the diffusivity \ were increased to -.)(\2 + ~), 

The first of the two examples given by Lerche and 
Parker1 is based on (8) and is timelike. It may be written 
in the form (15) with N=2 and 

A
(O)_(O 
Ij -

ia 

I\, AD)=(O 0\, Aij)=O, (n~2). (43) 

0) Va 0) 
Equations analogous to (39) and (40) yield the correct 

dispersion relationship for the initial value problem (A), 
viz .. 

(44) 

for solutions proportional to exp(ivt + iax); see Ref. 1. 
Eq. (19). The apparent discrepancy between (44) and an 
earlier result, 28 which they derived using FOST, may be 
attributed to the fact that the earlier result was relevant 
to a boundary value problem B. We may confirm this 
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from equations analogous to (38) and (40), which yield 
the dispersion relationship 

[a + i(iv)2J[i-.) (ia)/ {1 + -.) (ia)}] [(i V)2 - {I + -.) (ivWl =: a 2
E2. 

(45) 

This agrees completely with their FOST (Ref. 28, Eq. 
(12) in the limit L - 00). Alternatively, we may observe 
that their time integrations in Ref. 28 are performed 
by Fourier transformations, but that their contours of 
integration in the corresponding wI! -plane are not one
sided, i. e., they do not pass below all singularities. 
Their solution28 has, therefore, no bearing on the initial 
value problem A, and cannot be expected to reproduce 
(44). It happens. however, to give the correct result 
(45) for the boundary value problem B. 

The second model based on (8) considered by Lerche 
and Parkerl is space like. Since N = 1, it cannot be used 
to formulate a boundary-value problem. There is no 
possibility therefore of confusing situations of types A 
and B. Not unexpectedly, the results of FOST agree with 
those derived from the approximate form of the exactly 
soluble problem. 

We have shown in this section that, when due distinc
tion is made between initial-value and boundary-value 
problems, the results obtained from FOST coincide with 
the solutions of a truncated set of equations obtained 
from the exact theory at the appropriate approximation 
level, here order E2. This should serve to dispel from 
the reader' s mind doubts of the kind raised by Lerche 
and Parker1. There is, however, a completely separate 
cause for concern. namely, whether the solution ob
tained from FOST or from the truncated set of equations 
will differ in a significant way from the full solution of 
the exact equations, appropriately approximated for 
small E. Although we have described FOST and the 
truncated equations as being valid to order E2, it would 
be more correct to say that they give solutions valid to 
order (€V)2. The solutions they predict are not expected 
to be correct for V", €V = O( 1). It is possible to derive a 
new expansion for V=O(l) and to obtain solutions for 
v = O( 1) which, while they do not vanish as I v I - 00, 

match with these new solutions in V. It is not obvious 
that the resulting dispersion relationship will agree with 
FOST or the truncated equations. The matter is taken 
further in the next section where it is established un
equivocally that the use of FOST or the truncated form 
of the exact equations for all v introduces numerically 
small, but nonzero, errors. 

III. THE HIGH VELOCITY TAIL 

We aim to illustrate how the high velOCity tail of the 
probability distribution can cause the results of FOST, 
or equivalently of the truncated form of the exact theory, 
to differ from those from the exact theory even at order 
~. We continue to use the heat conduction problem con
sidered by Lerche16 as our example, and examine solu
tions independent of x (i. e .. k=O). We ignore the 
question of physical interpretation; as a mathematical 
problem the situation is well posed. We have seen that, 
in the initial-value context, FOST and a truncated ver
sion of the exact theory (which we called "the approxi-
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mate exact theory") agree in predicting that the eigen
value (>tId is unity; see (41) with k=O. We prove be
low, however, that its correct value, to four figures, 
is 0.9162. 

As before, the problem may be cast in the form of 
(15) and (35). If we set 

T=(Yl)' lJi=(Y2)' >tz =6Ez, (46) 

and seek a solution independent of x, we obtain 

L(v)T=-lJi, L(v)lJi=-(6c+iw)T, ( 47) 

where L (v) is given by (10). This poses an eigenvalue 
problem for 6 when we add the demands 

(48) 

We determine the smallest eigenvalue 6 in the limit 
E- O. Only part of the inner solution [that is, the solu
tion valid for v=O(I)] may be obtained by the expansion 
proposed by Lerche16 as a sum of eigenfunctions 1> n( v) 
of L 1>n= - n1>n' The remainder of the inner solution con
tains terms (e. g., Tz below) which cause the expansion 
to be nonuniform in the limit I v I - "". An outer solution, 
valid when v = 0(E-1), must be constructed, and must be 
matched to the inner solution. This matching is possible 
only for one value of 6. 

The inner solutions are expansions of T and lJi about 
E = 0 in series whose coefficients are functions of v. We 
write 

T = To + ETI + E2(T2 + TzllogE) + ''', 

lJi = ElJi1 + ~(-¥2 + -¥21 IogE) + "', 

where it is easily shown that 

To = (21T)-1/2 exp(- v2/2), Tl = -¥l =ivTo' 

lJi21=-f..LrTo' T 21 =(21T)1/2 f..LrG+if..LiF, 

-¥2 = ~v2To - (6 - l)G + i{3F, 

T2 = - tv2To - ~G + exp( - v2/2) fa" exp(x2/2) 

(49) 

r [(6 - I)G(y) - ii3F(y)] dy dx, (50) 
. 0 

and 

F(v) = ~ exp( - v2/2) 1" exp(x2 /2) dx, 
o (51) 

G( v) = exp(- v2/2) r exp(r /2) t To(Y) dy dx. 
o 0 

Here (3, iJ. r , and iJ. j are real constants whose values can 
be determined, together with 6, by matching with the 
outer solution; we shall denote iJ. r + iiJ.i by iJ.. 

The outer solution may be obtained by writing V=EV 
in (47) and developing expansions of T and lJi about E = 0 
in series whose coefficients are functions of V. The 
leading term for T is found to be, for V> 0, 

(52) 

where Kv(z) is the modified Bessel function, of the 
second kind, of order v and argument z. The solution 
for V<O is Tt(lvl), where To(v) is given by (52) and the 
asterisk denotes the complex conjugate. The choice of 
iJ. for multiplication constant in (52) implies that some 
matching has already been performed. 

From (52) we have, for El'- 0+, 
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T = - ~J..L[log€ + logv + ~i7T + 2y], ( 53) 

where y ~ 0.5772 is Euler's constant. It may be shown 
from (51) that, for v- "", 

fa" F(y)dy = M!ogv + ~(log2 +y)] + O(I/v), 
(54) 

1" G(y) dy = Hlogv - ~(log2 - y)] + O(I/v), 
o 

results that are useful in matching (49) to (52). It is 
now found that this matching requires that 

f..L = (1 - 6) + i{3, 

2iJ.(~1Ti + 2y) = 1 - (1- 6) (log2 - y) + i{3(log2 + y), 

whence the required eigenvalue is 

(55) 

6 = 1- (3y _log2)/[9y2 + 1T2 - (log2)2] ~O. 91617. (56) 

It may be particularly noted that the individual terms 
of Lerche's expansion in terms of 1>n(v) are proportional 
to exp(- ~V2) for v - ± "". Equation (52) shows, however, 
the solution is proportional in modulus to exp(-) (2E I v I» 
as Iv 1- "". It is this fact that creates the nonuniformity 
in the inner expansion, and causes 6 to differ from unity, 
as FOST and the approximate exact theory would have 
predicted. 
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We examine the nonlinear evolution of three coherent positive energy waves interacting resonantly in 
a homogeneous lossy medium. Assuming that only the low-frequency wave is appreciably damped, we 
establish a necessary and sufficient condition for unidirectional energy transfer from the pump to the 
two other waves in terms of a critical damping factor. We then find asymptotic solutions and 
solutions in the weakly and strongly damped regimes. Also, we examine the pump wave depletion 
time as a function of the damping rate and initial pump wave intensity. 

I. INTRODUCTION 

To lowest nonlinear order the amplitude -and phase
modulation of three coherent, resonantly interacting, 
monochromatic, positive energy, 1,2 waves with frequen
cies WI> W 2 > W3 is governed by the equations 3- S 

d!1 + I'IEl = -C1 E 2E 3 exp(illwt), (la) 

(lb) 

d~l + 1'3E: = C3Ei E2 exp(illwt). (lc) 

Here E j is the complex wave -amplitude, I' j is its (real) 
linear damping rate, C j > ° is a coupling coefficient cha
racteristic of the supporting medium, and the respective 
wave mode, and Aw = WI - w2 - w3 « w j is the frequency 
mismatch. 

When all I' j are equal, analytical solutions of system 
(1) are known. 3 In particular, when all I' j = 0, the solu
tions are Jacobian elliptic functions describing the peri
odicity of the nonlinear interaction during which the ini
tial pump energy Eio is transferred back and forth be
tween the pump and the two other waves. The physically 
more realistic situation of unequal damping rates leads 
to the removal of a certain number of invariants of sys
tem (1) which is then no longer integrable by quadra
tures. Indeed, most usually, the lowest frequency wave, 
E

3
, is subject to significant damping whereas the waves 

E1 2 experience mostly nonlinear modification and feel 
th~ presence of damping mainly through coupling with 
the wave E3 • Below we therefore consider the idealized 
case 1-\=1'2=0, I',=V>O. 

Due to its physical prominence the case described 
above has received considerable attention. In particular, 
the "adiabatic" approximation V3E : = C3Ei E2 exp(illwt), 
and the ensuing analytical solutions for E1 2' first de
veloped by Ta~g" in connection with the st~ady state 
spatial analysis of stimulated scattering in solids, have 
been widely employed in various applications of nonlin
ear optics7 ,B and wave interactions in plasmas. 9,10 

In the present paper we first derive a condition for 
unidirectional energy transfer from the pump, E11 to the 
two other waves. A sufficient condition previously de
rived by Wangll under more general conditions appears 
to be too strong for our case. As a matter of fact in our 
particular case we are able to obtain a sufficient and 
necessary condition in terms of a critical damping rate 

616 Journal of Mathematical Physics, Vol. 16, No.3, March 1975 

I'e for which the solutions of (1) cease to oscillate. We 
then find asymptotic solutions of (1) and solutions in the 
weakly and strongly damped regimes. In the weakly 
damped regime approximate solutions are Jacobian el
liptic functions with a damped modulus. In the strongly 
damped regime, 1'» I' e' we show that Tang's6 approxi
mation corresponds to the degenerate solutions of an 
equivalent second order overdamped system. Finally, 
we discuss the pump-wave depletion time as function of 
the damping rate and the initial wave amplitudes. 

11. BASIC CONSIDERATIONS 

Let us render system (1) model-free by normalizing 
to nondimensional quantities 

T=not, p=l'/no, ej=E/RC j , 

with 

(2) 

n~=R2c1C2C3' R2=EioE10/C1 +E:oE20/C2 • (3) 

Here E jO =- E j (t = 0), so that the general invariant of sys
tem (1) has the form 

(4) 

Physically, the quantities e jej are normalized actions. 
Now let the complex amplitudes cj=ujexp(i¢j) with u j 
and ¢ j real. By making use of (2) and (3) system (1) 
becomes 

where the prime denotes differentiation with respect to 
T and ¢=¢2+¢3-¢1 + AWT/no' Equation (6) results 
from adding up the imaginary parts of Eqs, (la, b, c) and 
multiplying by u1 U 2U 3 cos¢. 

We now specify Ilw = ° and u30 = 0, corresponding to 
the resonant excitation of u 3 at the beat frequency of 
waves u1 and u2 0 Then, from (6), it follows that, for 
U1 U ZU 3 not to be identically equal to zero for T> 0, the 
system must have a second invariant, namely 

sin¢ = 0, T> 0. 

Equations (5) and (6) thus reduce finally to 

(7) 

(8a) 

(8b) 

(8c) 
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with initial conditions u30 = 0 and U 10 , u20 satisfying the 
condition uio + u~o = 1 due to the invariant (4), ui + u~ = L 

We note that the resonance condition Aw = 0 is crucial 
for the existence of invariant (7), whereas the inital con
dition u 30 = 0 is optional. 

We now present, for later reference, the solutions of 
(8) when p = O. Using the invariants (4) and ui -u; =uio, 
we obtain12 

u1 =kcd(r,k), u2 =kjdn(r,k), u 3 =kkc sd(r,k), (9) 

where k=u10 is the modulus and k
C
=u20 the complemen

tary modulus of the Jacobian elliptic functions. The in
teraction period is 4K(k), where K is the complete el
liptic integral of the first kind. 

III. ASYMPTOTIC SOLUTIONS 

In this section, we analyze system (8) in phase space. 
This procedure enables us to find a critical damping rate 
of system (8) and leads to asymptotic solutions in a very 
natural way. 

Making use of the invariant (4), we introduce a func
tion </J, such that 

u1 = Sinlj;, u2 =coslj;. (10) 

Then 

(11) 

satisfies the first two equations of (8) identically, where
as Eq. (8c) becomes, for Y=21j!, 

Y" + pY' + sinY = 0, 

with the initial conditions 

Y(O) = 2arcsinu10 , Y'(O) = O. 

(12) 

(13) 

The singular points of Eq. (12) in phase space (Y, y,) 
are S m = (± mIT, 0). For m even, S m is a focal or nodal 
point; for m odd, Sm is a saddle point. The solution ori
ginates on Y' = 0 between 0 and IT and, since p> 0, it 
evolves stably, terminating at the point (0,0). If p> 2, 
this point is a stable node; if p < 2, it is a stable focal 
point.l3 We therefore conclude that for the given bound
ary conditions, if p> 2, Y decreases monotonically to 
zero; and if p < 2, Y is an attenuated oscillation. We notE 
that the mechanical analog of system (12) is the simple 
damped pendulum. The interaction is initially strongly 
nonlinear whenever u20 is not much greater than ulO , but 
eventually, since Y systematically decreases, the sys
tem enters an asymptotic stage described by Y" + pY' 
+ Y = 0, and the asymptotic solutions joining the proper 
initial conditions are simply the following: 

p<2: 

Y = Yoexp( - pr/2)lcos(or /2) + (p/o) sin(oT/2)], 

u3 = (Yolo) exp( - pr/2) sin( or /2), 

where 0 = (4 _ p2)1 /2; 

p=2: 
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Y = Yo(1 + r) exp( - T), 

u3 = (Y oI2)r exp( - r); 
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(14a) 

(14b) 

(15a) 

(15b) 

p>2: 

Y = Yoexp( - pr/2)[cosh(Ar/2) + (p/ A) sinh(Ar/2)], 

(16a) 

u3 = (Yo/A) exp( - pr/2) sinh(Ar/2), (16b) 

where A= (P2 _4)1/2. 

We note that in the strongly overdamped case, p» 2, 
the relaxation of Y and u3 reverses with respect to p: 

u3 '" (Y c/2p)[exp( - r / p) - exp( - rp + r/ p)] 

=O[exp(-r/p)], (17) 

a fact which will be used later in Sec. V. 

The existence of the critical damping rate, pc=2, 
can be understood qualitatively on the physical grounds 
that when the characteristic absorption time 1/ p for the 
wave u3 becomes less than the period of interaction, the 
transfer of action back to the pump is inhibited. 

We stress that, in the weakly nonlinear regime, u20 

»u10 (or equivalently ulO « 1), the above solutions are 
good approximations in the entire range r> O. In con
trast, for strong nonlinearity, u10 > u20 , these solutions 
break down in the nonasymptotic region. Better approxi
mations are therefore needed, especially for the cases 
p« 2 and p» 2 characterized by very slow relaxation 
and long nonasymptotic regions. 

IV. WEAKLY DAMPED REGIME, p ~ 2 

An approximate solution of Eq. (12) in this case can 
be inferred from the known analytical solution 

sin(Y/2) =sin(Y c/2) cdr r, sin(Y c/2)] 

or, according to (10), 

u1 = u10 cd( r, u10), 

of the conservative system 

Y" + sinY = 0, 

Y(O) =2arcsinu10 , Y'(O) = 0 

(18) 

(19) 

(20) 

When the absorption is weak, 1/ p much larger than the 
initial interaction period 4K(u10), the system may be 
thought of as evolving through a succession of cycles 
with systematically decreasing initial amplitudes. We 
now notice that the initial value problem (20) is charac
terized by a Jacobian elliptic solution whose modulus is 
equal to the initial amplitude. The solution is thus con
structed as follows. The asymptotic solution (14) leads 
us to approximate the slow change in amplitude by 
u10 exp(-pT/2). The corresponding damped modulus m 
and its complement me are, therefore, respectively 

m =ulO exp(-pr/2), 

mc=(1_m2)1/2. 

By analogy with (9) we write finally 

(21a) 

(21b) 

u1 =m cd(T, m), u2=m~/dn(r, m), u3 =mm c sd(r,m). 

(22) 

It can be verified that the solutions (22) satisfy Eqs. (8) 
to first order in p, that is, to the same order of accu-
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racy as the first approximation of the Bogoliubov
Mitropolsky-Krylov averaging method, 14 which, how
ever, can be applied to Eq. (12) only in the case of weak 
pump amplitudes, U lO « 1. 

Thus, a weakly damped signal u 3 will catalyse system
atic depletion of the pump ul whose action is gradually 
transferred to the idler U 2 , while the energy !J M I E312 dt 
is irreversibly lost to the medium. The interaction pe
riod 4K(m) decreases in time to its asymptotic value 27T, 
where solutions (22) become ul "'ulO exp(-pT/2) COST, 
u2 '" 1, and u3 = ulO exp( - p7/2) sinT. 

V. OVERDAMPED REGIME, p~2 

When p» 2, the solutions of Eq. (12) are nonoscilla
tory and slowly changing. Thus, Eq. (12) becomes de
generescent, 13 and an approximate solution is readily 
found by solving the associated degenerate first order 
equation 

p Y' + sinY = 0, (23) 

Y(O) = 2arcsinu!O" 

Going back to (10) and (11), we see immediately that 
Eq. (23) is equivalent to 

PU 3 =Ul U Z' (24) 

which is the approximation used by Tang [Eq. (2.20) of 
Ref. 6]. Tang's original procedure, based On writing 
Eq. (8c) in integral form, 

and taking U l U 2 out in front of the integral sign, has two 
disadvantages but one great advantage. It is based on the 
purely physical assertion that U l U 2 changes slowly in 
comparison with exp(pT), and, moreover, does not fur
nish any criterion as to the range of validity of the ap
proximation. Howeve r, it avoids the principal difficulty 
associated with degeneration theory, namely, the dis
continuity of Y' at T = O. 

Now, we will show how both drawbacks of Tang's pro
cedure are easily removed in the overdamped regime. 
The analysis is carried out to second order in 1/ p, re
vealing the structure of the first approximation. 

Let us write Eq. (12) in integral form 

Y'(T) = - exp( - pT) .IaT exp(pT') sinY(T') dT', (26) 

When p » 2, the asymptotic solution (17) indicates that 
Y, and therefore also sinY, relaxes as exp(- T/ p), 
which clearly is much slower than exp(pT), Since the 
maximum of exp(pT') on (0, T) is at T, we can thus de
velop sinY(T') in a Taylor series around T' = T to obtain 
Y'(T) in the form of an ascending series of the small 
parameter 1/ p. The first two terms are 

y, = - (1/ p)[(l - exp( - pT)} sinY + 7"eXp( - pT)(siny)'] 

- (1/ p2)(l - exp( - pT))(sinY)'. (27) 

NOW, we neglect the rapidly falling exponentials so that 
finally, to second order in 1/ p, 

Y' = - (1/ p) sinY - (1/ p2)Y' cos Y (28) 
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This equation is readily integrated, giving a solution in 
implicit form 

(tanY/2)(siny)1 / p2 = (tanY 0/2)(sinYo)1 / p2 exp(- T/ p). 

(29) 

The left-hand side of (29) can be written as 

21/ p2(sin Y/2)1+1 / p2(cos Y /2rl-l / p2, 

showing that the first approximation, 

tanY/2 = (tanY 0/2) exp(- T/ p), 

(30) 

(31) 

equal to the solution of Eq. (23), is sufficient whenever 
the system is reasonably overdamped. 

The first approximation amplitudes u j are now given 
by the transformations (10) and (11) of (31) and the sub
sequent application of (27). We obtain 

ul =//(1 + .f)l /2, 

u2 =1/(1 +.f)1/2, 

u3 =[1-exp(-pT)lt/p(1 + .f), 

where 

(32a) 

(32b) 

(32c) 

(33) 

We see that initially the function u 3 rises sharply to ap
proximately ulou201 p, within a time interval of the order 

en 
Q) 
"0 

~ 
a. 
E 
o 
"0 
Q) 

.'::! 
"0 
E 

~oKp"2 __ _ 
0.958 

O'''~~ o I t 

4K(U10) 

Normalized time, T 

FIG. 1. Analog simulation of system (8) for different damping 
rates, p. The time-scale K(Ul0) is the complete elliptic integral 
of the first kind, equal to a quarter-period of the undamped 
waves. 
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of 1/ P and thereafter, either decreases slowly as 
exp( - T/ p) if u10 < u20 or first passes through a maximum 
at T m=pln(ulO/u20) if U 10 >U20 • This behavior is fully con
firmed by analog simulations of system (8). For illus
tration we present on Fig. 1 the traces of a simulation 
for different damping rates in the strongly nonlinear re
gime, u10 » u20 • 

VI. PUMP DEPLETION TIME 

An important characteristic of the wave interaction 
we have studied is the time interval within which the ir
reversible processes, mentioned at the end of Sec. IV, 
are practically completed. We will call this time inter
val the pump depletion time td , We define td phenomeno
logically as the relaxation time of the damping agent u 3 • 

As is evident from the solutions (22) and (32), T d de
pends not only on p, but also on the initial conditions 
U10 , 11,20' 

(a) When p« min[2, 1/4K(u10)], the averaging tech
nique employed for obtaining the solution (22) is valid for 
all times T> 0, and the relaxation time is Simply Td 

= 1/ p, or according to (2), 

t~a)=1/1I. (34) 

(b) When p» 2, td again is long since now the coupling 
of 11,1 and 11,2' mediated by the right-hand sides of Eqs. 
(8a, b), is weak due to strong suppression of the wave 
11,3' For u10 < u20 ' we have Td =p, or 

(35) 

On the other hand, when ulO > u20 ' we have to account for 
the shift in depletion time due to the build-up of 11,3 to
wards its maximum T m = p In (11,1 01 u20). Thus, now, T d 

=p+Tm, or 

(36) 

The logarithmic correction is of purely nonlinear origin 
and is related to the fact that as 11,10-1 even the un
damped solutions (9) cease to oscillate, since the inter
action period 4K(ulO) tends to a logarithmic singularity, 
K(ulO - 1)-ln(4/u20 )' In physical terms, an increase in 
u10 slows down action transfer, in both undamped and 
damped cases. 

VII. CONCLUDING REMARKS 

Although the results of this paper relate to a temporal 
analysis of a three-wave interaction in the absence of 
group-velocity dispersion, they are equally applicable 
to a steady -state spatial analysis of waves propagating 
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in the same direction. The general case is described by 
the operatorS, 7 

(
d\ a a 
diJi=at+Viax' 

where Vi is the group velocity of wave E i• In the pre
sence of damping, and with steady excitation at the 
boundary, there exists a steady state spatial distribu
tion of amplitudes given by a/at == O. 

Thus, when all the Vi have the same sign, "Eqs. (1) 
retain their form with new coupling constants Di = C/vj> 
and absorption coefficients K i = II / Vi' 

On the other hand, when sgnvl = sgnv3 = - sgnv2' which 
is typical of decay-type processes like Raman and Bril
louin backscattering, 6-8 the above analysis would have 
to be modified to account for the change in Sign in Eq. 
(lb), and, more importantly, because the waves El and 
E2 are now specified at opposite boundaries, which leads 
to an eigenvalue problem. A study of this problem is in 
preparation. 
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A rigorous generalization of Feenberg's perturbation theory to the calculation of thermodynamic 
Green's functions is outlined. This method offers an algorithm for calculating correlation functions 
and propagators for any Hamiltonian, bounded or unbounded, and is exact and tractable in the 
thermodynamic limit. The method is defined and its use is illustrated by several brief examples. 

I. INTRODUCTION 

In the last few years there have been many papersl 
attempting to use the exact information which is con
tained in the moment expansion of various kinds of 
Green's functions to calculate apprOXimations to the 
Green's functions themselves. One of the areas of 
greatest application of the moment expansion has been 
in the problem of the disordered alloy. 2 Other workers 
have extended the use of the moment expansion into 
many different quantum field theoretic models. 3 Of these 
papers, perhaps the most general and careful from a 
mathematical point of view has been the paper by Lonke. 
In this paper I shall attempt to address the same problem 
as did Lonke, the calculation of thermodynamic, or 
ground state averaged Green's functions. However. I 
shall outline a new method of calculating Green's func
tion which has a rigorous foundation, is tractable, has 
a satisfactory thermodynamic limit, and allows the 
direct calculation of the self energy. This method is a 
generalization of a perturbation theory discovered by 
Feenberg4 applied to a generalized Hilbert space used 
by Lonke. While the Feenberg method was originally 
formulated as primarily a perturbative method, recent 
work5 allows the derivation of exact expressions for the 
Green's functions in the thermodynamic limit which can 
be evaluated directly. While the exact expressions for 
the Green's function are not limited to a perturbative 
regime for their validity, determining approximations 
to this exact expressions will of necessity still utilize 
the relative sizes of parameters in any model 
Hamiltonian. 

The paper will be divided into the following sections. 
Section II will include a short discussion of the current 
methods of calculating thermodynamic or ground state 
averaged Green's functions and some of the necessary 
properties of these functions which will be used later. 
Section III will describe the essential properties of the 
Feenberg perturbation theory and detail the abstract 
Hilbert space generalization of this theory which allows 
the direct calculation of the Green's function. Section 
IV will consider some simple applications of this method 
of calculating Green's functions for various quantum 
field theory models. Of special emphasis will be those 
cases where one can rigorously show that the self-ener
gy is represented by only one kind of term. This will be 
contrasted with the result of most diagrammatic ex
pansions which involve a large number of diagrams. 

II. PROPERTIES OF THE GREEN'S FUNCTIONS 
This paper will be specialized to the calculation of 
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two different kinds of Green's functions involving fermion 
operators. 

The general form of the retarded Green's function of 
the sort we will set out to compute is 

(2.1) 

where a = 0, 1 and 7) = (- 1)" and e(l) is a unit step func
tion. Here the brackets will represent some sort of 
average which is defined by a density matrix p such that 

(·")=Tr(p .. ·). (2.2) 

The only requirement on p, besides the usual normaliza
tion condition is that only p's which commute with the 
total Hamiltonian H will be considered. That is, it is 
required that 

[p.Hj=O. (2.3) 

If the parameter QI in (2.1) is zero, then the operators 
A" and B", will be odd numbers of fermion creation and 
or annihilation operators. The prototypical example of 
this form will be the one particle function 

G(k, t) = - i8(t) <let' c~L>. (2.4) 

For QI = 1, the operators A" and B" will be restricted 
to be products of an even number of fermion annihilation 
or creation operators. The function of most interest of 
this type is the density-density correlation function 

x(q, w) = - e(t) ([pit), p~(O)l-> (2.5) 

where 

(2.6) 

In particular. the study of this second kind of function 
will be specialized to operators A" = B" such that the 
equal time commutator vanishes, 

(2.7) 

The current methods of calculation of these Green' s 
functions has followed at least three different ap
proaches: (i) a Zubarev6 decoupling scheme, (ii) a 
diagrammatic expansion7 of the interaction representa
tion using a Wick's theorem or its equivalent. or (iii) 
the analytic continuation of moment expansions as in 
Lonke's8 paper. 

The Zubarev method has been widely used in thermal 
physics application. The essential idea was to utilize 
a factorization of some higher order correlation func
tions in the hierarchy of equations generated by the 
Fourier transformed equation of motion 
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(2.8) 

where the subscript w indicates the Fourier transform 
of the Green's function (2. 1) and w is a complex energy 
in the upper half complex energy plane. By approxi
mating some high order correlation functions by products 
of equal time averages of operators and lower order 
correlation functions, the infinite hierarchy of equations 
is made into a closed linear system which can be solved 
for the desired functions. 

One of the nice features of this method is that the 
derived Green's functions explicitly involve averages of 
certain operators in the ground state or the equilibrium 
state of the system. Thus, the excitation spectrum of 
the particles directly reflects the ground state or 
vacuum state properties of the interacting system. 
Usually these expectation values must be determined by 
the self-consistent solution of a set of equations which 
are usually quite nonlinear. As demonstrated by Zubarev 
and by the large number of applications of this method 
since then this method has been shown to give a good 
description of such correlated mean field theories as 
superconductivity, magnetism, and certain phase transi
tions. 

One of the major criticisms of this method has been 
the ambiguity of the factorization process and the ob
servation9 that the factorization is only valid if fluctua
tions of the factorized variable is negligible. The ap
proximation works well if a mean field theory is a good 
approximation. but higher order approximations have 
generally not yielded consistent and systematic schemes. 
Perhaps. the most telling objection to the Zubarev 
method is the difficulty of controlling the approximations 
and of deciding which factorizations are important. 

The diagrammatic methods in their simplest form 
determine the causal Green' s function by an expansion 
in powers of the interaction Hamiltonian. The expansion 
is built up using properties of the ground state of the 
noninteracting part of the Hamiltonian. The advantage 
of the expansion is that because of the structure of the 
diagrams the whole series can be characterized and 
easily approximated by partial summation of classes of 
diagrams. 

A criticism of the method is that in some cases it can 
be argued that the expansion is at best asymptotic and 
the convergence is not guaranteed. Further. since the 
expansion relies on the ground state properties of the 
noninteracting Hamiltonian it is not possible. at least. 
in the simplest form. to achieve a good description of 
a highly correlated system. 10 

There are many highly sophisticated diagrammatic 
techniques which have been applied with success to dif
ferent problems, some of which have been adapted to 
deal with correlated systems. 

The third approach to the calculation of Green's func
tions to be discussed here is the class of methods using 
the exact moments of the Green's function. For de
finiteness in the following G(k, t) and X(q, t) will be used 
in the discussion. 

The Fourier transform of the one electron Green's 
function can be shownll to have the following formal 
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moment expansion 

where the operator L is defined as 

Lct = let,H]. 

(2.9) 

(2.10) 

If the Hamiltonian H has a bounded spectrum, then 
this expansion is rigorously convergent for I w I larger 
than the largest energy of H. If the Hamiltonian is an 
unbounded operator then the moment expansion must 
be regarded as being only asymptotic and formal. 

The method proposed by Lonke for the calculation of 
G(~)(k, w) is effectively to approximate the moment ex
pansion by a Pad€! approximant or an appropriate gen
eralization thereof and analytically continue the approxi
mation to small I wi. The desirable attribute of this 
method is that it uses rigorously exact information, the 
moments. The major criticism of the method is that it 
does not yield an acceptable approximation for the 
thermodynamic limit. This is the limit in which the size 
of the system goes to infinity in such a way that all in
tensive quantities remain finite. In this limit the spec
trum of the Hamiltonian becomes continuous. Since the 
moment expansion can yield only countably many values 
of the moments it cannot yield a continuous spectrum. 
This is especially true of any approximation using only 
a finite number of moments. 

Since the thermodynamic limit is the only limit which 
is most often of interest for a quantum field theory 
model, some sort of method is needed which has a 
reasonable form in this limit. 

In the sections to follow another method of calculating 
Green's functions which overcomes some of the dif
ficulties listed alone will be discussed. Before pro
ceeding to that discussion, for later reference the 
moment expansion of the density correlation function 
could be written as 

(2.11) 

where L is defined as before. 

III. FEENBERG PERTURBATION THEORY 

In 1948. Feenberg12 was studying the basic problem of 
all perturbation theories. Namely. given a Hamiltonian 
Ho + V and an orthonormal basis set I n) chosen so that 
Ho has only diagonal matrix elements 

(3. 1) 

with respect to this set, and for which V has only off
diagonal matrix elements 

Vn/=(n/V/Z), 

how can one determine the true energies of the full 
Hamiltonian? 

Feenberg observed that for a Hamiltonian matrix H nl 

which is finite-dimensional the energies were the zeroS 
of the polynomial 

(3.2) 
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or equivalently by the poles of the resolvent R(w) 

R(w) c=(c() _H)-I. (3.3) 

Feenberg observed that in any term of (3.2) or of the 
denominator of (3.3) there never was a repeated factor 
of any of the matrix elements Vnl' He then raised the 
question of why in the Brillouin-Wigner perturbation 
th~ory or other methods there was not a similar restric
tion against repeated factors of the Vnl in a particular 
order of perturbation theory. 

Feenberg concluded that the usual methods of per
turbation theory were some sort of large I w I expansion 
of R(w) and he set about creating an iterative scheme 
for calculating the perturbed energies which presented 
the determinantal conditon. His method is equivalent to 
choosing finite-dimensional Hamiltonian matrices H N 

to approximate H and then successively increasing the 
size N of the subspace which was spanned by H N' 

Feshbach13 was the first to point out that for any finite
dimensional Hamiltonian Feenberg's method finally gave 
the exact answer. 

Recently, Masson14 has applied the tools of functional 
analysis to a similar approximation scheme which also 
approximated the Hamiltonian by finite-dimensional sub
spaces. He was able to rigorously establish the con
vergence properties of the theory as the size of the sub
space approached the whole infinite-dimensional Hilbert 
space. One of his results is particularly strong and can 
be directly applied to the Feenberg formulas to be 
discussed below. 

Masson's central theorem for our purposes says that 
for any Hamiltonian H, whether bounded or not, the 
matrix elements of the finite-dimensional resoluents 
R,,(w) converge to the matrix elements of the exact 
resoluent R(w) for any complex value of w which is not 
contained in the spectrum of the Hamiltonian. The proof 
of this theorem can be found in Ref. 14. Note that the 
result is true for matrix elements of the resolvent and 
not for the resolvent operator itself. 

This result guarantees the convergence of the Feen
berg formulas (below) for an extremely wide class of 
Hamiltonians. Note that convergence is guaranteed ir
respective of the size of the coupling parameters of the 
Hamiltonian. 

The Feenberg formulas represent the matrix elements 
of the resolvent operator in a form which can in principle 
written down for the limit as the size of the approxi
mating subspace becomes infinite. 

The diagonal matrix element of the resolvent is 

(11 I (w - H)-I In) = (w - En - 0 (n, w) )-1, 

where the self energy is defined by 

(3.4) 

(w - C , (n)(w - c2(n , )) 
1 1 

622 

+ 0 
11 In 

12i-1111 

13=1112n 
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(3. 5) 

(3.6) 

where the reduced self energy Z; 1 is defined by a formula 
similar to Eq. (3.5), except that in every summation, 
the sum must not contain any terms involving any of the 
states n, ' 1 , ' 2, .•• ,lr_1' as well. For any finite-dimen
sional Hamiltonian the restrictions on the summations 
finally permit no more terms and the expressions trun
cate. For an infinite-dimensional Hamiltonian the sys
tem (3.5) and (3.6) comprise an infinite set of equations. 

At first glance, this approach seems totally intrac
table because of all the summation restrictions. How
ever, as seen below, in the thermodynamic limit these 
formulas yield several simplifications. Further, it will 
be shown that there is an intimate relationship between 
the Feenberg formulas and the thermodynamic Green's 
functions, and that the strong orthonormality condition 
expressed by the summation restrictions yields some 
surprising simplifications for some model Hamiltonians. 

For later reference it is useful to write out the Feen
berg formula for off-diagonal matrix elements of the 
resolvent. 

(nl(w_H)- l ln,)=_l- (Vnn' + 6 Vn1V1n
, 

w-en Un w-e (nn') 
n' 

+ ~ 
lli-rm' (w - C n' (n)) 

1 

12* 71n' 11 (3.7) 

Now it is necessary to demonstrate the relationship 
between the Feenberg formulas and the thermodynamic 
Green's functions we wish to compute. In the next sec
tion we try to demonstrate that the Feenberg formulas 
generate a tractable calculational scheme. 

Note first that the matrix elements of the resolvent 
taken with respect to the orthonormal basis In), 111')'" 
also have a formal moment expansion 

(3.8) 

The essential idea by which we shall establish an 
identification between the Feenberg formulas and the 
thermodynamic Green's functions is through the use of 
the moment expansions. 

The desired identification will be established if a 
generalization of a Hilbert space (called an abstract 
Hilbert space)lS can be found for which the moments of 
the Green's functions are matrix elements of a suitably 
generalized Hamiltonian operator. The two requirements 
for the determination of the generalized Hilbert space 
are the definition of a scalar (inner) product on that 
space and a demonstration that a symmetric (Hermitian) 
generalization of the Hamiltonian operates on the ele
ments of the abstract Hilbert space. If these two re
quirements are satisfied, then with respect to that ab
stract Hilbert space, the thermodynamic Green's func
tions may be calculated using the Feenberg formulas. 

The properties of an abstract Hilbert space are listed 

Samuel P. Bowen 622 



                                                                                                                                    

in Ref. 15. Essentially, any set .tI of abstract elements 
J, g, h, ... is called an abstract Hilbert space if it 
satisfies the following three properties: 

A. The space .tI is a linear space. If j, g, E.fl, then 
(Cij + !3g) E.tI for arbitrary complex numbers Ci and !3. 

B. The space .fl is a metric space whose metric is 
derived from a scalar product. That is, for every j, g 
in.fl, there is a complex number (f, g) which satisfies 
the following properties: 

(i) (f, ag) = a(f, g) for all numbers a, 

(ii) U + g, h) = U, h) + (g, h), 

(iii) (f, g) = (g, j)*, 

(iv) for all j in the space, 

U,f) > 0 and 

U,f) = 0 for the zero element j = O. 

(3.9) 

(3.10) 

(3.11) 

(3,12) 

C. The space .tI is "complete" in the sense that the 
limits of sequences of elements in the space are also in 
the space. 

Property A is essentially trivial for any generalization 
and we will assume that property C is inherited16 from 
the underlying Hilbert space of our problem. The es
sential property for our purposes is the verification of 
property B and the determination of the generalized 
Hamiltonian acting on the abstract space. 

Lonke has already noted that the space whose elements 
jv are products of odd numbers of Fermion annihilation 
and or creation operators forms an abstract Hilbert 
space.tll' The scalar product 17 on the space 

(U1,j2))f=(lf2,j/1.). (3.13) 

Properties (i), (ii), and (iii) are immediate for this 
inner product, and property (iv) can be easily established 
by inserting complete sets of states in a representation 
in which the denSity matrix is diagonal. 

Now by comparing (2.9) with (3.8) we see that if L 
defined by (2. 10) on this new space is Hermitian, the 
identification is complete. That this is true for 

(3.14) 

is easily demonstrated. 

First, it is clearly the case that 

(U, Lg))p = (gHf) - (Hgf) + (fgH) - (ftH.g), (3.15) 

and 

(3.16) 

If H can be commuted through p in the middle terms 
of (3.16), the desired symmetry is established. 

Thus we have established that the one electron Green's 
function has a moment expansion which is the moment 
expansion of the L operator on an abstract Hilbert 
space. This allows the identification that 

(3.17) 

It is worthwhile making several comments about the 
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significance of the identification (3. 17). If an orthonor
mal basis of the abstract Hilbert space can be con
structed of which Ck is the initial element, the Feenberg 
formulas allow an exact formula by which to calculate 
the Green's function. As will be seen in the examples 
below the major part of the task is finding the orthonor
mal basis vectors. This is straightforwardly accom
plished by use of the Schmidt orthogonalization 
procedure. 18 

It is worthwhile emphasizing that these Feenberg 
formulas for the calculation of the Green's functions 
are not perturbative in nature, neither are they ex
pansions in terms of some small parameter. The 
existence of the formulas and their validity has been 
rigorously established by the mathematical properties 
of Hilbert spaces and self-adjoint operators. Masson's 
theorem effectively implies that for any system with a 
Hamiltonian one can construct the set of Green's func
tions diagonal and off diagonal with respect to the set of 
orthonormal elements in the generalized operator 
Hilbert space. By noting that every energy denominator 
in the definition of the self energy (3.5) contains a re
duced self energy of the appropriate type; these ex
pressions have to be regarded as inherently renor
malized. Each intermediate state is "dressed" by the 
appropriate excitations. This development of the Green's 
functions differs from the usual Feynman-Dyson ex
pansion in the sense that there all of the intermediate 
states are specified to be of a particular type (e. g. , 
one electron or one photon propagators), while the 
Feenberg formulas are expanded in terms of inter
mediate states which are composites of dressed and 
interacting groups of elementary excitations. While the 
Feynman picture is physically more appealing and more 
intuitive, the dressing of the intermediate states and 
the inclusion of binding energies or correlation energies 
between the components of the intermediate states is a 
much more realistic picture of the underlying physics. 
This particular feature of the Feenberg formulas could 
have far reaching consequences for quantum field theory. 

The Feenberg formulas share another property of 
standard matrix theory. By choosing the basis of the 
space appropriately it is possible to alter the structure 
of the self energy greatly. Of course in a representation 
for which the Hamiltonian is diagonal the self energy 
vanishes. If the Hamiltonian were tridiagonal the self 
energy would be given by one continued fraction. 

In most physical models with momentum conservation, 
there are only a few matrix elements which connect the 
one particle subspace of the generalized Hilbert space 
with other subspaces. This suggests the self energy 
would not be an infinite series of terms. but could be 
only finitely many terms. each of which has a de
nominator with properties similar to a continued frac
tion. Some of the examples to be studied below will il
lustrate this behavior. Other examples, notably dis
ordered alloy problems in a momentum representation 
require an infinite number of self energy terms. 

In the examples to follow both the basis dependent 
features leading to simplification of the self energy and 
the properties of the Feenberg formulas in the thermo
dynamic limit will be illustrated. 
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This effectively accomplishes the goal of the Zubarev 
program, but in an unambiguous fashion for which cor
rections can be straightforwardly evaluated. 

Before proceeding directly to the examples, let us 
establish the existence of a different abstract Hilbert 
space,po and a different generalized Hamiltonian which 
will allow the similar calculation of X(q, w). 

We begin as before by examining the moment expan
sion 

x(q w) - '" 1 1\[L2N,lp
q

, Pqt». , - 0 (W2)N+l 
N~O 

(3.18) 

It is desired to find an inner product and a generalized 
Hamiltonian so that (3. 18) looks like (3.8). As will be 
verified below, the scalar product 

By inserting complete sets of Simultaneous eigen
states of the Hamiltonian and the density matrix, we find 

((0. a)) = 6 exp(-f;JEn) (E -E )(E lal E '(E I tiE> 
b n.m Z m n 11 m) man 

where Z = Tr(exp( - (3H)). 

Interchanging the summation variables in the second 
sum yields 

Z«( a, a ))b = 6 exp( - (3E n) (Em - En) I (En I a I Em> 12 
n.m 

- "0 exp(- (3Em) (Em - En) I (Em I at I En> 12. 
n,m 

(3.19) Now 

where these are commutators and the generalized 
Hamiltonian is 

L =L2. 

where L has been defined in (2. 10). 

(3.20) 

That (3. 19) is an inner product and L is symmetric 
can be easily verified provided that 

[p.Hi=o. 

For the Fermion density-density correlation function 
the elements a i of this new abstract Hilbert space,p 0 

are products of even numbers of Fermion operators 
with equal numbers of creation and annihilation opera
tors. This boson-like Hilbert space can be applied to 
other types of operators and the appropriate sets of 
operators will be elements of the space. 

In any of the above cases there is no problem with 
properties A and C of our Hilbert space properties. 
Further, properties B(i) and (ii) are trivial. To de
monstrate (iii) we want to show that using the line to 
indicate complex conjugation 

«(a i • u)\=([[aj,H], a;J>=([a p [H, a;ll> 

is the same as 

«(aj,ai))b=([[ai,H), Cl';). 

Writing out (3.21) given 

(3.21) 

(3.22) 

(3.23) 

If H can be commuted through the density matrix in 
the two middle terms this can be rewritten as 

\ l ai' H J a}) - < a ;[ Cl' i' H \> 

which equals (3.21). 

Now we will demonstrate that ((a, a))b is positive. The 
proof will be for a canonical density matrix, though any 
density matrix whose diagonal elements are monotonial
ly decreasing functions of energy will give the same 
result: 
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I (E m I a t I En > 12 = I (En I a I Em> 12. 

Combining terms and rearranging slightly yields 

1 
((a,a))b = Z 6 (Em - En)(1 - exp[ - (3(Em - En))) 

n.m 

(3.24) 

A moment's reflection will verify that (3.24) is a 
sum of terms each of which is positive or zero, so 
(3.19) does have the properties of an inner product. 

It is interesting to note that any operator a which 
commutes with the Hamiltonian and with its adjoint has 
a zero norm 

((a, a))o=O. 

which means that that particular operator is a rep
resentation of the zero element of the abstract Hilbert 
space. This is another way of saying that this operator 
is not part of the Hilbert space. This is even physically 
reasonable, for if an operator is an element of the ab
stract Hilbert space ~b' then it can have a nonvanishing 
correlation function at nonzero times. On the other 
hand. operators which commute with the Hamiltonian 
are constants of the motion and there should be no time
varying correlation functions for their time behavior. 

The proof that L is Hermitian (symmetric) follows 
through in essentially the same way as in the previous 
case, and depends on having P and H commute as be
fore. The demonstration will be left to the reader. 

IV. APPLICATIONS OF AHGF 
In the following several, simple examples will be 

given to illustrate the AHG F method and to demonstrate 
the Simplifications of some results both due to proper
ties of the thermodynamic limit, but also due to the 
orthogonalization restrictions of the Feenberg formulas. 

A. Diagonal Hamiltonians 

Here we study diagonal Hamiltonians both to illustrate 
the simplest aspect of the AHG F method and to confirm 
that the correct Green's functions are determined for 
the free particle case. Accordingly, consider a 
Hamiltonian of the form 
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First consider the cit'S as fermion operators. 
cit is a unit vector of the space .f}j (Ref. 19) 

«Cit, Cit,)) = ({cit" clt
t
}) =0lt' t" 

(4.1) 

Then 

(4.2) 

Note also that c lt
t is also a unit vector of the space 

and that it is orthogonal to ct : 

«C k, Ck~))= ({C k' , c k}) 

=0. 

To determine the one electron Green's function 

(4.3) 

(4.4) 

(4.5) 

it is necessary to evaluate matrix elements of L. To 
do this we first evaluate Lct : 

(4.6) 

There are no off-diagonal matrix elements, so there 
will be no self energy [compare (3.5)], 

«Ct ' LCt))j= Et · 

Thus, 

(4.7) 

«ct ' (w - L )-1Ct ))f = (w - «cit, LCIt))jt1 = (w - EIt)-1, (4. 8) 

which is exactly what it should be. 

Now consider the density-density correlation function 
X(q, w), This can be written as 

(4.9) 

First. we note that 

(4.10) 

Second, we note that c t pCp+q for varying p form an 
orthogonal basis of the space, but are not unit vectors, 

(4. 11) 

This means that to use the Feenberg formulas to 
evaluate X(q, w) we must be sure to first divide the ele
ments of abstract space by their norms. There are 
clearly no off-diagonal matrix elements of L for this 
Hamiltonian, so there will be no self energy E and we 
may use (3.4) to evaluate X. Carefully taking into 
account the norms of the vectors yields 

(4.12) 

and 

( ) _ 6 (Ep +q - Ep)«n~ - (n\l+q)) 
X q, w - P w2 _ (E _ E )2 • 

\l+q P 
(4. 13) 

If the c k are now regarded as boson operators, so 
that (4. 1) might be considered as representing phonons 
in the Harmonic approximation or a gas of noninteracting 
bosons, the single particle excitations could presumably 
be studied through examining 

LJo(k, w) = « CPt, (w2 - L t1 CPIt))., 

where 
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(4.14) 

The relevant matrix elements for this case are 

« CPt, CPt')) = 2Et 0ltl<' 

«CPI<' L CPt)) = Et
2«<Pt, CPt)), 

and the noninteracting Green's function is 

Uo(k, W)=2EtI(W2_E~). 

(4. 15) 

(4.16) 

(4.17) 

(4, 18) 

Finally, consider the case of a spin I in a magnetic 
field h. so that the Hamiltonian is 

H=-h) •. (4.19) 

At this point focus interest on «Ix; Ix)lw' In much the 
same way as before, the requisite matrix elements can 
be evaluated 

{(Ix' 1))= hZW). 

{(I x' {Ix)) = h/((Ix, I)), 

so that 

(4.20) 

(4.21) 

(4.22) 

All of these preceding examples simply show that the 
AHGF method does not give the incorrect answer. For 
these cases, we have a much more sophisticated tool 
than is necessary for the job. In the next example, we 
study one aspect of the Simplification that occurs in the 
Feenberg formulas in the thermodynamic limit. 

B. Single impurity 

Koster and SlaterO first determined the exact solution 
to the dynamics of a gas of noninteracting electrons 
scattering from a static impurity potential at the origin. 
The Hamiltonian for such a model can be written as 

° H =6 EtC lt
t Ct + N 6 Ct t cl<" (4.23) 

It t.~ 

By the usual equation of motion method this Hamil
tonian can be solved for the I-matrix and the self energy 
2:(k, w) for the Green's function «ck ; c/>lw can be evalu
ated exactly21 in the thermodynamic limit. In this case 
of studying a single impurity the thermodynamic limit 
corresponds to keeping only terms which are of order 
(lIN) is N - 00. The Koster-Slater self energy is 

02 Fg(W) 
6(k,w)=N' l-oF

o
{w)' 

where 

1 1 
F(w)=-6--' ° N I< W - Et 

(4.24) 

(4.25) 

With an eye to the resulting Simplification possible in 
the thermodynamic limit, let us examine the Feenberg 
formula for this problem. The matrix elements of the 
Hamiltonian are 

«Ct , Lclt )) = Et + olN, 

«clt,Lct,))=oIN, k*k'. (4.26) 

The Feenberg formula for the self energy 2:(k, w) can 
be written down as 
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64 

t~ 
1 +-N W -E

k1 
k2;tk1 t 

t3;t tll<:l k 

1 
W-E 

<2 

1 

1 

w-EI<:l 

W -Ek
3 

+ ... , 

(4.27) 

where in the writing of (4.27) it has been reocgnized that 
the reduced self energies which should be in each energy 
denominator [compare (3.5)] are each of order (liN). 
To keep only contributions of (liN) it is permissible to 
drop these terms, This is not essential for the observa
tions which follow, but it does serve to simplify the 
resulting expressions. 

Even with the simplification of neglecting the reduced 
self energies, Eq. (4.27) is still quite complicated be
cause of the summation restrictions. It is at this point 
that the essential simplifying feature of the N IV limit 
can be used. 

To see this quite clearly we must first realize that W 

is not real, but is some complex number in the upper 
half plane. To calculate spectral functions in some ap
proximation we will consider the analytic continuation 
of the thermodynamic limit of the self energy up to the 
real axis. This means that at this stage of the calculation 
none of the factors (w - Et ') is zero. Now as the thermo
dynamic limit is taken of (4.27) the spectrum Ek becomes 
continuous and the sums go over into integrals over Et . 

For such integrals the exclusion of countably many 
points does not give any contribution to the integral22 

and so the summation restrictions of this type can be 
dropped in the thermodynamic limit. 

In the thermodynamic limit then the Feenberg formula 
can be written as 

(4.28) 

which series can be easily recognized to give exactly the 
Koster-Slater result. 

This example has not been given to show that the 
Feenberg formula yields an easier solution to this 
exactly soluble problem, it does not do that. The pur
pose was to illustrate a situation in which the thermo
dynamic limit simplifies some aspects of the Feenberg 
formula. The second point of this example is that in 
some cases, usually, when there is no translational in
variance. the self energy is given as a series and some 
sort of approximation for this series must be used in 
any approximation scheme. In some of the situations to 
be considered below it will be found that the Feenberg 
formulas truncate and yield some simplifications. 

C. The Anderson model 

This example will illustrate in an extremely simple 
case how the orthogonalization and the thermodynamic 
limit can yield rigorous information about the structure 
of the self energy of the Green' s functions. 

The Anderson model23 attempts to describe the dy
namics of a d-orbital on a transition metal impurity 
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atom in a metal. The d-electron states on the impurity 
are assumed to interact via a Coulomb interaction, 
while the conduction electrons are assumed to be non
interacting. If ck is a conduction electron annihilation 
operator and Cd the impurity orbital operator, the 
Hamiltonian may be written as 

(4,29) 

Here Eks are the conduction electron energies, E a is 
the single electron orbital energy, U is the Coulomb 
integral between two electrons on the impurity site and 
V kd is the mixing matrix element between the conduction 
electrons and the impurity state. Exact solutions exist 
for this Hamiltonian in several limits. In the atomic 
limit Vtd~ 0, Hubbard24 was the first to show that the 
impurity Green's function could be written as 

1 - (n ,) (na') 
«(Cd; C/) = a + -~-:'----=-:-

w-Ed' w-Ed,-U 
(4.30) 

The other exact limit is called the resonant level model25 

for which U = 0 and the exact solution is 

(4.31) 

where 

y(w)=0 IVtd 
t w -Ek 

(4.32) 

The usual treatment of this model, following Anderson 
is to treat the Coulomb interaction in the Hartree ap
proximation, which means that Ed' in (4.31) is replaced 
by Ed' + U(n.) and the number operator expectation values 
are determined self consistently. 

Hewson, 25 among others has observed that the Hartree 
approximation does not yield the correct atomic limit 
and used a Zubarev decoupling scheme to derive an ap
proximation which did achieve the correct limit. A 
simplifying approximation to the AHGF result below re
covers the Hewson approximation. 

The first step in computing «Cd'; Cd;» with the AHGF 
method is to compute LCd" 

LCd' =Ed,Cd, + Und, Cd' + 0 VkdCk,. (4.33) 
k 

The next step is to use the scalar product and the 
Schmidt procedure to construct an orthonormal basis 
for (4. 33). Noting that 

((ca, ck))=O 

and 

((Cd" nd, Cd')) = (nd,), 

the orthonormal basis is easily constructed: 

LCd' = (Ed' + U(na,) lCd' + uv' (na,)(l - (n4,») q,~7) + 0 VtdC k•· 
k 

Here. the orthonormal vector q, ~2) is defined as 

q,(2)= (nd, -(nd'»)cd' . 
d' v' (n

d
,) (1 - (na.» 
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Note in passing that the Hartree energy arises in this 
treatment through the Schmidt orthogonaUzation proce
dure. Now L has been proven to be a symmetric opera
tor and if L operating on other elements is studied we 
must acquire the symmetric matrix elements. For ex
ample, the orthonormal expansion of Lc t , is 

(4.36) 

for this study we take V kd to be real. 

With the examination of just the two Eqs. (4.34) and 
(4.35) much can be said about the structure of the im
purity self energy and the impurity Green's function. 
First, by referring to the Feenberg formula (3.5) we 
see that there will be two types of terms of the form 

>: lV,nl 2 

tr.. w - e,(n) 

for the choice n = Cd" 1 = Ct " and 1 = q,~~). Furthermore, 
because (4.36) has only the off-diagonal matrix element 
V kd' the summation restrictions on the reduced self 
energy require that for 1 = C t , 

(4.37) 

The interesting question is what about the higher order 
terms in the Feenberg formula (3.5). 

First, we observed that the restrictions require that 
no matrix element or its transpose may appear in the 
same factor. Thus in the third order term we need 
numerators of the form 

where 11 "* l2' Also both II and I2 must have matrix ele
ments with n. In this case, the only II and I2 candidates 
are ct ' and q,~2). However, by looking at (4.36), it is 
obvious that for the natural choice of orthonormal basis 
that there is no matrix element of the form V'I'2' There
fore, in this natural representation, the impurity self 
energy can be rigorously written as 

;,( ) () if'l(n.)(l- (n.» 
L..J dt, w =Y w + W _ «q,~2>, Lq,~2») _ L; '(q,~2>, w) . 

(4.38) 

If one approximated « q, ~2>, Lq,~2») by Ed + U(1 - (nd.» 
and L;' by y(w), then Hewson's approximation would be 
recovered. More careful analysis of Lq, ~2) and other 
matrix elements determine L;' in various approxima
tions. 27 For this paper, the relevant results are that 
(4.38) is rigorously true for all values of U, in parti
cular for large U, the structure of the Feenberg formula 
allows one to infer that Z; I can only depend on U through 
the energy denominators and thus that L; '/U - 0 a U - 00. 

A more detailed analysis of this model will be given 
elsewhere. Now we seek to demonstrate that similar 
simplifications are achieved in other more complicated 
models. To do this we first examine a model which has 
been the testing ground for much of many body theory, 
an interacting electron gas. 

D. The Coulomb gas 

In this example a gas of electrons interacts via a 
two particle potential v( r) whose Fourier transform is 
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v(q). The Hamiltonian for this model is taken to be 

(4.39) 

It shall be assumed that the gas is translationally in
variant, and that v(q) = v( - q). 

As the concern here is to illustrate the AHGF methou, 
we consider only the one electron Green's function 
«ct ; c t 1J) , leaving the discussion of X(q, w) to another 
time. 

The first task is to compute the necessary matrix 
elements: 

(4.40) 

We now want to be sure that the second term in (4.40) 
is orthogonal to the one electron subspace spanned by 
ct'q's' for all q'. This requires the evaluation of 

(c t , o' s ' c;'QS' CI>S.Ct.qs»= Oq,o'(c.,QSc",,) 

(4.41) 

Conservation of momentum shows that there is overlap 
only if q' = 0, and 

(4.42) 

Before applying (4.42) to the Schmidt orthogonalization 
of (4.40), we must realize that elements C~k_q'S are also 
orthonormal elements of the abstract odd-number-of
fermions Hilbert space. Thus we must require that the 
rhs of (4.40) must also be orthogonal to c.:t . q • s . Con
servation of momentum again requires that q' = 0 and 
yields 

(4. 43a) 

The first step in the Schmidt procedure is to construct 
an orthogonal basis for the expansion of Lcts ' Adding 
and substracting the appropriate contributions yields the 
following orthogonal expansion-the vectors are not 
normalized to unity: 

+ 6 v(q)c~qs'c"" Ct • qs · 
qs' 
ptt 

pt -t-q 

(4. 43b) 

To proceed further requires the normalization of the 
three-particle operators in (4.43) and then a study of 
an orthonormal basis of the three-particle subspace, 
The orthogonalization process done to this point simply 
guarantees that the one particle and three particle sub
spaces are orthogonal for fixed k. Before proceeding 
with the somewhat complicated analysis of the three
particle subspace, let us briefly examine the approxi
mation in which we somewhat arbitrarily restrict (4.43) 
to the one-particle subspace. Defining 
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(4.44) 

and 

(4.45) 

we can write 

(4.46) 

The determination of the corresponding equation for 
LC!ks' and the subsequent evaluation of (c_k_q c t +) using 
the standard formulas28 involving the spectral function 
of the Green's function29 

«Cks '( W - L )-1 C!ks'» 

allows one to see that this is just the BCS model of 
superconductivity3o if v(q) is attractive. 

From the point of view of the AHGF method, the BCS 
model of superconductivity is a kind of Hartree-Fock 
approximation in that it restricts the expansion of the 
generalized Hamiltonian to the one-particle subspace. 
This is in agreement, with other field theoretic meth
ods31 applied to this problem, though here the matrix 
elements arise from the Schmidt orthonormalization 
procedure. rather than as initially unknown Hartree 
potentials. Clearly, the AHGF method yields an unam
biguous procedure for calculating self energy corrections 
to the simplest BCS theory. 

For simplicity in the following let us consider only a 
normal metal and not explicitly orthogonalize with 
respect to the c/ subspace. This will make the subse
quent discussion much more transparent. 

One of the properties of a normal system which is 
usually assumed is that there is a sharp Fermi surface. 
That is. that (n ks ) has a sharp jump at the Fermi sur
face if the temperature is zero. The presence of a sharp 
Fermi surface at low temperatures will be assumed in 
the following discussion. 

The first step in analyzing the three-particle states 
in (4.43) is to construct an orthonormal basis of the 
three-particle subspace with a given momentum - k. 
From Eq. (4.43) we saw that one of the naturally oc
curring three-particle vectors was 

(4.47) 

The norm of this vector is easily computed to be 

(4.48) 

When the metal has a sharp Fermi surface so that the 
average of nt.qs is approximately 1 or 0 depending on 
whether k + q is below or above the Fermi surface, then 
the state cI>k, ~ will enter into the calculation only for 
values of k + q on the Fermi surface as T - O. For these 
Fermi surface values of k + q, the state cI>k,qs has an 
overlap with the other class of unit vectors 

~,(2)(p+ q, ps'; k + qs) 

_ C~+g'fl cps' Ck+QS 

~ «no' Qs ' (1 - no s ,» + (nt+Q..{nps' - np+Q.<' »)1/2 
(4.49) 
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If k + q is not near the Fermi surface, then there is 
no overlap and the <j;(2) form an orthonormal basis for 
the rest of the subspace. 

In the region of strong overlap of ,/,/2) and cI> the 
¥" k~Q' 

overlaps are of the form 

(C~C;+qs' cps' ck+QS) 

which is one of the terms which contribute to the struc
ture factor S(q) of the gas 

(4.50) 

The analysis of the orthonormal "states" in this strong
ly mixed region of the subspace is very complicated and 
cannot be adequately examined here. By examining the 
contribution to the self energy from all of the other 
states in the three-particle subspace it is still possible 
to illustrate further properties of the AHGF method. 
The particular property to be illustrated below is that 
the self energy contribution of the form 

2: I V1n l
2 

Itn w-c1(n) 

for state I of the <j;/2) form gives a contribution to the 
one-electron lifetime which is very close to being the 
exact expression for the inverse of the dielectric func
tion of the electron gas. This may be seen by examining 
this approximation to the one-electron Green's function. 

We have, approximately, 

G(k, wtl = W - Eks 

+ ~ v(q) «nk+qs) - u(q) 6 
q ll;t:n 

(4.51) 
where the appropriate reduced self energy has been 
noted symbolically as 'i'. Because of the presence of 
the reduced self energy in the denominator and because 
the no' s represent the exact number operators, it quite 
tempting to regard the expression in brackets as being 
close to the thermal expectation of nk+~ divided by the 
dielectric function. If one approximates the average 
<nt+qs(ll os ' - no' QS '» = (nt+QS) «nos') - (n p +QS '»' then the self 
energy in (4.51) becomes 

-.0 u(q) (nk+qs) r1 - V(q).0 (n ps'1-(np+QS') _, 1 . (4.52) 
Q L ptn W - fk+Q. Ep+Q - tIl - '0 J 

s' 

The quantity in brackets now is a very close approxi
mation to the Nozieres and Pines expression33 for the 
inverse of the dielectric constant. This identification is 
not exact and requires much more analysis than has 
been accomplished at this time. If the expression for 
the self energy effectively truncates similar to the 
Anderson model, then the identification of (4.52) as the 
properly screened Coulomb potential, then the Feenberg 
method would be a formalism which has already summed 
the Brueckner-Gellman bubble graphs 32 of the RPA ap
proximation. If this is not the case, then the contribu
tion in (4.52) is the beginning of a series as arose in the 
Koster-Slater example studied previously. The sim
plest approximation to the sum of such a series whose 
first terms are (1 + O!) is simply (1 - 0!)-1 which gives 
the standard RPA result for the electron lifetime. 34 
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The electron gas is an extremely complicated ex
ample and much more analysis must be done before the 
relative merits of the AHG F method in this problem can 
be evaluated. Unfortunately, the required analysis is 
not complete at this time. Nevertheless, the preceding 
discussion has indicated some aspects of the AHGF 
method for such a many body example. 

E. The fermion-boson coupling 

In this section a simple model Hamiltonian rep
resenting the coupling of the electron to a scalar boson 
field will be examined from the AHGF method. This 
model can be thought of as representing the electron 
phonon interaction or as the simplest field theory model 
of a fermion-boson coupling. Writing aq as the anni
hilation operator of the bosons, the Hamiltonian is 

(4. 53) 

where Aq is some coupling parameter. Again we study 
the one-electron function (c t , (w - L)-lCt )). In the sums 
over the phonon wavevector q, there is no q = 0 value. 

Because the abstract Hilbert space matrix elements 
involve the average of groups of operators over the 
ensemble of states, or over the ground state, the 
specification of the various expectation values deter
mines the properties of the ground state or most prob
able state. Within any calculational scheme using AHGF, 
the self-consistent determination of various expectation 
values is accomplished using the approximate spectral 
functions of the various Green's functions. 

There are other consistency relations which are gen
erated by the Heisenberg equation of motion and the as
sumption that the Hamiltonian commutes with the density 
matrix defining the ensemble average. The simplest of 
these relations will illustrate the class of equations of 
this type. 

Consider the average value of the Heisenberg operator 
aq(t) at time t. Because H commutes with p the average 
value is in fact time independent: 

(4.54) 

One can, however, calculate the time derivative of 
the expectation value and derive a consistency relation 
which must be obeyed by various expectation values: 

ia 
0= at (aq(t) = wq(aq) + AqV (c t ' t ck' _0)' (4.55) 

Note first that this equation only holds for q * 0, since 
the mode of uniform displacement is excluded from the 
Hamiltonian. If momentum conservation is considered, 
one immediately sees that the second term in (4.55) 
must vanish unless (q = 0). This implies for q * 0 that 

w.(aq)=O, 

and similarly for a.t • 

More complicated relations can obviously be derived 
and are used to explicitly demonstrate the symmetry of 
matrix elements of L in the more complicated subspaces 
of the generalized operator Hilbert space, 35 
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The following discussion of the general structure of 
the AHGF approach to this Hamiltonian will be quite 
abbreviated. The only intent of this section is to outline 
some of the differences between this method and the 
usual diagrammatic methods. The usual method expands 
the electron self energy in a series of terms involving 
the exact one-electron propagator and the exact one
phonon propagator. The AHGF method, on the other 
hand, will involve an expansion in terms of intermediate 
states in which an interacting electron and phonon are 
simultaneously present. This difference in the kind of 
intermediate states could have significant consequences 
as regards the convergence properties of the theory per 
se and any approximation scheme generated within the 
theory. Any questions of this sort are beyond the scope 
of this paper and will not be discussed here. Here it will 
be enough to indicate the overall structure of the 
equations. 

To determine the one-electron function we need to 
examine Lct , 

(4.56) 

where 

(4.57) 

and 

(4.58) 

Here we see that there are only two types of operators 
which couple into the one-electron states. It is easy to 
verify that these two elements are orthogonal: 

(4.59) 

If there were no other vectors spanning the one-elec
tron-one-phonon (1,1) subspace, and if there were no 
matrix elements of the sort «q,i~~,Lq,i~~.)), then the self 
energy would truncate in much the same way as for the 
Anderson model. However, a moment's reflection will 
reveal that the (1, 1) subspace is spanned by two other 
independent vectors 

(4.60) 

and 

(4.61) 

While q,(c) and q,(d) are orthogonal, there is a possibly 
nonvanishing overlap between (a) and (c) and between 
(b) and (d), 

(4.62) 

All other overlaps between these four vectors are 
zero. To proceed with the AHGF calculation one needs 
to first construct an orthonormal basis of this (1, 1) sub
space. This can be done in several ways. A natural 
basis is to choose q{,o and IjJk~ q as unit vectors, where 

(4.63) 

(4.64) 

and to construct a IjJc and I/JD using the Schmidt procedure. 
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This choice of basis maintains the condition that only 
the two types of functions ¢A and Ij!B have matrix elements 
with Ct. The expansion of Lcks in this basis is 

(4.65) 

It is important to point out here the feature of this meth
od which the normalization of the vectors entails. The 
sums over q in (4.65) must be restricted to only those 
values of q for which the vectors of the space have a 
positive and nonvanishing square of their norm. The 
primes in (4.65) indicate that the sums are to be so 
restricted. 

The choice of basis leading to (4.65) may not. in 
many cases, be the most convenient for a particular ap
proximation scheme. If one wants to recover supercon
ductivity from this Hamiltonian it would seem more 
convenient to choose a basis of this subspace which 
would bring the pairing amplitude (ci+Qc!t-.l directly into 
the one-electron self energy expressions; such a basis 
can be achieved by using the unit vectors derived from 
<I>~~~ and <I>~~~ as basis vectors and constructing the other 
two using the Schmidt procedure. Such a basis does re
cover BCS-like Green's functions in various crude ap
proximations. 

The exact evaluation of the self energy requires the 
determination of orthonormal expansions for L operating 
on the (1,1) subspace. This can be carried out with the 
help of various self-consistency conditions36 which can 
be derived like (4.55). The orthonormal expansion for 
a fixed q does involve matrix elements among the Ij!A. 
</JB, </Jc, and </JD, so the self energy does not truncate as 
simply as found in the Anderson model. The contribution 
for each q to the one-electron self energy will involve 
the three V terms in the Feenberg formulas as well as 
the I VnZ I2 terms. 

A self-consistent study of this model has as yet been 
carried out in anything only the simplest of approxi
mations. 

It would be of great interest to examine the conver
gence properties of this sort of development, as it has 
much more structure than do the usual field theoretic 
expansions. Such questions are being examined. 

The last example of this paper encompasses the in
teresting question of the breakdown of translational in
variance due to substitutional disorder. It is included to 
illustrate that the averaging procedure which defines the 
abstract Hilbert space scalar product can also include 
configuration averaging. This will allow the calculation 
of configuration averaged Green's functions of various 
sorts in which the ensemble averaged matrix elements 
of the self energy expansion can be exactly determined 
to a given order. 

F. Disordered alloy 

Much interest has recently been generated in calcu
lating configurationally averaged properties of substitu
tional alloys. The AHGF method is well adapted for the 
calculation of configuration averaged Green's functions. 

630 J. Math. Phys., Vol. 16, No.3, March 1975 

As an illustration of the basic application, only enough 
of the problem will be discussed below to show that the 
coherent potential approximation for diagonal disorder 
can be determined. Extensions of this formalism to off
diagonal disorder and approximations beyond the single 
site approximation will be discussed elsewhere. 

The AHGF method could be applied either in the 
Wannier representation or in a momentum representa
tion. The site representation is somewhat better adapted 
to extensions beyond the single site approximation, but 
requires care in truncating the self energy approxi
mations. This occurs partially because the site rep
resentation is not amenable to simplification in the .v IV 
limit. In order to utilize the Simplifications of the N IV 
limit, the following discussion will be in the Bloch 
representation. 

Consider a lattice on which n different types of atoms 
can be randomly distributed on the sites. If the Wannier 
states of the lattice are created by ci and if the matrix 
elements in a Wannier representation are Ea and laB' 

where 0', (3 are indices labeling the atom types, the 
Hamiltonian may be written 

H =:0 E",N1",C 1
t c 1 + :0 I~l; NlaNl'Bct IC I " 

/a 11' 
(4.66) 

a3 

Here the N 1a are projection operators on the lattice sites 
for the O'th specie, and have value l if the O'th type is 
present and 0 otherwise. 

We set out to determine the configuration averaged 
Green's function ((c t , (w - L f1c lt)) where now the trace 
includes a configuration average over the ensemble of 
disordered lattices. 

In the Bloch representation the equation for LC t is 

(4.67) 

where for Simplicity we have restricted the application 
to diagonal disorder only and included the band energy 
Ct· 

The first step of the method is to secure an ortho
normal expansion of (4.67). The first term in (4.67) is 
not orthogonal to Ct' since 

(~ .. ,. ~ f: ,.N,. "p{iq . R,) 'o..)) ~ ' .. , ' .. 0 (,). 

(4.68) 

where (c) = ~ ",t",X" and x" is the concentration of the O'th 
species in the ensemble. The straightforward orthog
onalization yields 

(4.69) 

where the standard assumption has been made that the 
occupation of different sites in independent, and where 

(4.70) 

The calculation of LIj!~:~ and the determination of the 
required orthonormal expansion gives the following 
matrix elements: 
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(4.71) 

With just these matrix elements the first two contri
butions to the one-electron self energy can be deter
mined and they are 

(4.72) 

where 

ei!~(O) = (E) + Ek+ q +.6 '(iJ!k.q, w) (4.73) 

and i:' is the reduced self energy for the state iJ!~~~. With 
just these terms, if the reduced self energy is assumed 
to be the same as the one-electron self energy, the CPA 
approximation can be obtained as the simplest terminated 
continued fraction expansion37 of a series with the first 
two terms as in (4.73). This is effectively the way that 
Onodera and Toyozawa38 first derived the CPA, though 
they used a diagrammatic expansion to generate the 
expansion for the self energy. The details of terminated 
continued fraction interpolation approximations has been 
discussed in Wall and the work of this author37 and will 
not be discussed here. 

The value of the AHGF method in application to the 
disordered alloy problem lies in the fact that for any 
kind of disorder (diagonal or off-diagonal) with or with
out correlation between sites the contributions to the 
self energy could be calculated to almost any degree of 
complexity. In many cases this still leaves one with the 
task of seeking a self-consistent approximation, but the 
AHGF method allows one to calculate the self energy 
directly and thus is a vast improvement over any scheme 
which calculates only the moments of the Green's func
tion. Using the AHGF method, the same effort used in 
calculating moments will determine exact contributions 
to the self energy in a rigorously established expres
sion which is contained in a very large number of 
moments. 

G. Extension to Bose excitations 
The discussion concerning the calculation of density

denSity correlation functions used the symmetry prop
erties of the density operators to derive the inner 
product 

(4.74) 

As such the formulas for calculating functions were 
strictly only valid for certain symmetric operators. A 
more general class of retarded Green's functions and 
correlation functions may be calculated using the 
following formula for the moment expansion of a general 
commutator based Green's function: 

«A;Bt»w=([A(O)~Bt(O)l) + ~ to<LN[[A~!~Bt]). 
(4.75) 
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Clearly, this is just the formal moment expansion of 
the following function: 

(4.76) 
where the inner product to be used is (4.74). 

Equation (4. 76) can be used to compute the properties 
of magnons in or not in a magnetic field, 39 the properties 
of the Bose gas, or a general correlation function. 40 In 
all of these cases the AHGF method allows the study of 
lifetime effects, and a tool for the self-consistent study 
of these systems. 

One application of interest which these formulae allow 
is the determination of the conductivity of a disordered 
alloy. This work will be discussed elsewhere. 41 

V.SUMMARY 

This paper has attempted to clearly delineate the 
rigorous mathematical foundations of a new method of 
studying quantum field theory models of a wide variety. 
The basic properties of the method were demonstrated 
by showing the properties of the Feenberg perturbation 
theory and detailing its generalization to the operator 
Hilbert spaces and its simplification in the thermody
namic limit. 

The possible breadth of its application and some of the 
structure of the theory has been sketched in several 
very brief examples. None of these were in any sense 
complete, but were intended to illustrate a small aspect 
of this method and to indicate where this method might 
yield advantages over other approximation schemes. 

Although it has not been thoroughly demonstrated here, 
this abstract Hilbert space generalization of the Feen
berg perturbation theory is a radical departure from 
the traditional methods of quantum field theory. The 
Feenberg formulas for matrix elements of the resolvent 
of L when viewed as representing the limiting case with 
all states represented is an exact expression for the 
Green's function. It is not an expansion in terms of some 
small parameter, asymptotic or otherwise. As an exact 
expression the AHGF formulas allow the possible study 
of a whole class of strong coupling problems which have 
not been easily studied before. While the method has 
been thoroughly outlined as regards its foundations, the 
particular approximation techniques which will work 
best are only partially known. 

Finally, because the Green's functions involve various 
expectation values of groups of operators averaged over 
the ensemble or ground states, the AHGF method offers 
the possibility of self-consistently determining the 
properties of the ensemble or ground state. 
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We analyze the three-dimensional problem of multiple scattering by a doubly periodic planar array of 
bounded obstacles, and compare the results with those for the grating of parallel cylinders in two 
dimensions and for the periodic line in three. Plane wave integral forms of the scattered field and of 
the multiple scattered amplitude lead directly to the array-mode functional representation in terms of 
the single scattered amplitude and to simple approximations corresponding to array resonances for 
near-grazing evanescent modes. For the grating and for the periodic line, a grazing mode corresponds 
to reinforcement of the excitations an obstacle receives from the waves scattered by its neighbors; for 
the doubly periodic array, to reinforcement of the waves of the lattice lines perpendicular to the 
mode's direction. We also derive spherical wave (and conical-cylindrical wave) representations of the 
solution, and exhibit the results for spherically symmetric scatterers as a special case. 

INTRODUCTION 

In a recent paper1 we considered multiple scattering 
of waves by the infinite line of equally spaced identical 
obstacles, and compared the results with corresponding 
expressions for the infinite grating of parallel cy
linders. 2.3 Now we generalize the development to the 
analogous doubly periodic planar array of bounded ob
stacles. The present expressions are closer in form to 
those for the grating than for the periodic line; similari
ties will be mentioned and differences will be stressed. 

As before, 1.2 there are essentially two classes of 
multiple scattering phenomena that are of particular 
interest. The first (analogous to the Wood's anomalies 
for the grating4 ,5) relates to array resonances associated 
with near-grazing evanescent modes for spacings 
moderate or large compared to wavelength, and the 
second, to multipole coupling for spacings small com
pared to wavelength. We analyze the first in the present 
paper, but reserve discussion of the second (which re
quires detailed consideration of the appropriate lattice 
sums). 

The primary development is based on plane wave 
integral forms of the scattered field and of the multiple 
scattered amplitude. These lead directly to the array
mode functional representation in terms of the single 
scattered amplitude, and to simple approximations for 
the array resonances. For the grating and for the 
periodic line, a grazing mode corresponds to reinforce
ment of the excitation that an obstacle receives from the 
waves scattered by its neighbors, i. e., for such modes 
the waves of all neighbors are in phase at the obstacle. 
For the present case, a grazing mode corresponds to 
reinforcement of the waves of the lattice lines 
perpendicular to the mode's direction. 

We also derive spherical wave and conical-cylindrical 
wave representations. Results for spherically sym
metric scatterers are exhibited as a special case. 

For brevity, we write (1. 9) for Eq. 9 of Ref. 1, etc. 
For concreteness, we use some terminology and 
illustrations from small-amplitude acoustics. 
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1. SOLUTION 

Consider a plane wave with propagation vector 
k o=kko,0<Z'ko ""1, 

CPo = exp(ir· ko), r= r( e; c,o) = Z cose + (x cosc,o + y sinc,o) sine, 

(1) 

incident on a doubly periodic planar distribution of 
identical obstacles. The center of the smallest sphere 
(of radius a) circumscribing a scatterer is located in 
the plane z = 0 at the lattice site 

In the region external to the scatterers, the solution of 
Helmholtz's equation 

(3) 

subject to any of the usual conditions at the scatterers' 
surfaces (e. g., for '¥ as the excess pressure in 
acoustics) is the sum of the excitation CPo and the total 
scattered field U. Initially we write U as a set of waves 
radiating from b" 

U = 6 U(rs ) exp(iko ' b.), rs = r - bs ' 
s 

(4) 
~ ~ 

6= 6 6 =B B, 
S 5 1 =-00 52= _00 52 8 1 

where the multiple scattered field U(r,) of one obstacle 
is determined essentially by its single scattering analog 
U(r,) (the response of one obstacle in isolation) and by 
the geometry of the array. 6 In terms of the present b., 
we specify U by its multiple scattering amplitude G as 
in (6.31), and G by its single scattered analog g as in 
the functional equation G[g] of (6.34). The equality of 
the iterates in (4) required by symmetry follows, e. g., 
if the double series and the row and column series 
simply converge; however, we may use k = (21T /~) + iE 
to obtain absolute convergence, and then let E= lEI -0. 
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We express the direction of incidence ko as 

ko = x~o + Y 1)0 + Z 1:0 , to = (1 - ~~ _1)~)1/2 (5) 

with ~o and 1)0 (or, collectively, ~iO) regarded as positive, 
and rewrite the complex integrals in [ dn(p) of (6.31) 
for U as real integrals over the corresponding direction 
cosines. If z > a, 

U = J exp(ikp. rs) G(p, ko) dn(p)/27T 

= l: d~ J: d1) exp(ikp. r s)G(p,ko)/t27T , 

where p=x~ + Y1) + zt with t= (1- e _1)2)1/2 = I tl or 
i I t I for e + 1)2 < 1 or > 1; if z < - a, we replace p by 
P' = p - 2?;z (its image in the plane z = 0). Substituting 
into (4), we sum over Sj 

exp[iksjbj(~iO - ~j)J= ::. v ~~ 6(~i - ~vi)' 
t i-

and then integrate. Thus, for z> a 

U=2"6 CAvGva' Gvo=G(kv,ko), 
v 

~ ~ 

6= 6 6 
II 11

1
= _00 1'2=_00 

(6) 

(7) 

1>v = exp(ir· k), kv = k( VI' V2) = i: ~(VI) + Y1)(V2) + Z t( VI' v2) 

(8) 

with ~(Vl) = ~vl' 1)(v2) =1)v2 = ~V2 in terms of ~Vi of (7). 
Similarly, for z < - a, 

U = 26 Cv cfJ v ' Gv' o, Gv' 0 = G(kv" ko), 
v 

cfJv' =exp(ir·kv')' kv' =X~(Vl)+Y1)(V2)-Z?;(Vl' v2) (9) 

where cfJ v ' is the image of cfJ v in the plane of the array. 
The forms for U are identical with those for the 
grating, 3 but now they correspond to a double infinite 
set of waves. 

The images cfJvand 1>v' have the identical x, y, I z I de
pendence, i. e., collectively 

(10) 

represents one mode. If e + 1)2 = sin2 e < 1, then 
t = cose = (1 - e _1)2)1/2 = I t I, and 1> corresponds to a 
propagating mode, an outgoing wave along I z I; if 
sin2e> 1, then 1: = i I?; I = i I cose I, and 1> is an evanescent 
mode decaying exponentially along I z I. The situation 
cose- coseR=o, corresponding to a grazing mode 

(11) 

is exceptional, and occurs only for special values of 
k,b j , and ~iO; we consider cose-o separately. Although 
U appears to diverge for a grazing mode, we show sub
sequently that it does not. The phenomena occurring for 
near-grazing evanescent modes (cose=coseN=il~1 ""0) 
are analogous to the Wood anomalies for the grating, 4 

and the parameters (k R , ~Ri) that specify the grazing 
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modes are the analogs of those considered originally 
by Rayleigh5 for grating resonances. 

The general form of U, say Lv Q vocfJv( I z I ) follows 
directly from the geometry of the array. The geometry 
b. requires that U /1>0 have periods b1 in x and b2 in y, 
and that U satisfies the radiation condition for an es
sentially one-dimensional scatterer as I z I - co; this leads 
immediately to the Fourier expansion in terms of 
cfJv( Iz I). The proportionality of Qvo to CvG vo may be in
ferred from elementary considerations: the first Fresnel 
zone corresponding to the propagating mode along kv has 
area 1Trll./COSev , and (b1b2)-1 is the number of scatterers 
in unit area of array. Asymptotically, the wave scat
tered by the central obstacle is U -( exp(ikr)/ikr}G 
=h(kr)G(r,ko)' so that QvocfJ v is proportional to the 
scattering by the obstacles in the first Fresnel zone. 
Equivalently, we may obtain the rigorous result (8) by 
an asymptotic evaluation of the corresponding Fresnel 
approximation, or by using U(r.) - h(kr.) G(l-., ko} in (4) 
and evaluating the sum by the method of stationary 
phase. 

From (6.34), we write the multiple scattered am
plitude initially as 

G(:r, ko) = g(r, ko) + 6' exp(iko ' b.) J exp( - ikp. bs) 
s 

(12) 

where L~ indicates summation over all but the central 
obstac le S 1 = S2 = O. (This representation holds at least 
when the scatterers' projections on z = 0 do not 
overlap. 6) We replace bs by bs - zz in the integral to ob
tain the form 1; [dn J.=Ls [dn]s- [dn]o=L](v) 
-fv](v), where [by (7), etc.]L=L1L is the set of 
discrete modes as in (8), and [by (6) in t~rms of VI' V2 
as continuous variables] f v = f dV I r dV2 is the corre
sponding set of continuous modes. Proceeding formally, 
we equate G with the limit for z = ~ = I ~ I - 0, 

(13) 

where g "V = g(k", k), etc., and k" is in the array set. 
Since the limit must be the same for - z = E - 0, we may 
replace g",vGvo by grtV'G v ' o' or use the mean 

G"o=g"o+S C)g",vGva+g"v' Gv'o)=G[S;g] (14) 

which makes the symmetry of the problem more evident. 
The form (13) is the same as (1. 65) for the periodic 
line, and (14) the same as (2.32) for the grating, but 
the operator 5 is different. 

The factor exp[ikE?;(vlO v2 )], essentially a two-dimen
sional Abelian convergence factor, approaches zero with 
increasing I VII or I v21. As discussed before, 1,2 (12) 
represents the multiple scattered amplitude G of one 
obstacle as its response g(r, Ko) to the incident wave 
cfJ(ko) plus its responses g(r, p) to the continuous sets 
of waves cfJ(p) corresponding to the radiating fields of 
all individual neighbors. In (13), G"o - g"o consists of 
the obstacle's responses g"v to the discrete set of waves 
1>(kv) arising from the array as a whole less the analo
gous continuous set corresponding to self-excitation 
responses. We may construct (13) directly from the 
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superposition principle by writing G as a scatterer's 
response to cP + lj - U with lj[z;J and UU.,] represented 
appropriately in terms of plane waves. 

To facilitate obtaining energy conserving approxi
mations of (14) in the absence of presence of near
grazing modes, we first compare the analogous scat
tering theorems for G and g, and discuss the structure 
of the array modes. 

2. SCATTERING THEOREMS 

The theorems for G follow by specializing (7.6) and 
(7.7), derived for a finite number of equally spaced 
identical planar lattices, 7 to the case of a single lattice 
plane. For direct comparison, we rewrite (8) and (9) 
in terms of transmission (T) and reflection (R) coef
ficients corresponding to an incident wave <Pa = <p(ka ) 

with ka in the array set ri. e., the set determined by 
~iO' bi' and k as in (7)]. For z > a, we have the trans
mitted field 

,y" = <POI + lj(CPo,) =6 CPv Tva' Tva = Ova + 2Cy Gva' 

and for z < - a, the reflected field 

lj( CPa) =~ CPv' R v' a' Rv' a = 2CvGv' a' 

We can now specialize the earlier theorems by 
inspection. 

From (7.7), G satisfies the reciprocity theorem 

G(ka , kB) = G( - kB' - ka ) 

with ka and kB (but, in general, not - ka and - ka) in 

(15) 

(16) 

(17) 

the array set. Equation (17) is the same form as 
~r,k)=~-k, - r) for the isolated scattering amplitude, 
but now restricted to special directions. For lossless 
scatterers, from (7:6), the propagating amplitudes 
satisfy the scattering theorem 

- GBa - G~B = 26 Cv(Gva G~B + Gv' Q Gv• B) 
p 

where Z;p, the sum over the propagating range of v, 
consists of the finite number of terms for which 

(18) 

I sinev I < 1. (We show subsequently that near-graZing 
terms which suggest singularities are zero in the limit 
e - 7T/2 C - 00). For lossy scatterers, the right-hand 
side ha~ th; additional term (k2 /27T)S A (kB, ka ), 

SA(kB, ka)= - J (>JttV.y a-,y a V >Jtt). ndA /i2k; 

here >Jt a = CPa + lj(<pa) is the total field of the array re
sulting from <Pa excita~ion, A is the surface of the 
central obstacle, and n is its outward normal. 

For an isolated scatterer, the analog of (18) is 

- g(kB, k..} - g*(ka' kB) = t r 
dcp r /2 

de sine~r, k,,)g*(r, Ita) 
o 0 

where r' is the image of r in z = O. We rewrite the 
integral as f~ld~ f:. y d1)[ l!27T!: with 1'=(1- e)1/2, and 
introduce VI and v2 of (7) as continuous variables to 
obtain 
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(19) 

1~ J"I_+ dVI {"'2_+ dv2, I I ~ ( t) - J _ n~ = n~ = 27T 1 'I' <'0 , 
P -"1 -"2 

() I 'I '!!i ( ) 1'=(1- t 2 )1/2. (19') n~ I' = n2 = 27T I' 'I' 1)0 , <; 

The form (19) differs from (18) only in that the operator 
is a double integral instead of a double sum. The 
analogous breakdown of the sum is 

~= [n~(Yvl)]= [kb2(Y v1 'f1)0)/27T], YV1 =(1- ~~y/2, 

with v~ as the closest integers from below to n~. 

If the scatterers are lossy, we add (k2 /27T)U
A 

(k
B

, It,,,) 
to the right-hand side of (19), with uA as the form SA in 
terms of the solution cP + u for the isolated scatterer. 
For (3 = 0', the lossy forms of (18) and (19) reduce to 
the corresponding energy theorems, 

- Re G"", = ~ C.( IGv", 12 + I Gv' '" 12) + (k2/47T)SA' (20) 

-Rega",=l C v(lgv,,12+ Igv'" 12) + W/47T)UA (21) 
P 

with SA and U A as the respective absorption cross 
sections. Multiplying through by 47T/k2 converts these 
expressions to the usual statement that the total cross 
section (the energy derived from CPa by interference) is 
the sum of the scattering and absorption cross sections. 

The present forms are identical to those for the 
grating, 2 and Simpler than those for the periodic line! 
(which involved conical instead of plane modes). How
ever, because Z;p now represents a double sum, the 
present system of modes has more structure and higher 
degeneracies arise. 

The sum Z;p represents (vi + vi + 1) (v; + vi + 1) =M 
discrete propagating modes (corresponding to fixed 
k, bi' and ~iO)' and the integral represents the analo
gous continuum of modes. If n~» 1 (i. e., if kb i » 1), 
then M is very large and Z; p approximates f p' On the 
other hand, if n~ < 1, then M = 1 and Z; p reduces to the 
0'- mode (v=O', v' =0"); for this case, (18) yields 
IT aa + R"." I = 1 for the corresponding transmission and 
reflection amplitudes. (See Ref. 7 for discussion of 
both magnitude and phase effects. ) 

3. ARRAY MODES 

For the incident direction ko= r(eo;cpo) as in (1), in 
terms of j)(cp)=xcoscp+ysincp, the modes may be 
specified by e and cp such that 

p(cp) sine = p( CPo) sineo + vi\. = Po sin eo + ~~./D; 
v=xv1/b1 +yv2 /b2 =v/D, v=p(r), 

D = [(v l /b l )2 + (v2/b2)2rI/2 

=d/m. (22) 

Here v is a lattice vector in the space reCiprocal to b, 
and d is the separation of the direct lattice lines per
pendicular to V, i.e., b'V=sIVl+s2v2=(sllll+s21l2)m 
is constant for variable Si and fixed Vi =mll i with m as 
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the common integer factor. Because of the sines, the 
form (p sine - Po sineo)/A = v differs essentially from that 
used in the conventional development for Bragg reflec
tion in a two-dimensional crystal8

; the Bragg relation is 
appropriate only for grazing incidence (eo = 11/2) and 
observation (e = 11/2), which we consider only as limits. 
From (22) we have 

sin2 e = sin2eo + 2(A/D) sineo cos(epo - r) + (A/D)2 

with 0", sineo < 1 and sinO(vl> v2 ) representing a discrete 
infinite set on the line 0 to 00. 

lt is convenient to discuss the propagating modes 
(e < 11/2) in terms of ko = k( ~o' 1]0) and 

(23) 

with 11';= [n~] as in (18'). We label the modes as follows: 
The term (0,0) is the principal mode (the direction of 
incidence and its image in z = 0); the set of terms {O, v2} 

having end pOints ~(O) = [b2 (yo ~1]O)/A] with Yo = (1 _ ~~)1/2 
is the principal v2-set, and {VI' O} is the principal vcset. 
If bl(l 'f ~O)/A < 1, then the principal v2-set is the only 
propagating set; if also b2 (Yo'f1]0)/A< 1, then only the 
principal mode propagates. 

In general, for fixed A and arbitrary assigned param
eters ~jO' bj the values of 0 and ep as in (23) are all 
distinct. However, for special values of ~jO and bj more 
than one mode may correspond to the same e. Thus if 
~0=0, then ~v =VIA/bl =± IvllA/bl and V~=[bl/A]; now 
the principal ~2-set has end points [b2(1 ~1)o)/A] and is 
perpendicular to the x axis, and the other v2 -sets are 
paired as images in the plane x = 0 with each value of 0 

corresponding to two modes (± I VI I, v2 ). This applies not 
only for ~o = 0 but also for ~o equal to any value of the 
set v/-.-/b l associated with ~0=0; we call this !he 5(0)-set. 
If in addition 1]0 = 0 (i. e., normal incidence, ko = z), then 
1]v = ± I v21 A/b2 and ~(vJ = [(b2 /A)(1 - ~A 2 /bi)I/2]. Now 
th~ mode system is imaged in both axial planes (y = 0 as 
well as x = 0), and except for the principal sets ({VI' O} 
perpendicular to 51, and {O, v2} perpendicular to i), each 
value of 0 corresponds to four modes (± I vII, ± I v2 1); for 
the principal sets, except for the principal mode, each 
o corresponds to two modes (± I vII, 0) or (0, ± I v2 1). The 
same modes as for ko = z are also generated by any ko 
of the associated set k(O) =X(VIA/b l ) + Y(V2A/b2) + z /:. 

The above excludes special values of b j for which the 
multiplicities may be higher. Thus for ko = Z, and 
rational values of b2 /bl> the same e may correspond to 
eight modes (± I VI I , ± I v21) and (± I v~ I, ± I v'21) if 
(vIb2/b l )2+ (V2)2=(v\.b2/bY + (V;)2, or to six if one of the 
Vi is zero, or to higher multiplicities if the kb i are 
large enough. For the square cell b i = b2 , the modes are 
also symmetrical to the diagonal planes x = ± y, and each 
value of 0 corresponds to at least four modes. There 
are at least four (± a, 0) and (0, ± a) for the axial planes, 
at least four (±)3, ± f3) for the diagonal planes, and at 
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least eight (±Y,±o) and (±o,±Y) otherwise. If a2=y2+02 
(e. g., 52 = 42 + 32), there are twelve modes including 
four in the axial planes; if 2)32 = 1'2 + 02 (e. g., 2· 52 

= 12 + 72), there are twelve including four in the diagonal 
planes; if 1'2 + 02 = (1',)2 + (0,)2 (e. g., 12 + 82 = 42 + 72), 
there are sixteen modes, etc. (For the grating and 
periodic line, the same A and 0, measured from the 
plane normal to the array, are associated with but one 
or two modes. ) 

The grazing modes occur for the special values of 
the parameters corresponding to 0 = 11/2 in (23). Using 
the definitions ni of (19 '), we write 

~v ='f(-I+6.~), 1]v ='f(-Yv +6.~), 6.i=A(n~Hj)/bj, 
] 2 1 

sin20 - 1 = 6.2 (6.2 - 2Yv) = ~[6.2 - 2(26.1 - 6.~)I/2 J, 
and, in general, reserve R~ to represent integer values 
of n~. Discounting special values of b i , for ni*Ri, we 
obtain one grazing mode if either n; =R; or n; =R;, and 
two if both n~ =R~ [corresponding to 1) in the 1](O)-set]; 
the number of modes for each case is doubled if ~ is in 
the ~(O)-set. The cases of either one or both n; =R: 
correspond to one or two grazing modes along x, which 
also require n; =R; for positive 1)0' For the last re
quirement, from (23) for ~~ = 1, we have sin20 - 1 

I 
= (1) v )2=(1)0 + v2 A/b2 )2, which vanishes for 1)0= - V2 A/b2 

=R2~/b2 corresponding to 1)v = - 6.; = A( - n; + v2)/b2 = 0; 
both 1)0 and 1)R are in the 1] (OJ-set, but Since 1)R =0, it 

2 2 
represents a single mode. 

In general, for arbitrary assigned parameters 
(A, bi> ~iO) the special conditions for sinO = 1 are not 
fulfilled, and there are no grazing modes. For special 
wavelengths AR , we obtain one, two, or four grazing 
modes; for special values of the other parameters, the 
multiplicities are higher for particular AR'S as discussed 
before for 0 < 11/2. 

For normal incidence, from (22) for sinOo = 0, the 
grazing modes satisfy 

kR = peep) =~AR/D, AR =D = dim, 

tan epR=V2b/VIb2=JJ.2b/JJ.]b2 

with d = b/J2/[(JJ. Ib2)2 + (JJ. 2 bIf]I/2, and VI = ± I VII 
= ± m I JJ.II, v2 = ±R2 = mJJ.2. The grazing modes along 

(24) 

the rays ep and 11 + ep propagate perpendicular to the lat
tice lines spaced d apart along ep + 11/2. Thus, essential
ly as for the gratin!f and for the periodic line l with 
scatterer spacing d, the grazing wavelengths satisfy 
mA R = d: A grazing mode corresponds to reinforcement 
of the scattered waves of the lattice lines perpendicular 
to the mode's direction (essentially as discussed before 
in detail for the gratingZ-4,9). 

In order to sequence the occurrence of grazing modes 
for an incident continuous spectrum in terms of de
creasing A, we assume temporarily that the lattice cell 
is almost square, with say b2 ;: b l • The longest wave
length for which grazing modes occur is A = b2 <;orre
sponding to the pair (0, ± 1) propagating along ± y perpen
dicular to the lattice lines parallel to i. The slightly 
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shorter wavelength A = bl corresponds to the pair (± 1, 0) 
propagating along ± x. Next, A = bl b2/( b~ + b;)1/2, the 
distance between parallel diagonals of the rectangles b1 

by b corresponds to four modes (± 1, ± 1); one pair 
2' I ) h propagates back and forth along rp = tan- (b l /b 2 , and t e 

other along 'IT-rp. With decreasing wavelength, we get 
the pair (0, ± 2) with A = b2 /2 along ± y, the pair (± 2,0) 
with A = b l /2 along ± i, then the four modes (± 1, ± 2) with 
A:= blb2/(4b~ + b;)1/2, two back and forth along 
rp=tan- I (2b l /b 2 ), and two along 'IT-rp, etc. 

Dropping the restriction b2 ~ bl , we see that for ir
rational values of b2/b l , there are essentially two sets 
of grazing modes: pairs along x and y and quadruples in 
other directions. However, as discussed for arbitrary 
B, the multiplicity may be higher for rational b2/b l , and 
still higher for the square array. If bl = b2 , then each 
grazing A corresponds to at least four modes; at least 
four for the axial planes (x = ° or y = 0) and for the 
diagonal planes (x = ±Y), and at least eight otherwise. 
There are more for special values of Vi' Thus the axial 
wavelength A:= bl /5 corresponds to twelve modes, 
(± 5,0), (0, ± 5), (± 4, ± 3), (± 3, ± 4); the diagonal wave
length A = bl /5V2 corresponds to twelve, (± 5, ± 5), 
(± 1, ± 7), (± 7, ± 1); and, similarly, A = bl /(65)1/2 corre
sponds to sixteen, (±1,±8), (±8,±1), (±4,±7), (±7,±4). 
The multiplicities increase with increasing b/A. For 
simplicity, in generalizing the development we consider 
only the basic multiplicities that do not require special 
values of b j • 

For the basic cases, for normal incidence, the modes 
parallel to the sides of the lattice cell are two-fold 
degenerate, and the rest are four-fold. The degeneracy 
is removed by changing the angle of incidence from 
normal; this enables us to consider values of ~iO' bp and 
A for which there exist one, two, or four grazing modes. 
Thus, we eliminate essentially half the degeneracies if 
we consider incidence normal to only x. Then 
ko = z cos Bo + Y sinBo, and 

(25) 

The second order equation for A together with the four 
possible values of vl' v2 has at most two real roots. In 
general only pair-degeneracy occurs, but exceptions 
arise because integral values of (b/A) sinBo = IJ. reduce 
(25) to the forms in (24) and restore full degeneracy. 
Discounting the exceptions, the simplest set corresponds 
to the individual modes (0, ± R;) with wavelengths 
A. = b2 (1 'f sinBo)/R~, i. e., to grazing values of the 
prinCipal v2 -set which propagate along y. These are the 
same nondegenerate modes as arise for nonnormal in
cidence on the corresponding grating2,3.9 with cylinders 
parallel to x; they become degenerate9 if (b 2/A) sinBo= IJ.. 
All the remaining sets are pairs imaged in the y axis. 
The simplest set of pairs (±Rl' 0) are the grazing values 
of the principal VI-set, with A = (b/R I ) cosBo propagating 
along rp= Bo and 'IT - Bo corresponding to 
tanqJ=±(bl/RiA)sinBo=±tan80' The remaining paired 
modes form two sets with wavelengths 
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(26) 

traveling in the directions 

kR=XVIA.lbl+Y(sinBo±R~A.lb2)' vI=±lvll. (27) 

The shorter wavelength A. travels at larger angles with 
respect to x, i. e., 1 tanrp(AJ 1 > 1 tanqJ(AJ I. 

For arbitrary ko, the grazing modes are in general 
nondegenerate. [They become as degenerate as (25) if 
bl ~o/A = IJ. and as degenerate as (24) if in addition 
b2710/A = IJ.'.] In general, there are four positive values 
of 

(28) 

with D and v as in (22) in terms of v2 = ± R~ and different 
integers for positive and negative vl" These represent 
four different wavelengths traveling along the corre
sponding nonsymmetrical directions 

kR =x (~o + VIA R/bl) + Y(71o + V2 AR/b2). (29) 

Thus, discounting special values of b i (and ~iO) an as
signed inCident AR generates only one grazing mode. 

We shortly consider the array resonances associated 
with near-grazing modes. 

4. THE MULTIPLE SCATTERING AMPLITUDE 

In order to reduce the functional equation G = G[S;g] 
of (14), we decompose the operator 5 as 

S=S,,+Se' Sp=~ - 1, (30) 

with L:t, as in (18') and II> as in (19'); Se is the corre
sponding operator over the evanescent range. Pro
ceeding essentially as before, 1.2 we introduce the 
modified scattering amplitude 

g~;=g"'B + SI>Cv(g ",vg:~ + gay' g::ll) =g"[SI>;g] (31) 

and suppress the propagating range in (14): 

G ",0 = g~'o + SPv (g::v G vO + g :'v' G v' 0) = G[Se;g "]. (32) 

SymbOlically, in terms of the radiationless amplitude 
g' =g'[- II>;g], we have g" =g"[61>;g']; the operator - (p 
strips g of radiative loss terms, and 61> restores radia
tion along the propagating modes of the array. Thus if 
there are no near-grazing modes, then except for small 
kb j the leading term 

(33) 

should suffice in general. For large kb p if the sum 6 p 

approximates the integral f 1>' then 51>:= 6 I> - f I> of (30) is 
negligible, and (33) reduces to the single scattering 
approximation 

(34) 
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If kb; is large, but say mode N is near grazing, then 
we approximate (13) by 

G"o "'g"o + 2C Ng"N G NO' C N= rr/k
2
b1b2 cosB N' 

(35) 

where E = I E I if N is propagating, and E = i IE I if evanes
cent. Solving for G NO' we obtain 

G MJ '" gNO + 2C NgNN G NO =gNO/(l- 2C NgNN) (36) 

which resolves the question of singularities in (8) and 
(20). The limit of the corresponding term of the 
solution (8) 

rp N2C NG NO '" rp ~C NgNo/(l- 2C NgNN) - - (gRO/gRR)rpR 

(37) 

is a plane wave as in (11) traveling in the plane of the 
array; thus, the solution is finite in the limit. A grazing 
mode does not transport energy from the array; the 
corresponding term of the energy theorem (20), 

(38) 

is zero in the limit C N- 00; similarly for (18). However, 
the near-grazing mode couples the others in (20) and 
may markedly alter the energy distribution among the 
propagating modes. 

For the nongrazing modes, from (35) in terms of (36), 

(39) 

we see that the effects for a propagating mode near 
grazing (E = I E I) are relatively slight. The real part of 
gNN is negative [from (21)], and C N is positive in the 
range E = I E I to 0; consequently, the greatest departure 
of G from g should correspond to the limit 

G"o '" g"o -g"NgNO /gNN- (g"ogRR - g"RgRO)/gRR (40) 

for which case the coupling correction is of the order 
of magnitude of the single scattered value. For the limit, 
the effects may be quite pronounced, e. g., for isotropic 
scatterers (g"o=g) we obtain G"o=O and the array be
comes transparent. 

On the other hand, if N is evanescent (E = i I E I), then 
I G "01 may show a maximum for parameters such that 

1- 2CNilmgNN =1-2IcN I ImgNN=O, 

the corresponding form of (39) is 

and the coupling term may be orders of magnitude 
larger than the single scattered value. For example, 
for scatterers small compared to wavelength, 

(41) 

(42) 

I g I '" i 1m g I = 1 ill is in general very small, and (from 
the scattering theorem) Reg is of order Igl 2 "'P; con
sequently, I G / gl2 may be of order r2» 1. For such 
scatterers, I G I may also have a minimum at a value 
i I E I corresponding to 

1m g"o '" - 21 C NI Re(g"ogNN- g",N gNO) 
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(43) 

then the leading term of the single scattering approxi
mation is cancelled, and (39) is of order J2 as in (1. 59). 

To account for a resonance at moderate instead of 
large values of kb p we replace g in (39) by g", i. e. , 
we use the energy conserving form 

G",o"'g::o + 2CN g~Ngl:o/(l- 2CN g~N)=P"O' (44) 

In terms of P",o we rewrite the complete representation 
(32) as G = G[Se(N);P] where e(N) indicates the exclusion 
of mode N from L;e; the first approximation is G '" p, and 
more complete results may be obtained by iteration. 2 

However, for present purposes we continue the develop
ment in terms of g. 

If there is more than one near-grazing mode, then 
we replace (35) by the corresponding sum 

(45) 

As an illustration, we consider the symmetrical case of 
normal incidence (ko = z) and scatterers that are rota
tionally symmetric around z; then C M = C N' gMo = g NO' 
and consequently GMO := G NO for all near-grazing modes. 
For this special case, 

(46) 

and the development carries through essentially as be
fore, but now in terms of 

(47) 

See Refs. 2,3 for detailed development for two near
grazing modes for the general case (and also for the 
analogous development for arrays of bosses on rigid 
and pressure release planes). 

To emphasize the role of the physical parameters of 
the scatterers we consider spheres of radius a small 
compared to the shortest grazing wavelength. For pres
sure release surfaces, we use the monopole form 
g'" - ika - (ka)2, and the corresponding form of (39), 
G"o "'g/(l - C Ng). If C N- 00, then U - -rpR and the array 
becomes perfectly transparent if there is a grazing 
mode; but because (41) cannot be satisfied for Img= - ka, 
there are no maxima corresponding to (42). On the 
other hand, if the monopoles represent small scatterers 
having the same density as the embedding medium, but 
different relative compressibility C, then g"'ido - Ido 12 
with do= (ka)3(c -1)/3; for this case, (41) may be 
satisfied for C > 1, and the maximum (42) is 
G vO :::; - 1 - ido '" - 1. The energy gain of the propagating 
mode amplitudes 2C v G vO '" - 2C v is compensated by a 
corresponding loss of the central transmitted amplitude 
Too = 1 + 2CoGoo '" 1- 2Co' The energy theorem (20) for 
the present case reduces to - ReG = 1 G 12L; P 2C v '" 2 r p C v 
= 1 because we assumed large spacings such that 
L; p '" f p; for moderate spacings, in terms of 
g" :::; ido - I do 12 L;p 2C v instead of g, we get Gvo '" - (Z:p 2C v)-1. 

For rigid scatterers, we use g(z., l{) '" - iAL(z., l{) 
-NM(r,k), withA=~ka?, L=l-~z..k, and 
M = 1 + t r. K. Thus, at grazing, from (40) to order A, 
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GvO '" - iA(Lvo + 2Lvrl- RO) with LVR =L(kv , k R ) B~ = (-1)'" (2n + 1) J F(r) y~m(i.) dQ(r)/4rr (52) 
= 1 - t sinav cos(rpv - rpR)' etc. Since ImgRR = tA, the 
resonance condition (41), IC NI A = 1, is satisfied for and use (49) to obtain 
near-grazing evanescent modes for which I!; N I = rrkcr / 
3b l b2 ; then, from (42), Gvo"'-iALvo-tLvNLNO' Similar- G(r,ko)=g(r,ko)+:0 B~H~, 
ly the condition for a minimum (43) reduces to 

Ic AI-I= 1!;13bl b2 =1+ 2LvNLNO, 
N rrka3 Lvo 

which can be satisfied for special directions kv for a 
given ko' For more general scatterers with arbitrary 
compressibility «( ) and inverse density (E) parameters, 
we use g '" ao + alK . r with ao = ido - I do 12 the same as for 
the monopole, and a l = idl - I dl 12 /3 in terms of 
d l = - (ka)3(E - 1)/(E + 2); the full structure of the 
anomalies may be obtained for these coefficients. 

5. ALTERNATIVE REPRESENTATION 

We now consider alternative representations for U 
and G in which the singularities corresponding to grazing 
modes are exhibited differently. The representations 
for G are also convenient for various detailed 
applications. 

A. Spherical waves 

We expand G in spherical harmonicslo 

~ " 
G(r,K)=:0 A "my"m(r), 0=:0 :0 

mn rim n =0 m=-n 
(48) 

with A"m(k) as the corresponding multiple scattering co
efficients. Substituting into (6) and using 

in h,,(krs) y"m(rs) = J exp(ikP . rs) y"m(p) dQ(p)/2rr =1, 

(49) 

we obtain the Hankel-Legendre representation of U; then 
from (4) 

U = 0 :0 A;exp(iko' bs)i" h"(krs ) Y:(rs )' (50) 
s "m 

Thus, at least for rs > a, U consists of spherical waves 
outgoing from the scatterers at rs = r - bs' This is the 
form obtained by separating the reduced wave equation 
in spherical coordinates, and could have been taken as 
the starting point of the development for the derivation 
of (8), the basic representation for the array. Com
paring (50) and (8) in terms of (48), we see that for 
z> 0, 

:0 exp(iko ' bs ) i"h"(kr,) y;(r.) = 0 2C v exp(ir . kJY;(kv); 
s v 

S(Sv S2)' V(Vv v2) (51) 

as follows directly from (49) and 

1 = 1: d~ 1: d1) exp(ikp. rs) Y;(p)/!;2rr, z> 0, 

(49') 

by operating with L exp(iko . bs) and (7); for z < 0, we 
replace p and kv by the images p' and k~. 

Similarly, we expand the kernel of (12), 

g(r.p)G(p,ko)=F(p)=:0 B;Y;(p), 
"m 
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H ':= 0' exp(iko . bs ) i"h"(kbs) y~m( - bs )' 
s 

(53) 

The functions H;, the basic lattice sums for the doubly 
periodic planar array, will be discussed subsequently 
in detail. If we represent G by (48) and use the analogous 
expansion of g in terms of the isolated scattering 
coefficients 

g(r,k)=:0a;(k)Y;(r), a~(lt)=0 bnp","y;;q(k), (54) 
nm Po 

we obtain the corresponding system of algebraic 
equations 

Am=am(k) + '\' '\' b mqAt'\' d (-q. t)Ht-q 
n n D L.J rIP r U 1 P 'T ,. 

Pq rt 1 

Here p + r + l is even, l changes by steps of 2 from 

(55) 

IP - rl (or from It - q I if it is the larger) to P + r, and 
the numbers d z arisell

•
12 from the expansion Yp"Y; 

=2: dzy;-q· Equations (50) and (55) comprise the general 
spherical wave representation of the solution for 
arbitrary identical scatterers. 

For spherically symmetric obstacles, 
a;(k)=(-I)ma"y~m(k), and (55) reduces to 

Am=(_l)ma [y-m(k) + 0 A1 :0d (-m.t)H t-m ] (56) 
n n n rt r lIn 'r I 

with, e. g., an= - (2n+ l)j,,(ka)/h,,(ka) for cp+u=O at 
rs = a, etc. Equation (56) may also be constructed by 
using the spherical function expansion of cp and U, and 
applying boundary conditions at the central sphere (after 
expanding hY in 2:' by the addition theoremll

). We apply 
(56) subsequently. 

In general, we take z as the polar axis of the spherical 
harmonic Y and work withlO 

Y;(!;;~, 1) = P;( cosa) exp(imrp) =p~(!;)( ~ + i1)m /( ~2 + 1nm/2, 

y~m=p~mexp(-imrp), p~m=p;(-l)m(n_m)!/(n+m)! 

(57) 

Thus, the special values in (53) correspond to 

pm(o) = (n + m)! cos[ t(n - m)rr 1 
" 2"( tn - tm) !( tn + tm) ! 

(58) 

The fact that n - m must be even markedly simplifies 
the reduction of the corresponding systems of Eqs. (55) 
and (56), and of the lattice sums Hr;:. In particular, for 
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normal incidence, ko=z (or for any kv in the mode set 
containing i), only the functions H~; are involved; for 
the square array, only the sums Hi; appear. 

The plane wave representation (8) for U suggested 
difficulties for grazing modes (I; - 0, C - 00), but we 
showed, from the analogous representation (13) for G 
that the solution is finite in the limit. The same problem 
is implicit in U of (50), and the essentials of the inter
relation of the spherical and plane wave representations 
are given by (51); the right side is singular if ?; - 0, so 
Ls must then diverge. To investigate this we need con
sider only large values of Sj' To facilitate discussion, 
we first substantiate the remark after (11) that the 
rigorous result (8) also follows from an asymptotic 
evaluation of (4). 

From (4) in terms of the asymptotic form 
U(rs) -h(krs) G(i's' Ko) for krs -"" [obtained, e. g., from 
the saddle point approximation of (6)], or equivalently. 
from (50) in terms of inhn(x) - hex) = exp(ix)/ix, we have 

U - '£ exp(zko' bs ) h(krs ) G(rs ' ko) ='£ exp(ikf.) F s' 
s 

(59) 

We relabled the original r as ro in order to replace slbl 
and S2b2 by x and y in the following; we also use 
rs = 1 ro - x - y I. Applying the method of stationary phase, 
we obtain 

'£ exp[ik!(v)]F(v)27Ti 
U - v kb 1 b2Uxxiyy - (f xy )2)1 12 ' 

f=~v x+1)v y+ Iro-x-yl 
I 2 

(60) 

where F and f (and its second derivatives f"x, etc.) are 
the values at the stationary points specified by 
f =~ + (x-xo)/r =0, f =1) +(y-yo)/rs=O. We have • x III S Y V2 

[ 11/2 = zo/rs2 = i:/rs' 

f= Hxo - ~rs) +1)(Yo-1)rs) + r s =xo~ +Yo71 + IZol t; 

thus, (59) and (60) reproduce (8), and all forms exist 
provided ?;=t(vl , v2 )*0. 

To investigate the role of the terms 1 S i 1 - 00 in the 
behavior near a singularity s '" 0. we rewrite the 
rigorous s-sum forms of U as 

(61 ) 

UA = .0 *exp(iko . bs ) h(kb,) [G( - b., ko) exp( - ikro' bs ) 1, 

where UT is the original s-sum (4) or (50) truncated at 
some finite large values 1 s1 1 corresponding to the 
smallest values in L * such that bs »ro' In U A' we have 
r '" - b the direction from the scatterer to the origin. 
Stmila:iy , from the saddle point approximation of the 
integral in (12), or from (53) in terms of inh" -h, we 
have for large kb j' 
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G(r,k) 

- g(r, k) + '£' exp(iko . bs) h(kbs ) [g(r, - bs)G( - bs , ko)J. (62) 

For the present purpose, were kb j small or moderate, 
we would write G = G T + GA. with GT as the form (53) 
with the s-sum truncated, etc. For either case [as well 
as for the left side of (51), or for the asymptotic form 
of H of (53)J, the behavior for large Sj is determined by 
the form 

6* = 6* exp(iko' bs ) h(kbs ) J (- 1>5) 

=6 *exp(ikf)J(- b5 )/ikb" 

!=ko . b s + bs = ~oS lb l + 1]oS2b2 + (s~ bi + s~b;)li2 (63) 

where z: * is the remainder of 'Zs after roughly 41 si s; 1 
terms. 

We cannot evaluate (63) as we did (59): Because the 
stationary points of the present f= ~x + 1].\' + P with 
P=(X2 +V2)1/2 are those of (60) for ro=O (Le .. ~v =-x/p 

I 
and 1] = - v /p, such that e + 1]2 = 1 corresponds to a 

"2 • 

grazing mode R), we would have to replace L" of (60) by 
the set of singular terms '[,R' Instead we approximate 
'i '" by the set of analogous integrals 2: N r * corresponding 
to the near-grazing modes .V. We have kf=kv' b5 

+ kl!, - 271(SIVI + "2V2); dropping the redundant multiples 
of 27T, and introducing polar coordinates Slbl =pcosP. 

~Vl = sine coscp, etc .. we write 

J*=(blb2iktIC dP)02U dp]\(3\ 

x exp{ il?p[sine cos«(3 - cp) + l\~ (64) 

with e = e(Nl • N 2 ) near 7T /2. The phase of the (3-integral 
is stationary at (3 = .p. 7T + cp; consequently, since 
kp sine » 1, 

J* ()1/2 
- 'k2 b

1 
b ~7T e tn cp P+ + 7 [7T + cp 1Jj. 

1 I 2 Sin 

J =exp('fi7T/4)k r expfikp(1±sine)](kPt l
/

2 dp 
± ',0* 

= I exp('f i7T /4)/( 1 ± sine)l /2\1., 

1. = r exp(ix) x·1 /2 dx. X. = kp*( 1 ± sine). (65) 
.. x± 

where 1 is Fresnel's integral. The step from (64) to (65) 
is the analog of summing the spherical waves of the 
scatterers on the pair of lattice lines of (63) perpendicu
lar to the rays cp, 7T + cp and displaced a distance p from 
the origin. The result (65) shows that the spherical 
sources on each line add up to a cylindrical source at 
p with axis perpendicular to cp, 7T + cp; the remaining 
integration is thus the analog of summing the cylindrical 
waves of the particular set of parallel lattice lines. 

Except for sine very near unity. we have 

. exp[ikp*( 1 ± sine) 1 
1 -z . 

± [kp*(1±sine)jl/2 
( 66) 

i. e., cylindrical waves which vanish as p* - 00. Thus, 
in general, L N J* - ° as p* = [(S;"hl)2 + (s;li2)211 /2 - 00. 
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On the other hand, for sine:::: 1, we use r;* = r; - r~* to 
obtain 

I_=IJoo) -IJp*), IJoo)= 7TI
/
2 exp(i7T/4), 

ljp*)::::2[kp*(I- sine)J1/2, 

and similarly (corresponding to (3 = 7T + cp, "6= - kN), 

(67) 

:::: 27T 7[7T+ cp] _ ~ 
k2 b b e -2C NJ(k N ), (68) 

I 2 cos 

where ro* is finite for sine - 1. Thus, for near-grazing 
modes, 

where 61 is finite for t N - 0, but C N is singular as 
l/tw The near-grazing value 2C NJ(kN ) corresponds to 
either 2C NgOiN G NO of (35) or ¢N2CNGNO of (37). 

The same considerations apply for the lattice sums 
H of (53). However, just as for U of (8) and G of (13), 
the behavior for e - 7T /2 follows more directly from the 
corresponding array mode representation of H in terms 
of S of (13). Specializing the procedure for G, we 
construct 

H; = lim L0 exp(iko • b,) inltn(JlYs)y;(r.) - inhn(hro)Y;(ro)], 
E"'O s 

(69) 

where inhnY; is representable as the integral form (6) 
with G replaced by y;(p). Proceeding as before for (13), 
we obtain 

Thus, if there are near-grazing modes N, the dominant 
terms are 26NC NY;(l{N)' which are singular as l/tN 
for t N - O. 

B. Conical waves 

To delineate the relation of the results for the lattice 
to those of the periodic line1 (and to develop forms for 
the reduction of the lattice sums H; to more rapidly 
convergent forms) we work with spherical harmonics 
with polar axis along x, instead of along z as in (57), 
i. e., with 

Y~(~; t, 1)) = P~(sine coscp) exp(ill/J) 

= P~( U(t + i1))1 /(t2 + 1)2)1 12. 

(71) 

In applying such forms as (49) and (51), the same choice 
of polar axis for Y is required on both sides of the equal 
sign. However. we may also work with mixed forms by 
using, e. g.. Y;(t;~, 1)) = 6 7=_nD~" Y;(~; t, 1)), where D 
i_s a Wigner coefficient12 for a 90 degree rotation around 
y. 

If we perform only one of the Si sums in (50) (or sum 
over one of any equivalent pair of indices) we represent 

641 J. Math. Phys., Vol. 16, No.3, March 1975 

U by sets of conical cylindrical waves corresponding to 
the field of the periodic lines we have selected. For 
convenience, we replace the earlier SIb!, S2b2 by sb, td, 
and VI' V2 by v, iJ.. We sum over s = SI by exploiting our 
earlier developmene for the periodic line along x. 

We rewrite (1.19) as 

~ 

E exp(iksb~o) inhn(krs t) P~( ~s) s=_oo 

(72) 

with Yv=(I- ~~)1/2= 1Yv l or ilYvl for the corresponding 
direction sine along X, and Pt = [Z2 + (y - td)2]1/2 for the 
distance normal to the line specified by y = td and z = O. 
Here HI(x) =H;ll(x), and Hili I x I) = - i(i-/ /27T)K/( I x I). 
Introducing tanl/Jt= (y - td)/z =1)/~, such that >jJ and pare 
cylindrical coordinates in the x = 0 plane, we multiply 
(72) through by exp(ill/J t) and replace P~(U exp(ill/J) by 
Y~(~v;t,1)t). Thus a periodic line of spherical sources 
is equivalent to a conical cylindrical set of waves as 
discussed earlier in detail. 1 We obtain (72) most direct
ly by noting that I of (49) in terms of Y~(~;t, 1)) also 
equals 

1= i' exp(ill/J) J: exp[ik(x - sb)] P~WHI(kpy) dU2, 

(73) 

which together with (49) corresponds to the complete 
(1. 20); multiplying (73) and the first form of the ap
propriate (49) by 2:. exp(iskb~o) we use (7) and get (72). 
Thus, we may represent (4), (8), or (50) by 

7T 
U = kb 2:: E E exp(ikld1)o) An,/exp(ikxU ilH I (kPtY) 

t v nm 

X P~(U exp(iZl/Jt), 

i. e., the fi~ld of a set of periodic lines with axes 
parallel to x spaced d apart along y. 

(74) 

In (74) we replaced m by l and shifted the index to a 
subscript on A to emphasize that the values of the co
efficients A(ko) depend on the particular decomposition 
(57) or (71) for y, The corresponding systems of 
algebraic equations (55) and (56) now depend on different 
lattice sums, say H n,l representing the functions in (53) 
expressed in terms of 

Y~ (- bsl = Y~( - ~st;O, -1)s t) = P~( - sb/ Bs t) exp[ - ill 7T /2) sgnt], 

(75) 

This representation is not as symmetrical as (58), and 
the corresponding system of algebraic equations (55) 
and (56) for AnI are about twice as complicated; i. e., the 
parity requirement that n - In of (58) is even eliminates 
half the cross terms. On the other hand, the functions 
H n,l in terms of (75) are easier to reduce to more con
vergent forms by exploiting our earlier results for the 
periodic line1 and the grating. 2 In the sequel we there
fore consider H n.l in detail, and then use H; 
= 6 D;'l H n,l to construct the sums required for the 
more symmetrical system of equations A;. 
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Comparison of (74) and (8) rewritten as 
U = L: vu 2C vu ct>vu L: nl A n•1 y~( ~v; t, 11,,} shows that for z > 0, 

:0 exp(iktd11o)iZHI(kptYv}Y~(~v; t, 11 t} 
t 

=26 exp[ikY11" +ikzt(lI, /.L}J yl(~ . t 11 )C' =J 
IJ. n 11' , ,." liP. , 

C~" = [kdt(lI, /.L}J-l; (76) 

for z < 0, we replace t by - t. For Yv* 0, this follows 
directly from the earlier result for the grating, e. g. , 
as in (13. 9), 

~ 

6 exp(ikld11o)iZH l(kPtY) exp(ill/Jt} 
t= _00 

~ 

=2 6 exp(ikY11" +ikzt} exp[ill/J(lI, /.L}Jc~" ; (77) 
IJ,=-OO 

multiplying through by P;:'(U gives J of (76). (For z < 0, 
we use - z and 7T - I/J. ) On the other hand, if Yv - ° (L e. , 
~f ~ - 1 corresponding to a grazing conical mode along 
x), then as shown in detail for (1. 31) only the element 
l = ° of the set HI (kpy}P ~(~) becomes singular. For 
Yv=YN::::O. we have t 2::::_112, and we may use the 1=0 
case of (76) in the form 

J:::: 6 exp(iktd11 }H (kp Y }:::: 2 ~ exp(ikY11" - kz 111" I) 
tOO t N ;-' kdi 111 J.L I ' 

(78) 

If also 11" =11" ::::0, then we are dealing with a grazing 
plane wave mode. 

To analog the development (61) of the spherical rep
resentation, except for Yv:::: 0, we use the asymptotic 
form 

(79) 

and reduce (74) to 

U -(7T/kb}6 exp(ikx~v)V' 
v 

v = 6 exp(iktd11o}H(kPtYv}G(r vt' ko)' 
t 

(80) 

where rvt=x~v+Y11t+zt(II;l) with t=(Y~_11~)1/2= It I or 
i I t I. Corresponding to (59) we write 

v =6 exp(ikjt)F p 
t 

(81) 

where we replaced z, Y by zO' Yo' Using the stationary 
phase procedure for Y = I y I , 
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where F(/.L), !(/.L) andj"=j" are the values at the 
stationary points specified by j9=11" + (y - Yo)yjp =0. 
We obtainj"=t2/yvP' and consequently, g(/.L}=G2/ 
d(k2t2}1/2=2C~" Gv,,' For the phase, the stationary con
dition gives Y=Yo-P11,,/Yv and p=zoYlt; thusj=11Yo 
+Pt2/Y=11Y o+ tzo' The results are as in (8), even if 
Y = i I y I, or in the exceptional case y v:::: ° for which we 
use (78). 

To analog (61) ff., if Yvl 0, we use 
iIH1(kPtYv)-H(kltldy) to obtain 

6* = (7T /kb) 66* exp(iktd11o) H(k I tidy») (- bvt), 
v t 

(83) 

where J is the bracketed function of either (61) or (62), 
and t ranges from - 00 to - I t* I, and from t* to 00. For 
y=ilyl, we haveHcx:exp(-kdltYvl)-exp(-111I127Td/b), 
and the double sum converges rapidly. For real y, the 
phase is kj=kd(l:1]o + Itlyv), and the stationary values 
11",=±Yv [obtained by setting ro=O in (82)J correspond to 
grazing modes. Proceeding as before for (63), we obtain 
the analog of (64) and (65), 

f* - k2:d (7T~J1/2 exp(-i7T/4){L.+LJ, 

L - }(x~v'fyYv) I 
• - (y v ±11" )1/2 • 

(84) 

with I as in (65) with lower limit x.=kY*(Yv±11,,). In 
distinction to (65), either term or both terms of (84) may 
be near-grazing; in (65), only the 1_ term may become 
singular, but rp is a parameter and (84) corresponds 
essentially to the Ijrp) term of (65) plus an analogous 
term in Ij7T + rp). If only 11JJ.' but not - 11')" I is near YV' 
then in terms of 1_ of (67), 

f"' -J(k NM ) k2~d [YN(Y:-1')M) f/2 ::::2J(kNM )C NM 

(85) 

as follows from 2/y(Y-1')::::4/(y2 _1')2)=4/t2. The result 
2] C is the same as that obtained from the other rep
resentations. [Note that the periodic lines along x are 
not the resonant lattice lines unless y N= 1, i. e., unless 
~N =0 corresponding to one of the ~(O}-set. J 

On the other hand, ifYN::::1')M::::O(Le., if~N::::1, asre
quired for grazing along the axes of the periodic lines), 
then we cannot use the asymptotic form of HI' We 
require the analog of (78) for 

[](:~:)7T/kbJ6* Ho(kltldy)exp(ikld1')o) (86) 
t 

We evaluated the corresponding L: I series before13 for 
all kd; from (13.42), for YN::::O and1')M::::O, 

6 ' Ho(k I tidy N) exp(iktd1')o) '" 2/kdYN cosl/J NM = 2/kdt NM 

where we used Yv cosl/Jv" = tv,," = Re(t2 + 1')2)1 /2 exp(il/J). 
Thus, all for cases we obtain 2](K NM )CNM as before. 
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We consider the plane wave mode solution for the three-dimensional problem of mUltiple scattering 
by a doubly periodic planar array of bounded obstacles. The mode amplitudes are expressed in terms 
of the multiple scattering coefficients for one obstacle of the array, and these are specified 
algebraically by the single scattered coefficients and the spherical wave lattice sums that characterize 
the array. We derive rapidly convergent forms of the lattice sums by exploiting our earlier results for 
the periodic line of bounded obstacles and for the grating of parallel cylinders. Then we develop 
closed form approximations for the multiple scattering coefficients for small scatterers which exhibit 
the effects of the array in coupling the multipole coefficients of the isolated scatterers. 

INTRODUCTION 

In a previous paperl we considered multiple scattering 
of waves by a doubly periodic planar array of arbi
trary obstacles, and derived several representations of 
the solution in terms of the multiple scattering ampli
tude G and coefficients A~ for one of the obstacles. We 
emphasized the plane wave array-mode form, and ap
plied the corresponding functional equation for G in 
terms of its single scattered value to analyze array 
resonances for near-grazing modes. 

Now we consider the system of algebraic equations 
for the A~ in terms of the single scattered coefficients 
and in terms of the spherical wave lattice sums H~ that 
specify the array 0 We derive rapidly converging repre
sentations for H by exploiting our earlier results for the 
periodic line2 of bounded obstacles and for the grating3 

of parallel cylinders. Then we develop closed form ap
proximations for the multiple scattering coefficients for 
small scatterers to exhibit coupling of the multipole 
coefficients of the isolated obstacles. 

The representations we derive for H apply for an 
arbitrary rectangular cell d by b, and the size of dlb 
= p '" 1 determines rapidity of convergence of the double 
Schlomilch series of modified Hankel functions that 
arise. From symmetry, we express the series for p 
< 1 in terms of those for p> 1, so that the worst case 
corresponds to the square cell p = 1. Discounting the 
resonances considered earlier, 1 convergence is rapid 
even for p = 1, for which case about half the lattice 
sums vanish by symmetry. The development leads to 
various relations involving the Riemann zeta function, 
Wigner rotation coefficients, and Bessel functions. 

The multipole coupling effects for spacings very 
small compared to wavelength depend markedly on the 
boundary conditions of the scatterers. Since the results 
require detailed physical considerations, we reserve 
the low frequency region for a sequel 0 

For brevity, we use the notation (1: 9) to indicate Eq. 
(9) of Ref. 1, etc. 

1. SOLUTION 

We showed before l that, for a plane wave 

cp=exp(z"k' r), r=i~+Y7)+2t=r(~,7), 
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t= (1- ~2 _7)2)1/2 =cos8, 7)/ ~=tancp, 

k=r(~o,7)o)=koo, 

(1 ) 

incident on a rectangular lattice sbx + t aY (s, t = 0, ± 1, 
± 2, 0 •• ) of identical bounded obstacles, the transmitted 
scattered field equalled 

v, /l=0, ±1, ±2,''', 

ky" = X~y + Y7)" + zty ", ~y = ~o + 27rv Ikb, 

7),,=l1o+27r/llkd, ty,,=(1-~~_7)~)1/2. 

(2) 

(3) 

Here t= I tl or il tl for sin28y" = ~~ + 7)~ < 1 or> 1 
(propagating or evanescent modes), and G is the multi
ple scattered amplitude of one obstacle. For the re
flected field, we replace 1{y" by its image k' = k - Uz. 
We expressed G functionally in terms of the single 
scattered value g in (1: 13), and then applied this array
mode form to analyze resonances corresponding to 
near-grazing modes ty" = t NM ,., 0; although U is not de
fined for ty" =0, we obtained the finite limit for tNM-O. 

Now, we work with the spherical harmonic expansion 

with the multiple scattered coefficients A~ expressed 
algebraically in terms of the corresponding single 
scattered coefficients and the basic lattice sums H of 
the array. For general obstacles specified by the iso
lated scattering amplitude 

(4) 

g(r, k) = 6 a~(k)Y,;;(r), a,;;(k) =6 b,;;zY;q(k) , (5) 
nm pQ 

we have from (1 :55) 

Am = am(k) + 66 bmqA T6 d (- q. T)HT-q 
n n pq crT nP cr I I p' a I , 

(6) 

where p + a + l is even, l changes by steps of 2 from 
Ip-al (or from IT-ql ifitisthelarger)top+a, and 
the numbers4 •5d

l 
arise from the expansion y;qy; 

= L: d
l 
y;"-q. For spht.::rically symmetric obstacles 

a~(1{) = (-1)many~m(k), and (6) reduces to 

Am=(_1)ma fy -m(k)+6N6d {-m. T\W-mJ (7) 
n n L n aT (J l l \ n 'a) 1 ' 

Copyright © 1975 American Institute of Physics 644 



                                                                                                                                    

where, e.g., an=- (2n + 1)in<ka)lhn(ha) if the field 
equals zero on spheres of radius a. 

The lattice sums were represented in (1 :53) as sets 
of spherical waves reaching one obstacle from all 
neighbors 

H"',,='L/ exp[ik(sb~o + t dno)h"nhn(kbst)Y"',,(- bst )' 
st 

b =sbx+tdy~ h =h(1) st , n n' 
(8) 

where both sand t range from - 00 to 00, and the prime 
means exclusion of the central element s = t = o. As 
will be discussed shortly, the sum does not exist for 
bv~=O; if bNM-O, thenH becomes singular as l/bNM. 
Otherwise, from symmetry we require Lst = LsLt = LtLs' 
which follows if the double series and the row and 
column series simply converge; however, we may use 
k = (2711;\) + i€ to obtain absolute convergence, and then 
let E = I E I - O. The replacement of ~o and 1)0 by ~v and 
1)~ merely introduces the factor exp[i271(sv+tll)J=1 into 
the summand, i.e., 

Thus, the functions H"'" for assigned val~es ~, b, d, and 
k are the sam e if the incident direction k = koo is re
placed by any k,,~ of the array set (3). We also have 
H"',,(- kv~) = H"',,(- ~o) which corresponds to changing the 
signs of ~ and 1)0 in (8); if we then replace s and t by 
their negatives, and use Y"',,(- r) = (- l)nY"',,(r), it follows 
that 

H"',,(-~~)=(-l)nH"',,(k), k=~o. (10) 

Relations (9) and (10) help to demonstrate that approxi
mation for G obtained by truncating the system for A 
satisfy the required reciprocity and scattering theorems 
(1:17,18). 

Consideration of the singularities of H may be based 
on the asymptotic development (1 :60)ff and the form 

* H=HT +HA' HA =6 exp(ik.bst)h(kbst)Y'",,(-bst), 

h(x) = ho(x) = exp(ix)1 ix, 

where H T corresponds to 6' truncated at finite large 
values I s* I and I t* I satisfying k[(s*b)2 + (t*d)2J!/2 

(11) 

= kp* »1. The infinite double series H A (in which we 
used the asymptotic form inhn - h) is the remainder after 
approximately 14s *t* I terms. The phase k • bst + kb st = fk 
with j= ~x + 1)Y + P is stationary when ~v = - xl p and 1)~ 
:= - yip, but L* then diverges; this corresponds to ~~ 
+ rf,. := 1, i. e., grazing modes bv" = 0, If we approxi
mate L* by a set of analogous integrals (1 :64) summed 
over the modes (kNM) closest to grazing, we obtain the 
Fresnel integral representation (1 :65), LNMJ*. Except 
for (:,NM = cose NM "" 0, the approximation for H A based on 
(1 :66) is a set of cylindrical waves [e lRWl /2, R 
=kP*(l ± sine NM)J radiating from the lattice lines through 
p* perpendicular to cp NM, 71 + cp NM; thus, in general, 
LNMJ* - 0 as p* - 00. On the other hand, if there is one 
or several near-grazing modes (bNM"" 0), then from 
(1:68), L' =Ll +2LCNM Y'::(kNM), where Ll is finite but CNM 
becomes singular as 1/(:' as (:, - O. 

The behavior for near-grazing modes follows more 
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simply from the array-mOde representation (1 :70) of 
H. Replacing - bst by - bst +EZ in (8) and adding and 
subtracting the missing term, we express H as 

(12) 

i. e., as the limit for E:= I E I - 0 of the field of the com
plete array less self-excitation responses of one obsta
cle. The convergence factor exp(ikEbv~) - exp[ - 271dl vi 
b 12 + I III dI 2)1/2J approaches zero with increasing I vi, 
I Ill, and since Y"'" is a polynomial in ~ and 1), the form 
of the operator as a sum minus the analogous integral 
indicates rapid convergence except for bv~ "" O. We de
composed the operator as 5 = Sp + Se' where Sp (in 
which we set E := 0 directly) is given by 

.... + /.L + n+ 

Sp=6p - J p = vE-,,~,,- - J..,,_dv r:: dll , 

n":= ,n'" = (kb/271)(1=F ~o), m"(Y):=, m'" = (kd/271)(Y 'f 1)0), 

(13) 

with v"'=[n"J and 1l"~[m"(Yv)J as the closest integers 
from below. We exclude integral values of m", n· 
corresponding to grazing modes (I;v" = 0) for which H is 
undefined. For near-grazing modes, I;NM "" 0, we see 
directly that the dominant terms are of the form 
2CNM y"',,(kNM ). Although H is singular for I;NM - 0, we 
showed that U is finite in the limit. 1 Since we obtained 
simple approximations for U in terms of g for the array 
resonances corresponding to I;NM"" 0, and indicated how 
these approximations could be improved, we now ex
clude discussion of these exceptional cases. However, 
the alternative more rapidly converging representations 
H we develop in the following show the required 
singularities. 

Although the scattering amplitudes G and g are in
variant to the choice of polar axis for the spherical 
harmonics, the coefficients A"'", etc., are not, i.e., 
Eqs. (4)-(8) comprise an infinite number of interde
pendent representations depending on the choice of axis . 
We consider two, Z and x. For the first, we write 

Y'"" (I;; ~, 1) = p"',,(cos e) exp(imcp) , cos e = 1;, 

exp(icp) = (~ + i1)1 (e + 1)2)1/2, 

and for the second 

Y~(~; b, 1) = p~ (sine coscp) exp(ilw), sine coscp = ~, 

(14) 

exp(ill/J) = (I; + i1)/(1;2 + 1)2)1/2 = (I; + i1)jy; (15) 

in general, we suppress all but the first term of the 
argument of Y. The sets are related by 

Y'"" (!;) = t n:" Y~ W , 
I=-n 

(16) 

where D is a Wigner coefficientS for a 90 degree rota
tion around y. The choice Y(l:) yields a form for H (for 
which we henceforth reserve H"',,) retaining the essential 
symmetries of the lattice in full view: the form involves 
p"',,(0) which vanishes unless n - m is even, and there-
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fore half the cross-terms are missing in the corre
sponding simpler system of algebraic equations for A';;. 
However, the choice Y(~) enables us to exploit all our 
earlier results for the periodic line2 and for the grating3 

to obtain rapidly convergent forms of H; we indicate the 
Y(~) functions by H n,l' 

In the next section we consider initially H';; and dis
cuss the properties that follow directly by inspection of 
(8) and (12). Then we show how H n,l may be repre
sented in terms of our earlier results, 2,3 and use (16) 
to obtainH';;=2:D,;;,IHn,l' In the last section, we con
sider the algebraic equations for A';; in terms of H":" 
and develop closed form approximations for small 
scatterers. 

2. TH E LATTICE SUMS 

A. Initial considerations of 11; 
From (14), we have 

~(- bst ) = 1"':,(0) exp[im(7T + t3st »)' 

(.) sb +itd 
exp tf3st = [ (Sb)2 + (td)2]1/2 , 

m _ (n + m)! (-1) (n-m )/2og(n - m) 
Pn(O)- 2n[(n-m)/2]![(n+m)/2]l ' 

(17) 

where oe(Z) = HI + (-1 )/] is a parity factor. Substituting 
into (8), we obtain 

(18) 

For the symbolic form H[S] of (12), 

Yr;:(k) + ~(k') = [P":.(/;) + P":.(- t)] exp(imcp) 

= 2~(k)oe(n - m) 

gives the same parity constraint as in (18). We need 
consider only m positive in the form H~ =Hr;:( t3) of (18). 
Since ~m = r"m exp(- imt3) , 

H~m=C":,Hr;:(-(3), cr;:=(_l)m(n-m)l/(n+m)l, (19) 

where C':: = r"m/1"':,. 

Because of the parity factor in (17), we require only 

m~ = (_1)n ~~(O)(~( 1) + i0(2» = mr)(b, ~;d, "I) + im,;p 
~~(O)= (2n + 2m)l (_l)n-m/22n (n +m)l (n - m)l, 

0(1) =L/ h2n cosXcosY cos2mf3, 

- ~(2) =~' h2n sinXsinYsin2mt3, 

~;;'.\1(0) = (2n + 2m + 1 )~::'(O), 

~11J = L/ h2n+1 sinX cos Y cos (2m + 1)13, 

6[21 = 0' h2n+1 cosX sinY sin(2m + l)t3, 

whereX=skb~o, Y=tkdT/o,H(l)a:~(lp etc., and 
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(20) 

where indices have been suppressed for brevity. These 
forms emphasize the essential symmetries of the 
problem. If we interchange b, ~ and d, "I, then X and Y 
are interchanged, and B is replaced by ~7T - (3. 
Consequently, 

mr)(d, T/;b, ~) = (-I)mm~r\(b,~; d, "I), 

Hf':)(d.,. )=- (-I)mm';)(b"'), 

mn+1(d·")= (-1)mm~t1(b"'), 

m':t1(d"')= (-1)mmrt1(b"')' 

(21) 

Thus for the square unit cell b =d, and ~ ="1, it follows 
that 

(22) 

For the rectangular unit cell and normal incidence 
~o = "10 = 0 (or for excitation by any mode generated by 
k = z), the problem is characterized by 

H;::, = (_l)n~::,(o)~' kzn(kbst ) cos 2m t3st ' st 

cos2mt3st = Re(sb + itd)2m/[(sb)2 + (td)2Jm. (23) 

For the square unit cell, we require only 

H4m= (_1)np!m(O)L/" (kb[S2 +f]1/2)Re(s +it)4m 
2n 2n "2n (S2 + f)2rn , (24) 

i. e., only the sets H~n' H:n, H~n' etc., are nonvanish
ing. We conSider the general case (18) and then obtain 
the simpler forms by specialization. 

Corresponding to the decomposition hn = in + inn' we 
write (18) as 

with N"'" as the same representation in terms of nn' 
From the symbolic form (12), the propagating operator 
applies for J : 
J":. = Sp 2Cv " y":.(kv ..) =~p 2Cv" Y":.(~,,) - 0nO' n - m even, 

where we used 
(26) 

fp 2C~ =~ ~(r) dO (t)/ 47T = 0nO 

(the integral over the unit sphere). Thus, the double in
finite series for J reduces to a finite number of terms 
(26) representing the propagating modes, in complete 
analogy with the corresponding earlier results for the 
grating (3:15) and periodic line (2:100); the essential 
role of 0na in the development of energy-conserving 
approximations of A"'" and G is the same as discussed 
before. 2,3 In particular, if there is only one propagating 
mode (small spacings), 

J';; = 2 Coo Y::' (k) - 0nO 

(27) 

n- m even. 

If we decompose J":. of (26) to correspond to (20), we ob
tain J":. = Jrr;,(cosmcp) + i Jr;:(sinmcp); thus interchanging the 
parameters as before replaces cp by t1T - cp and the 
form shows that the symmetry relations (21) are satis
fied by the components 0 Similarly for the special re
sults for b=d, ~o=T/o. 
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We obtain (26) directly if we use jn(O) = 0nO to rewrite 
(25) as f)~ = L exp (z1<· b st Hnjn Y:;' - 0nO' and then introduce 

~ 112. (. ~ 
z""jn (kb) Y:;' (b) = 417 0 Jo exp(ikk.b)Y~(k)d&1(k) 

= ~i 1 d~ e d17 exp(ikk. b) [Y,::(k) + Yn(k')] 
47T -1 J-y t 

with y= (1 - ~2)1/2. The resulting sums over sand tare 
periodic ° functions in ~ - ~v and 17 -17 IL , and integration 
over the finite intervals reproduces (26). 

From (8), (12), (25), and (26), it follows that 

iN":. = i"L;' exp(ik· bst)i"nn (kbs.)~(- bst) 

(28) 

where, corresponding to s~ = LvpLIL - J v f ILp = s(vp, IIp), 
we have, e.g., S.=S(Vp'Il.)+S{V:'llp)~SS(V.'Il.). In 
the course of representing N in terms of the results for 
the periodic line2 and for the grating, 3,6 we obtain al
ternative decompositions of S. 

B. The series 11",1 
In terms of Y(~) of (15), we have 

Y~(- bst) = Y~(- ~st; 0, - Tlst) 

= P~(- sb/bst ) exp(- il(7T/2) sgnt) 
(29) 

with sgnt=l,O,-l for t>O, =0,<0 respectively. 
corresponding form of (8) is 

The 

H = ,,\,' exp(ik·b )i"h (kb )pl(- sb/b )i-I •nt 
n, l L.i st n st n st 

='L/ 1(s, t). 

Similarly, using (15) in the symbolic form (12), we 
obtain 

H ".1 = 5 CVILP~(U{ exp(il</!) + exp[i1(1T - </!)]}, 

sin</! = Tlj Yv = 171L/(1 - ~;)1!2. 

(30) 

(31) 

We express H ".1 in terms of existing results2 ,3 (Plus a 
very rapidly converging series) and then construct 
H~ by superposition. 

We decompose (30) into periodic lines along x, sum 
over s, and then add the contributions of the individual 
lines by summing over t, i. e. , 

H =:0'1(s, t) =:0'j{s,O) +:0'6 1(s, t) 
st s t s (32) 

with H~.I = L;1(s, 0) as the axial field of the depleted 
periodic line t = 0, and X (td) as the off-axis field of the 
complete line at r = tdy. Thus, since 

Y~(- bso ) = p~(- sgns) = 0/0(+ 1)" for s ~ 0, 

H~.I = I/ exp(iksb ~o)z"1lh" (kb I s I )Y~(- bso) 
dO 

= 010:0 z"1lhn(skb)[ (-1)" exp(iskb~o) + exp(- iskb~o)] 
s=l 

(33) 

is the function in (2: 94) with the earlier sineo replaced 
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by the present ~o; see Ref. 2 for detailed discussion. 
Similarly, from (2: 19), X is a set of conical cylindrical 
waves 

X = t exp(iksb~0)inhn(kb8t)Y~(- b8t ) 
$=....00 

and the remaining sum over t is the form considered 
earlier for the depleted grating3 : 

~' exp(iktd11o)Hl (k I t I dy)ilil 
sgnt (35) 

dO 

=:0 HI (ktdy)[ exp(itkdTlo)(-l)1 + exp(- itkd17o)] =H~. 
t=l 

For Yv real and nonvanishing, H~ is the function in (3:30) 
and (6: 3) with the earlier d replaced by dyv and the 
earlier sineo replaced by 1701yv; see Refs. 6 and 3 for 
detailed discussion and mode representations (in which 
the earlier sine

lL 
now corresponds to sin</!vu=Tljy). 

For imaginary y=i Iyl we use Hl(i Ixl) =- iW'2!rr)Kl (lxl), 
and write H~ (ilxl ) = iK , : 

4 dO 

K 21 = - (- 1)1 - :0 K2l (ktdl Yv I ) cosktd17o' 
1T t=l 

(36) 

We do not seek to reduce these series of modified Hankel 
functions; except for Yv - 0, they are very rapidly 
converging. 

Thus, we have 

H ".1 =H~(~o; Mo lo + (_k~l1T L?P~(UH~ (Tlo, yv;d) (37) 

or, equivalently, 

Hn•1 =H~., +H~'I +iK",1' H~.I =H~olo, 

In this decomposition, a lattice site receives essentially 
three kinds of fields. The field H~'I represents the net 
axial effect of all its neighbors on one periodic line, 
and H~" and iK n.1 represent the net propagating and 
evanescent fields of all neighboring parallel periodic 
lines. The finite sum Lv specified by the known3 ,6 

grating function H~ ranges over - v- -'S V -'S v· with v% 
= [kb(1+ ~o)/21TJ=[n%J as the closest integers from below; 
thus, HP I consists essentially of the field of v· + v- + 1 
superpo~'ed gratings. The infinite series ~ ranges from 
- co to - v-1 

- 1 and v· + 1 to co, and the doub1e series 
~e2:t in K n,l corresponds to all evanescent conical modes 
from all individual neighboring lines. We discuss 
K n.1 after considering the singularities corresponding 
to integer values of either n+ or n- (or of both), i.e., 
yv-O. 

li Yv - 0, or equivalently, if I ~v I - 1 from either be
low or above (which also requires TI- 0), we proceed 
initially as for (2:31), For 1*0, we have P~(~)HI(ktdy) 
- - i(n + l)! / 1T(n - Z)! (ktd)' and the corresponding sums 
over t reduce to the Fourier series discussed for (2: 91). 
On the other hand, for l=O, the terms P"Ho"'Ho 
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diverge as lnyy ; for the corresponding sum over t we 
obtain3 H~ '" 2/ kdl; (and similarly for the I< form) which 
is singular for l; = (y - 'if)l /2 - O. This relates to 
resonances along the axes of the periodic lines dis
cussed for (1: 86). We exclude these in the following. 

To analyze I< I' we first consider the behavior of 
p~ and K, for la';:ge v. In general, with yy= (1- ~~)l/2 
and ~y = E.o + 2V1T/ kb, we use 

P~W=yI6(-I)a(2n- a-I)!! ~n-I-2a/2aa! (n -l- 2a)!, 

(2m-1)!! = (2m)!/2mm! =1·3- 5--- (2m-I), 

(39) 

where, with (- I m I )! = 00, we need not indicate the 
limits of the summation indexa. For large I vi (or 
small kb) we have Yy=::i(~~_I)l/2"'il ~yl, and 

P~(U '" (sgnv)n-Ip~ (V)[1 + (nE.o/ V) sgnv], 

p ~ (V) = [ (2n - 1 )! ! / (n - l)! ]i' ~m , 

v=2Ivl1T/kb, 

(40) 

where we kept up to the first term in ~o. Similarly, to 
first order in E.o for large V, 

KI (ktdl yy I) '" K, (CI) + ktd~o sgnvo "K, (a), (41) 

a=21Tltvlp, p=d/b?-l, 

where il" = d/ dCl. We take p = d/ b ?- 1 to promote rapid 
convergence; with this, we interpret the summation 
sequence (32) as decomposing the array into periodic 
lines such that the neighboring sites on each line are 
closer than the lines, and summing initially over the 
smaller spacing. For large a, we have asymptotically 

K,(a) -K(a )[1 + (4l2 -1)/8a] - K(a), 

K(IY) = (1T/2C1)1/2 e-"', a = 21T I tv I p, 
(42) 

which dominates the polynomial (39). Thus Lv decays 
exponentially with increasing I vi independently of k, 
and Lv L:t is very rapidly converging in I v I and t. The 
rapidity of convergence is determined by p = d/ b?- 1; the 
worst case is the square unit cell p = 1, but even then a 
small number of terms suffice since e-2

• < 0.002. Con
sequently, in general, we need consider only the leading 
evanescent modes (I vi close to I v± + 11) from the closer 
neighboring lines (small integer t). 

If ~o = 0, then 
~ 

H~" =H~o,ooe(n), H~n=2?d ~n(skb), 

and since ~y = 2v1T/llb =± 21 vl1T/kb, we may pair the 
corresponding terms of (37) as 

P~(I ~) + P~(- I ~) =p~(I~) )2oe (n -t). 

If, in addition, 1Jo = 0, then 
~ 

fI~ =H~oe(Z)' H~, =~ 2H3 ,(tkdy). 
t=l 

Consequently, for normal incidence, (37) reduces to 

H2n, 21 =H1;,, 0lo + k~ ~ P~;(~y) Hr,(Yy;d), ~v = 2V1T/kb, 

(43) 

which has the same parity constraint as (22). The cor
responding form of the original series (30) is 
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(44) 

To delineate the relation of the results we have ob
tained from H(L:') of (30) to the symbolic form H[S] of 
(31), we consider initially the propagating (J) part of 
(37) • 

()L (-I)11T '>' '( ) ()G 
In''=rfnOlo+~~Pn ~y ifl' (45) 

From (2:100) and (3:15), 

(46) 

In'l =~~ Cv .. P~(U{exp(ilI/J) + exp[il(1T - I/J)J} - 0nO (47) 
p p 

as follows directly from the Sp operation in (31). Sim
ilarly, the general reduction (37) is related to the sym
bolic form (31) by the decomposition 

S =~.L .. - fj .. = (~v - f)( + ~v<~ .. - I) 
= SyJ~ + ~yS .. , (48) 

where the implicit convergence factor is exp(ikEycosl/J). 
The S .. {} operation in (31), with the braces representing 
the braced fUnction in (46), generates3 l-!~, so that 
L:vS .. corresponds to the second term of (37). For the 
first term, we evaluate f,J } exp(ik~f' cosx) cc HI (Eykd) , 
and thereby reduce Svf .. to the form considered in 
(2: 67) for the periodic line. Thus (31) decomposed as 
(48) leads directly to (37), 

From (37) and (45), we construct H - J = iN with 

(49) 

N
p =(-I)'1T~p'NG I< =(-I)'1T~PIA. 
n.l kb yp n l' n.l kb Ye n , 

We consider No,o' Nl,o' and Nl,l in some detail, be
cause they are exceptional, and also to provide a guide 
for using existing results2 ,3 to construct (49). We have 

N o•o = N~ +Nf,o +Ko,o' N~ = (kl,)-l J.n[2! coskb - coskbt;o 11, 

/liP - ~ ~ NG NG = _ ~ in ckdyy +!.. ~'_1_ 
l o•o --kbvp 0' 0 7T 47T 7Tl.lp 1/11 

-:0( 2 __ 1) 
"e kdll;vl.I 1 7T1 Il!' 

(50) 

K 00 = ~~ 1<0 = - -.!:0:0Ko(ldd[ Yv I) cos (ktd1Jo) . 
, kb Ve kb Ve t 

Here N~ was obtained from (2: 95) by replacing sineo by 
~o. Similarly, N~ is (3: 16) in terms of dyv and 

d[ fvCOSI/Jyl.l[ =d[1J~ - YvI 1
/

2 =d[ I;vl.Il 
with yy= (1- ~;)1/2= iy) or i!Y). and c=1. 781. .. as 
Euler's constant; the prime means exclude /1 = 0, and 
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Jlp ranges from - Jl- to Jl+ with Jl" = [kd(Y~1 'f 1)O)/21T] as 
the closest integers from below. InN~, since v is 
finite, the summand approximates Jl-3 for large Jl, and 
convergence is relatively rapid; we could use a similar 
series for 1<0 in terms of (rf., + I y) 2)1/2, and this suf
fices to show that both H(I xl) and H(il xl) have the same 
singularity for y and 1) - O. Discounting t '" 0, the con
vergence of the double sum in I< 00 is very rapid; in gen
eral we may use the asymptotic form Ko - K and re
strict consideration to the leading t,erms t = 1, and ve 
= ± (v" + 1). The corresponding value of f) is 

[)o.o = 2~ CVI' -1, CVI' = 1T/k2bd(1 - ~~ _1)!)1/2, (51) 

which reduces to (21T/k2bdcoslJ) -1 for one propagating 
mode (small kd). 

For small kd from (50), or (2:97') and (3:77), 

N~ "" (2/ kb){lnkbyo - [(kb)2/ 4! ](1 + ~~)}, 

N~.o '" - (2/kb){ln(ckdYo/41T) - [(kd)2/21T3](h~ + 1)~)t(3)}, 

where t(3) is a special value of the Riemann zeta func
tion7 t(n)=L;.'.lS-n. There is only one propagating mode, 
and to lowest order in k the evanescent sums are sym
metrical in v=± Ivl. Thus, for k-O, 

- ~kbNo.o -In(4rr/ cp) - 46I\Ko(a), 
(52) 

In terms of the asymptotic form of K o' 

J;,kbN 0.0 -~ In (4rr/ cp) -:01\ exp(- vt2rrp)/ (pvt)1/2. 

Since ~ In(41T/ c) '" 0.977 and e-2r '" 1. 87 X 10-3 , the series 
affects only the third decimal point. 

The next functions of interest are 

N1.0=N~ +Nf.o+A: 1 •0 , N~.0=(rr/kb)6~vN~, 
Vp (53) 

I< 10 = - (4/kb) 6 ~v6Ko cos (ktd1)o) , 
, tie t 

where N~ (which vanishes for ~o = 0) is given in (2: 97), 
and we used PI= ~v= ~o +2V1T/kb. The functionNto con
sists essentially of two sets of terms: the first equals 
~o times N~.o' and the terms of the second depend on 
the sign of v; both sets vanish for ~o = 0, the second 
because then N~(Y_) = M(y)· Similarly for I< 1.0. 

For N1• 1 we have 

N1.1=N~,l +1<1,1> N~.l= - (1T/kb)~yvN1, 
p 

I< 1 1 = - (i4/kb)61 Yv 16 K1 sin(ktd1)o) ' 
, lie t 

(54) 

where N~ (which is imaginary) is given in (3: 16), and 
we used P~=(I- e)l/2=y for vp and i(e-l)1/2=ilyl 
for ve. If 110=0, bothN~ and 1<1.1 are zero. Thus, as 
required by (43), both sets of terms N1.1 vanish for 
normal incidence, ~o =: 1)0 = O. For small kd, from 
(2: 97) and (3: 77) 

N~ "" (2~0/kb)[ In(kbyo) -1] + (kb~0/12)(1 - ~~/3), 

N~ "" - (i21)o/1TYo){1 + [2(kd)2Yo/4rr]t(3)}. 

For the I< sums for small kd, corresponding to (40) 
and (41), we use 
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~fio(ktdl i) ) cosktd1)o 

'" [~o + (21v Irr/kb) sgnv][Ko(a) + ktd~o sgnvo"Ko(a)], 

o"Ko=-Ku 

I yv I K1 (ktd 1 y~ I) sinktd1)o 

'" (2Ivl1T/kb)ktd1)oK1(a) = 1)oaK1(a) , 

and combine the corresponding terms for v = I v I and 
v = - Iv I in Lv = L::.. Thus the low frequency limits of 
(53) and (54) ;re 

~kbN1.0 - ~o[ In(41T/ cp) -1- 4:0I\(Ko - CYKJ], KI =KI (a), 

(55) 

~kbN1.1 - i1)o[1- 46I\CYK1]· 

Corresponding to (53) and (54), we have 

(56) 

[)1.0=26pCv,,~v,,' [)1.1 =i26 pCv"TJ", (57) 

which reduce to single terms (v = Jl = 0) for small kd. 

We see from the above that the low frequency results 
for No•o and N1• 1 are of order k-1 ; these are exceptional 
in that they are smaller than the one-mode results for 
the f) 's (of order k-2 for all n, l). We now construct the 
leading terms of the low frequency approximations 
(kd'" 0) for N n•, of (49) and show that N 2n•1 and N 2n+1•1 are 
of order k-2n-1

• 

From (2: 90), or by substituting nn (x) '" - (2n - I)! ! / xn+1 
directly into (33), 

N~n'! '" - [(-I)n(4n - I)! !/(kb)2n+1] 2t(2n + 1)° 10 =Bno /O ' 

N~n+1.1"'(4n+l)Bn~0010' n>O. (58) 

From (3:78), or by using NI (x) '" - (l-I)! 2//1Tx l , l > 0, 
directly in (35), 

N~, '" - [2(2l-1)!221 /1T(kdYo)2/] t(2Z)=Cz, 

N~/+1 '" - i4lCz1)0/Yo, l> O. 

The largest values correspond to l=n. Thus in the one
mode form of (49), N~.,=(-I)/(1T/kb)P~(~o)M with 
P,:(~o) = (2n -I)! ! ~ and P,:-1 = (2n - I)! ! Yc:-1 ~o, we keep 
only the leading terms by writing 

Np - (4n - I)! ! ( 1)' 2 () [) 
2n.21 - - kb(kd)2n 2n - .2 n2t 2n 0n.1 = nOnl' (59) 

From (36) and (41) to order k, 

which we use with (40) for P~ to order k-n+1 to construct 
the largest cases forl<n./=:(-1)/(rr/kb)L::.P~(UI<I of 
(49). Combining the corresponding terms for v =: I v I , 
and v=- I vi, we obtain 
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_ 8(-1)1 '" 21 (2n+l ) I< 2n+1,21 - -~ ~O U" P 2n+1 -v- + ktdo", K21 

(60) 

K - 8(-1)1 d '" p2/+1 
2n+1,2/+1 - - -,;;;--k 'I1oLi" 2n+1 tK2/+1 

The neglected set I< 2n,2/+1 is only of order k-2n . These 
relations also apply forKo,o' 1<1,0' andK1,l as used in 
(52), (55), and (56) respectively. 

Adding the corresponding terms of (58), (59), and 
(60), we write 

-N2n ,21 (kb)2n+1! (4n -1)1 1 (_I)n+1 - L 2n,21' 

where, for n>O, 

(2n -1)1 22n 
L 2n,21 = 21:(2n + 1)610 + {l'n 21:(2n)6 nl 

8(-I)n+1 
+ (2n _ 2l)! 6,,(2'1Tv)2nK21 (0'), 

+ 8(_I)n+l", ()2n( O'K21 _1 ) 
(2n-2l)lu" 2'1TV K21-2n+I_2l' 

(61) 

(62) 

We used 2lK21 + O'OaK21 = - O'K21 _1 in p.., and included an 
additional value of!J to further the development, The 
limiting forms satisfy the relations 

(2n + 2 - 2l).9 2n+1,21-1 = - L 2n,21 + p.. 2n+1,21' 

y 2n+1,2/+1 = (2n + 1 + 2l) L 2n,21 - (2n + 1 - 2l)P.. 2n+1,2P 

as may be seen from the recursive relation for the 
Hankel function 0' (Km+1 - Km_1) = 2mKm • 

650 

In analogy with (20), we split (30) into four sets: 

H 2n,21 = (- 1)I+n~' cosx cosY ~n~~ (cos{3), 

H 2n,21+1 = - i(_l)/+n~' sinX sin I y I ~nP~~+l, 
H 2n+1,21 = (_I)/+n6' sinX cos Y ~n+1P~~+1' 

H2n+1,2/+1 =i(_1)1+n6' cosXsin! yl h2n+1~~:~' 
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(63) 

(64) 

The low frequency limits of H (kb)2n+1 - iN{kb)2n+1 for 
n > 0, normalized as in (62), are the absolutely con
verging series 

.t 

The rapidly converging forms of 'L,' given in (62) may be 
constructed by uSing the Poisson sum formula. The re
lations in (63) follow directly from (65) and the re
cursive relations7 for the Legendre functions, 

(v - M + 1)(1 - x2)1/2 p~-l(X) = - P~-l + xP~, 

(1 - x2)1 /2 p:+1 = (v + M)P~_1 - (v - M)XP~. 

From (63), except for l = 0, we may construct P.. and 
L fromY. Thus, 

4lP.. 2n+1,21 =.9 2n+1,21-1 (2n + 2 - 21)(2n + 1 + 2l) + .9 2n+1,21' 

41L 2n,21 =!J 2n+1,21-1 (2n + 2 - 21)(2n + 1 - 2Z) + y 2n+1,21 . 

There is only one relation for 1= 0, and we supplement 
it with the form L 2n,O: 

.9 2n+1,1 = (2n + l)(L 2n,O - P.. 2n+1,O)' 

Although (62) excludes n = 0, and the n = 0 forms of 
(65) diverge, the limits for n=O in (61) are given in 
(52), (55), and (56), i.e., 

L 0,0 = - 2 In (47T! cp) + 8 ~"Ko, 

P.. 1,o=- 2 In (47T! cp) + 2 + 86,,(Ko - ClKJ, 
21,1 =- 2 +8~"CiK1' 

(66) 

Since.91,l =Lo,o -P.. 1,o' these exceptional cases also 
satisfy (63), with In(7T4! cp) = In(kbyo) - In(ckdyo/47T) 
taking the place of the ?: functions. 

C. Superposed form of II":. 
We now express H":. in terms of the rapidly converging 

results for H n,l' From (16), 
n 

Y":,(?:;~, '11) = ~ D;;,'I P!W exp(il</J). 
Z:::-n 

Dm,l= (n-z)l 6(_1),(n-m)( n+m) 
n (n-m)!2 n r n-l-r' 

(67) 

where n - m is even, and 'L" terminates with r equal to 
the smaller of n - m or n - l. The present Wigner5 co
efficients D may be written in terms of the Jacobi poly
nomials of argument zero, as 

Dm,l _ (n-l)! (_1)n-1 p<Z-m,z+mJ 
n - (n + z)! 21 n-I 

For negative l, we introduce a new summation index 
r' = n - m - r; including additional forms for subsequent 
use, we have 
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D,:,-I (n + 1)! 
D""I = (n - z)! 

n 

Dm,1 (n-Z)!(n+m)! 
D',m = (n + l)! (n - m)! , 

(68) 

where the relation for H obtained from (30), also holds 
for 9 and N. Thus 

ym(l;) = Dm,OpO(~) + tD"'" pIW{exp(il</i) + exp[il(1T-1f!)]}, 
n n n 1=1 n n 

[ ./21 
pm W cosm cp = 6 E D",,21 p 21 (~) cos21</i 

n 1=0 21 n n , 

(69) 

E/=I, 2 for 1=, >0, 

where we use E2!+1 instead of 2 and include the redundant 
P,:,2/+1=0 for uniformity. Since, e.g., 

fReY':: Re Y~ d1 = (n + m)! 41To",,,/(n - m)! (2n + I)E", 

when integrated over the unit sphere, 
[n/21 

[n/21 

= 6 E2/+ID::,2/+ID~,-2/-1 
1=0 

(70) 

Adding the values for even and odd 1, we obtain 
~E,D::"D~'-I =.6.",,,; however, the split forms are used 
subsequently to provide checks. Several values of D may 
be expressed more simply than in (70), 

D::'o = P::(O) , P,:" = ~(O)[ (n - Z)! / (n + Z)! ]0.(Z), 

D~" = (2n)!/2n(n + Z)!, D::,n=I/2n(n- m)!, 

D;:",,-1= 2m/2"(n - m)! . 

(71) 

If we apply (67) in reverse to construct L:D::'19I1" in 
terms of 9n,' of (47), we obtain 

where 9:: is identically the function derived originally 
in (26). Similarly, 

where we used D::'o = P,::(O) of (71). For subsequent 
applications, we list the leading values: 

Hg =Ho,o, m =HI,o +HI,v H~= - ~H2,0 + tH2,2' 

H~=3H2,0 +2H2 ,1 +iH2,2' 

H~=-%H3,0-tH3'1 +tH3,2 +iH3 ,3 

H;=15H 3 ,0 +l.fH3'1 +%H3,2 + tH3 ,3' 

H~=iH4,0 -hH4'2+1~2H4,4' 
H~ = -If-H4,0 - %H4 ,1 +~H 4,2 + tH 4,3 +isH 4,4' 

H!= 105H4,o +42H4 ,l + 7H4 ,2 +H 4,3 + iH4 ,4· 

(74) 

In terms ofHn" of (37), we rewrite the first form of 
(73) initially as 
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where the leading term follows directly from the L~ part 
of the summation sequence (32), and (18), i. e., L;f(s, 0) 
= (- 1)'" P'::(O)2:~ exp(iskb~)inhn(1 s I kb) exp(imJ3sa) with J3sa 
= 0 for s > 0 and J3sa = rr for s < 0, equals P'::(O)H~ with 
HL as in (33), since we require n - m be even. USing 
th~ decomposion of H? mentioned after (48), and apply
ing (67) in reverse, enables us to rewrite (75) as 

H'::=P'::(O)H~ +6v5J2Cv"Y';:(l;v,,)] (76) 

and to identify the first term directly as 5 v f ,,[ ] of (48). 
For the remaining operator, the part Lv 5" generates 
the rest of g::. In the following, the NP tun~tions corre
spond to Lv 5" , and the I< functions to Lv 5". 

Pee 

In working with 9':: as in (26), since n - m is even, we 
may use (39) to reduce Y';: to a polynomial in ~v and T/", 
i. e. , 

/:"-m-2<1 (1- 1;2)"'/2 exp(imcp) = (1- ~2 -T/2r-a(~ +iT/)'" 

with T= (n - m)/2. For N';:, from (75) and (49). 

Nm = pm (O)NL + t Dm"(NP +1< ) =NLm + NP '" +1<'" 
n n 71 t =-n n n, Z n, Inn n 

with the individual terms of the first equality as dis
cussed for (49). 

(77) 

From (74), we haveM=No,o in terms of (50), and 
Similarly Ni =NI,o +NI,I in terms of (53) and (54). The 
corresponding functions Hg and Hi are basic for the 
analytical properties of the general form H,;: of (18). 
Since 

inhn(x) = hex) 6 [en + a)! la! (n - a)! ] (i/2x)a , 

hex) = ho(x) = eix/ ix, 
(78) 

all but the first two terms (a=O,l) correspond to ab
solutely converging series in L' of (18); the behavior 
of these two terms is determined by ho and hI' and that 
of the corresponding series in L' by Hg and Hi. In 
particular, although the L' forms of kM and kNi for 
k-O obtained from (18) diverge, from (52) we have, 
- kbNg = - kbNo,o - Lg, with 

Lg(p) = - 2 In (4rr/ cp) + 8 ~IIKo(tv2rrp) = p-ILg(p-I) , (79) 

and from (55) and (56), - kbNi = - kb<NI,o +NI) - ~oRi 
+ iT/oli, with 

Ri(p) = - 2In(4rr/ cp) + 2 + 86
11
(Ko - aKI) = p-Ili(p-I) , 

li(p)=-2+8~lIaKI=p-IRi(p-I), Lg=Ri+li· (80) 

The forms in terms of p-I follow from the symmetry of 
the problem, i. e., from the interchange relations (21); 
this will be discussed further subsequently. 

For n> 1, we construct the low frequency forms of 
(77) from those derived for Nn.z' We express N~m 
=P'::(O)N~,o' in terms of (58), 

N~;'" '" ~::(O)8n' NrJ:r1 "'~:::l(0)Bn(4n + 1)~0. (81) 

For N~'" =LD::''!V~,I' from (59) and (71), 

N~n2m "'2D~;:" 211Nf ... 2n '" 2D,/22n(2n - 2m)!, 

Victor Twersky 651 



                                                                                                                                    

'" [2(4n +1)LJ/22n+1(2n -2m)!] [(2m +1)~ +i2m)0]' 

(82) 

For I<~ = Z; D;:,"I< n,!' from (60) and (71), 

I< 2m "'C t 6 E2m,21K v2n 
2" n ':::0 II 211 21 , 

m'/ _ 2€ID;:' ,I _ 2€ID:;' , I LY,:,-I 
En -2n(n-l}! - (2n)! ' 

(83) 

v2m+1::::2(4n+1)S. ~"V {t E2m+1,21[(2n+1-2l)K -aK ] 
f\ 2n+l L n D U II <;0 2"+1 21 2,-1 

1=0 

If we may use the asymptotic form K, - K of (42), 
then since 

[n/21 20 
6 Em,21 =6Em,2'+1=--.!!!'!.. 
1=0 n n Em 

from (70), we can sum over l in (83) and obtain the 
leading terms 

2m _ 2n _ 4 (4n - 1)! ! (47T )2n "V 2n ( ) 
!<.2n !<. ZnOnm -linn (kb)2n+1 u"V K a , 

which also serve to check the numerical values of the 
coefficients D;'l . 

Adding the corresponding terms of (81)-(83), or ap
plying (77) to (61), we write 

(85) 

where, for n>O, 

R2m+1( ) _ 2?;(2 + 1) + 4(2n -1)! (2m + l)(_l)n 1;(2n) 
2n+1 p - n (2n _ 2m)! ~;:'(O) p2n 

(86) 

2m+1 _ 4(2n)! (_l)n 1;(2n) 
/2n+1 (p) - (2n _ 2m)' ~m+1(0) --2n 

. 2n+1 JJ 
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8 (27T)2n D2m+1,21 +1 
+ 6 v2n 6 2 2n+1 K 

(-1)nPin"!t1 (0) " I (2n- 2l)! a 21+1' 

The n=O terms are given in (79) and (80), and the 
leading terms of (86) are 

L~(p) = 21;(3) + 41;(2)p-2 - 46" (27TV)2(Ko - K2) = p-3 L~( p-1), 

L~(p) = 21;(3) - t 1;(2)p-2 - t 6,,(27TV)2(3Ko + K2) 

=_p-3L~(p-1), 

R~(p) = 21;(3) + t 1;(2)p-2 - t 6,,(27TV)2(3Ko - K2) 

= p-3/~(p-1), 

/~( p) == ~ 1;(2)p-2 + ~6,,(27TV)2K2 = p-3R~( p-l) , 

R~(p) = 2?;(3) - ~1;(2)p-2 - Is 6" (27Tv)2(15Ko + 3K2 - 8aK1) 

=_p-3~(p-1), 

/~(p) == - & 1;(2)p-2 - ft6,,(27TV)2 a (15K1 + Ka) 

== _ p-aR;(p-1) , 

L~( p) = 21;(5) + ~ 1;(4)p-4 + ~ 6" (27TV )4 (3Ko - 4K2 + K4) 

=p-SL~(p-1), 

L;(p) = 21;(5) - ~ 1;(4)p-4 + ft 6" (27TV)4(5Ko - 4K2 - K4) 

= _ p-S L~( p-1), 

L!( p) = 21;(5) + fs-1;(4)p-4 + 1~S 6" (27TV )4(3 5Ko + 28K2 + K4) 

:c=p-SL!(p-1), 

(87) 

Numerical computations for p = 1 to 8 keeping at most 
eight terms of the I< (p) sums, but over 100 terms for 
some of the I< (p-1) sums, substantiate the interchanged 
forms in (79), (80), (87) to at least five significant 
figures. As required by (84), for K, - K, only the 1<~~[Kl 
sums in the Vs are nonvanishing; similarly for the 
1<~~:~[aK] sums, as in R; and /~. 

For the square cell, we require L~(2a+l)(l)=O. Thus, 
from L~n(l)=L~n(l)=O, 

31;(3) - 21;(2) = 87T26" v2(3Ko + Kz), K, = K, (vt27T); 

51;(5) - 41;(4) = (87T4 j3)6"v4(- 5Ko + 4K2 + K4), 
(88) 

21 n(7) -161;(6) == (87TSj15)6"vS (14Ko - 17K2 + 2K4 + Ks), 

more generally, with 2m = 2(2a + 1) == 2, 6, 10, ..• we 
obtain 

(2n+2m-1)!! 1;(2n+1)- 2(2n-1)! I; (2n) 
2n-m(n - m)! (2n - 2m)! 

(89) 

( )
2 ~ "V.2nn2m 2' K21 (vt27T) 

== - 4 27T n U E, U v- lliin' (2 _ 2l)' ' '=0 vt n. 

which relates pairs of values of the Riemann I; function 
for successive integers with the Wigner rotation coeffi
cient D;:'" of (67) and the modified Hankel functions K , . 

D. Direct derivation for low frequencies 

The primary purpose of the preceding sections was 
to represent the slowly converging series for H; of 
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(18) for all values of k in terms of the known series for 
the periodic line2 (HL) and the grating3 (HG) plus a 
rapidly converging double series UO of modified Hankel 
functions. The result (73), in terms of (26) and (49), 
may be used for numerical computations with the closed 
form approximations for G of the next section for all 
kb. We specialized (73) to small kb in (79) to (87), and 
indicated the roles of HL , HG, and I< contributions, but 
except for n = 0 and 1, the limiting values may be 
derived more directly. 

Thus, if we substitute nn (x) '" - (2n - 1)! ! / x"+1 into (20) 
for n> 1, and use H '" iN with N as in (85), the low fre
quency limits are given by 

2m( ) _ "" Re(s + itp)2m _ ",, cos2m/3 
L2n p - LJ (S2 + fp2)n+m+l / 2 - LJ ,-2n+l , 

2m+l( )_"" sRe(s +itp)2m+l =~'cOS/3cos(2m +1)/3 (90) 
R2n+1 p -LJ (S2 + fp2)n+m+3/2 -y2n+l' 

2m+l ( ) _ ~' tp Im(s + itp)2m+1 _ ~' sin/3 sin (2m + 1 )/3 
12n+l p - (SZ + tzpZ)n+m+3/Z - ,-2n+l 

For n> 0, these absolutely converging series with p as 
the only parameter are the same as for the potential 
theory problem (k=O); for n=O, the series diverge. 

Corresponding to the interchange relations (21), we 
now have 

L~::,(p-l) = (_1)mp2n+l L~::'(p), 

R~::,+\1 (p-l) = (_1)mp2n+l1~::':/( p), 

where we may replace p by p-l throughout. For the 
square unit cell, 

(91) 

L~~21+1)(1) =0. (92) 

From the trigonometric versions in (90), 

Thus, from (93) we require only the L series explicite
ly, and from (91) we need consider only either p ~ 1 or 
P'" 1. As before for the general case, we work with 
L (p) such that p = d/ b ~ 1 and su m initially over s (the 
index for the smaller spacing). 

USing the summation sequence (32), we have from 
(90) 

Um =M +~'~ cos2m/3 /(S2 + fp2)n+l/2 (94) 
2'1 2n t s st , 

where 

M2 =~' (1/1 S 12n+l) = 21;(2n + 1). 
n 8 

(95) 

To convert 2:;2:
8 

to a more rapidly converging form, we 
use the Poisson sum formula 

t F(s)=2J~ F(x)dx+4t C F(x) cos (2V7TX) dx 
s=-oo 0 11=1 L 0 

and the corresponding decomposition of (94), 

L~::' = M2n + N~::'[v = 0] +K~::'[~J. (96) 
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n2m- 4(2n-1)!7T 
2n - 22nr(n+m+t)r(n-m+t) 

4(n - 1)! 
(2n + 2m - 1)! ! (2n - 2m - 1)! ! 

The r function7 version covers N~~+2, the special value 
required to construct Rand 1 for m = n. Thus 

}{.2n+2 _ 41:(2n)(2n - 1)! (- 1)n+17T _ 41:(2n)(2n -1)! (-1)" (98) 
2n - p2n22nr(2n+t)r(-t) - p2n(4n+1)!! 

For K~::', we expand cos2m/3 in powers of sin2/3 in 
order to isolate a standard representation for Kn. Thus, 
from 

m 

cos2m/3 =~ B~ sin2a/3, B~ = 1, 
a=O 

B m _ m(_1)U22a(m +0- -1)! 
a - (20-)! (m-o-)! 

• 2 t2p2 
sm /3 = 2 t2 2' 

X + P 

1~ cos (2 V7TX) _(2V7T)1 KI(2v7Ttp) 
o (X2 + t2p2)1+1;2 dx - tp (21- 1)!! ' 

we obtain 

K2m _ 8(2 )2nf'; B~ ~ 2n Kn+u(a) 
2n - 7T ~ (2n+20--1)!! "V ()In..., , 

(99) 

(100) 

Equation (96) in terms of (95), (97), (98), and (100), 
plus the construction relations (93) are equivalent to the 
earlier set (86). Although we could eliminate an..., from 
(100) by successive applications of the recursive rela
tion (2n/a)Kn=Kn+1-Kn_1' the alternate form of K~::' in 
(86) obviates the matter. Thus, by comparison, 

(_l)n~m(o)f; B:;' Kn+u(a) 
2 n a=O (2 n + 20- _ 1)! ! an..., 

n E n2m,21 
=~ (2 1 

2n21 ) I K2!(a). 
1=0 n - . (101) 

(The special case m = 0 is given in Ref. 8, p. 71.) The 
difference in the two forms in (101) corresponds to the 
two different decompOSitions for ~::'(O) cos2m/3 that are 
implicit: For the left Side, we used a polynomial in 
sin2/3, and for the right, a set of terms ~!(cos/3). We 
may also obtain additional versions from cos2m/3 = (_ l)m 
X2:B~cos2a/3 or cos2m/3=2: (~;')(cos2/3)m-T(_ sin2/3t, and the 
more general integral 

i
~ XU COS2V7TX _ (-l)I()~[anKn(a)] 

o (x2+t2p2)n+1I2 dx- (tp)2n-2!(2n_l)!!' a = 27TVtp. 

Additional relations among Kn series follow from (93) 
and (100), and the interchange relations (91) provide 
inversion forms between the series for small and large 
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values of the argument, e. g. , 

(102) 
- [( - 1 )m{J2n - p 1 D~::' ~(2n) + (_ l)mp2n+tK~::'( pl. 

In p;) rtir.uJar for p = 1, we obtain (89) in the form 

U(?n + 1) - D~~2/+1) ?;(2n) = - K~~21+1)(1). (103) 

Thp a:;;ymptotic forms of K~~ implicit in (84) follow 
dirpdlv frnm (J 00): 

K~;n( () - (\~~~, 

j(2n_ 4(_1)n(41T)2n", l}nK(~) = K n
A

, 
?" (,1/1._1)1.011 ~ (104) 

K2n+2 _ - 16(- 1)n(41T)2n 6 v2nK(0')[0' + 2n2 _1.] 
2t. (4n+l)! II 8 

=K~ - t(4n-1)K~ -K~, (105) 

where the next terms are of order K/O'. Thus of the 
functions required for (90), asymptotically, only L~~, 
R~~!L and [~~!l contain K series of order K~ or K~. The 
functions L~~, 2R~~:L and - 2l~~:1 contain K~; 2R~~:f con
tains K~- K~.(4n - 3)/2 -~, and - 2l~~:1 contains ~ 
- K~ (,In + 1)/2 -lq. 

3. SCATTERING COEFFICIENTS 

The algebraic equations (6) for the multiple scatter
ing coefficients may be reduced in terms of either 
H n, I[Y(1:) 1 or H::'[Y(?;)]. We consider the system for A;;' 
in te.:-rrs of H::' because it is the simpler, but corre
spondin~ results for An, 1 in terms of H n, I may be obtained 
by supprn')sition. The invariant scattering amplitude G 

may be written 2:A'::Y'::W=2:An.IY~W. Substituting Y;;,W 
~ 2:1 D::"ly~(~) into the first form and using the ortho
gon8Jity of the Y~W, we obtain A ... 1 =2:mA::'D;:" I, from 
which (by the orthog;onality of the D;:" I) we also have 

In simplifying (6) it is convenient to work initially 
with the svmbol 

(-m It) = '" d (-m. t)H t-m = (I I-m) 
r: ,~ De z n, T I r n' (106) 

(109) 

where the special symbols represent the lattice sums 

(~I~) =H~, (~I D =Hl =H;, (~I-l) = - tHl(- (3) =Hti, 

(~In = t(H~ + 2M) =H., (-ll D = - t(H~ - M) =- Hb' 

<11 D = tH~ =H;, ("'llit) = -f2Hh- (3) =H~. 

We solve the system (109) in a stepwise fashion, to de
lineate special cases of phYSical interest. 

If we are dealing solely with monopoles, then (109) 
reduces to 

(110) 

which equals the corresponding multiple scattering am
plitude G. For this special case, in view of (9), the 
multiple scattering coefficient is similar to the single 
scattered in that it has the same value for all relevent 
directions k"". 

On the other hand, for pure dipoles, from (109), 

which we reduce to 

A~ =atIi/(1- atH.) =A~Y~, Ai =- BYjt +BAH;yt=Ai, 

A =a/(l- atHb)' B =A/(1-A2H;H~). (112) 

The corresponding multiple scattering amplitude, G 

= A~ Ii (r) + Af Yf + Ait Yjt, may be written 

G =A~ cos8 cos80 + B sin8 sin 80{cos (<p - <Po) 

+A [H~(- (3) exp(i(<p + <Po)) +H~({3) exp(- i(<p + <Po))V12} 

=Gt • (113) 

The explicit functions of direction are symmetrical in r 
and k (with both in the set k"J and from (9), the coef
ficients which depend implicitely on H(k) are also sym
metrical to the interchange; thus G(r, k) = G(k, r) has the 
inversion symmetry required by elementary considera
tions. Because of the inversion symmetry, the reciproc
ity theorem G(r, k) = G(- k, - r) or (1 :17) may be written 
G(;,k)=G(- r,-k); from (10), the coefficients are in
dependent of the sign of koo, and since r = r(8, <p) leads 

whir.h, together with 

y;:my: =0d,Yi-m, 
to - r = r(1T + 8, 1T + <p), we see that Gt fulfills the 

(107) theorem. 

makes explicit the spherical modes that are coupling. 
In p<>.rtiruhlr, in terms of (106), we rewrite (7) initially 

00 r 

A;n=(-1)m~n[y~m(k)+0A;(-;;,I;)l, 0=6 6 (108) 
roO t=-r 

In (106), the coefficients d , vanish unless I +n+r is 
even, and the functions H vanish unless 1 - t + m is even. 
Thl's, we reauire that n + r + t - m be even, and (108) re
duce:;; to two sets of equations; in one set n- m and r- t 
are both even, and in the other both odd. 

For small scatterers, we truncate the system of 
equations by retaining only a small number of the 
isol<J.ted :;;catterer coefficients an. Thus, if we retain 
only the monopole (ao) and dipole (at) terms, (108) re
dl1CPS to 
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If the isolated scatterers have comparable monopole 
and dipole coefficients, we again obtain A~ as in (112), 
but the remaining coefficients are coupled. In terms of 
the symbols defined in (110) and (112), 

A~ =Ao(l +A1H; + Aj"tHti) , 

Ai = - A (Yjt +A8H; +AiH~) =Ai' + Age, (114) 

C=-B(H;-AH~m), 

where only coupling effects between n = 0 and ± 1 are left 
explicit. Thus 

A~ =Ao(l +HJAl +HdAit)/D =Ao(l + YitC + ylC)/D, 

D d -Ao(H;C+HtiC), (115) 

which we also use to eliminate A~ from the final form of 
Ait of (114). The present Ag depends on the direction of 
incidence, and the Ait also include constant terms. To 

Victor Twersky 654 



                                                                                                                                    

emphasize the dependence on directions of incidence, 
we write 

A~==B+B+Yjl+B-Yl, B==Ao/D, B~==BC==AoC/D, 

A!I==B"+B1Yjl+BiYf1, B 1==-B+BCC, (116) 

Bj ==BAH~+B(C)2. 

The corresponding scattering amplitude is 

G(r, k) =B +B-(yl + yD +B+(y;:1 + y;:l) +A~1111 

+B1(Y1Yi1 + Yilyi) +Biylyl +BiYjly;:l , (117) 

where, for each pair of Y's one Y has argument rand 
the other k (with both in the set kv.,). From the pairing 
of the Y's and from (9), we see that G(r, k) == G(i, T). 
In addition, G == (r, i) == G(- k, - r) == G(- r, - i) is fulfilled; 
because of (10), only the coefficients of ytl (propor
tional to C[ - i] == - C [kJ) change sign and this is com
pensated by ¥;:'(- r) == (-l)n¥;:,(r). 

We rewrite (117) as 

G = G1 +BF(r)F(k), F(r) = 1 + CYf(r) +CYi1(r), 

B==Ao/D, (118) 

where G1 is the pure dipole amplitude as in (113). Since 

C ==- B[Hl(J3) +AH~(3)Hj(- f3)/6] =C({3), C == - iC(- {3), 

we may also work with 

F(r) = 1- HC(- {3) exp(ic:p) +C({3) exp(- ic:p)] sine, 

D == 1 + iAo[Hl(f3)C(- f3) +Hi(- {3)C(f3)]. 

For normal inCidence, only the lattice sums H~: are 
nonvanishing; thus t- m and 1 of (106) are even, and 
consequently n+Y of (108) is even. Since y~m(z)==1imo, we 
obtain the two independent sets of inhomogeneous 
equations 

A~::' == a2n[ 0mO + 0A~;("22nm I ~;)], 
A2m - [" '" AU (-2m I 2t )] 2n+l - a2n+1 vmO + L.J 2r+l 2n+l 2r+l 

as well as two sets of homogeneous equations 

A~m+l == _ an0 A;t+l(-2,;:-112t;I) 1ie(n - Y) 

(119) 

(120) 

ReAo ==Re[ao(l- aoH~)*Vll- aoHgj2 

==- lAo 12(1 +9~) 

with 9 ~ == 2Co Lp secev" - 1; similarly, fromA~ == at! 
[1- al(f!~ + 2M)/3], we have ReA~ ==- IA~ 12(1 +9g+29g)/ 
3 with9~==2CoLpPnsecev" and Po +2P2 ==3 cos2e. 

To consider higher order coupling effects in detail, 
we rewrite G == LA::'¥;:' as 

00 00 n 

G==0A~+0 0B::'P':cosmc:p, 
n=O n=l m=l (122) 

B~ ==A::' + C':A~m, C': == (- l)m(n - m) !/(n + m)!. 

The terms in (A': - C::'A~m) sinmc:p were dropped because, 
from (120), they satisfy a homogeneous system. If we 
write A~ = B~, then either set of equations in (119) may 
be reduced to the system 

B~ == an[1 +0 B;t C, 1
2;)1ie (n - y)], 

B~m==an0B;t{2nmI2:}oe(n-Y), (123) 

{';! I;} = C::'(';: I;) + (-nm I;), {';: I~} = 2 c::' (';: I ~). 
To include all terms up to a2, we retain A~ as in (111), 

but replace (110) by 

Bg == ao[1 +B~(g I~) +B~(~ I~) +BH8 I ~)], 

B~ ==a2[1 +B~(~ Ig) +B~(~ I~) +B~(~ I~)], 

B~ ==a2[B~g In+Bgg m+Bm 1m, 
where the symbols represent the lattice sums 

(~lg)==H~, (gl~)==M, (gl~)==HL H[g}=2f1i14!, 

(0 I 0) 1 flO 2 flO 18f10 -fl 2 2 == 5" 0 +"7 2 + 35 4 = e' 

(w) == - tH~ + g\H~ =Hf' H1n== 2 Hf /4 !, 

{~m== g\Hil4 ! +tH~ - tH~ + f5f11. 

(124) 

Suppressing self-coupling in B~, we rewrite (122) as 

Bg ooao(1 +BgW+B~X), Bg ooa2(1 +B~Y +B~Z), 

B~ ==A2(Bm I g}+BgH 1m, A2 =a2/(I- a2g 1m, 
W= (8 Ig) + (8Ii)A2{i m, X= (8 I~) + (W)A2g IH, 

(125) 

corresponding to eigenvalue problems. Thus, for sym- Y = (~ I~) + (g I ~)A 2H1~} =X, Z = (g I g) + (g I ~)A2H1 no 
metrical excitation, the coefficients decouple, essential-
ly as for the grating and the periodic line. We obtain 

For small scatterers, if we retain only ao and al we 
obtain Simply the uncoupled pair, (110) for A~ =Ao and 
(112) for A~ =A~. The miSSing coefficients Ail and A;:l 
correspond to the homogeneous system (120), i. e. , 
At1 =a1 (At1f1 b - Ajlf1~); unless (1 - alHb)2 = aifl~fI~, the 
only solution is Ail =Ajl = o. 

For lossless scatterers, from theorem (1 :18) with 
GooAo+A1COSe, we require 

-ReAo=2CoIAoI 2L; secBv", 
p 

- ReA1 = 2Co IA~ 12 6 cosB"", Co = rr/k2bd. 
p 

(121) 

Using - Rean = 1 an 12/(2n + 1) and 9 ~ == Refl~, we demon
strate directly that the present explicit results satisfy 
these relations. Thus, from A 0 = llol (1 -lloflg), we have 
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Bg = ao[l +a2(X - Z)VD, Bg ooa2[l +ao (Y - w)VD, 

D = 1 - ao W - a2Z + aOa2 (WZ - XY), 

and B~ follows by superposition. 

Similarly, to include all terms to a3, we replace 
(111) by the analog of (124) for n odd, 

B~ ooa1[1 +B~(~ I V +B~(W) +B~(~ 1m, 
B~ = a3[1 +B~(~ I ~)+Bg(~ I~) +B~(~ 1m, 
B~ = a3[ B~n I n + Bm I n + Bm In] 

ooA3[BmIU+BmlnJ, As ==aa/(1-lloH 1m, 

(126) 

(127) 

from which we obtain corresponding closed forms by 
inspection of (125) and (126). 

In particular, for the square cell (b =0 d) all fI~ terms 
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vanish. For this case, reverting to A~ =oB~, we reduce 
(123) to 

A~ = ao[l +A~(818) +A~(~ I~)], A~ = a2[1 +A~(~ 18) +A~(W)]. 
(128) 

In terms of self-coupling coefficientsAo andA2, we 
have 

A~ =Ao(l +A2H~)/D, A~ =A2(1 +AoH~)/D, 

A 0= ao/(l - aoH8), A2 = a/ (1 - a2H 0)' 

D = 1-AoA2(H~)2. 

(129) 

These forms emphasize the symmetry of the monopole
quadrupole effects. Similarly, for dipole-octupole 
coupling, from (127), 

A~ = at[l +A~(~ I~) +A~(~ 1 g)], Ag = a3[1 +A~(~ 1 ~)+A~(m)], 
(010)_ 3Ho 4 f1o- H t 3 -"7 2 +"7 4 = g' 

(01°) - 1 HO ..iHO 18Ho loo H o-H 3 3 -"7 ° + 21 2 + 77 4 + 2:li 6 = h· 

In terms of self-coupling coefficients, Al and A 3, 

A~=Al(1+A3Hg)/D, Ag=A3(1+AtHg)/D, 

Al =at/(l - atHa), A 3 = as! (1- a3Hh), 

D=1-A1A3(Hg)2. 

(130) 

(131) 

For detailed applications we rewrite the algebraic re
sults for A::' in terms of the coefficients a~ of the radia
tion-stripped amplitude g' discussed after (1 :32). We 
have 

g'(r, k) =g(r,k) - J g(r, r')g'(r',k)dn(r'), (132) 

where i' is over the real unit sphere. Substituting the 
general form for spherically symmetric scatterers, 

(133) 

and its analog g' =g[a'] into the integral equation (132), 
we obtain 

and the inverse 

a' a = n 
n 1 - atl/ (2n + 1) . 

Corresponding to the an given after (7), we have 
a~ =i(2n + l)j.lnn. 

(134) 

(135) 

For lossless scatterers, from - Reg(r, k) = f g(r, i') 
xg*(r', k) dn(f')/4rr and (133), we obtain - Rean =0 \ an \2/ 
(2n + 1). Similarly, from Reg' = 0, it follows that - Rea~ 

= O. We now show that the role of linO in the lattice func
tion 9::' of (26) is essentially to replace an by a~ in A::'. 
The stripped coefficients show no radiative losses cor
responding to omnidirectional scattering, and their use 
in A::' makes more evident that the only radiations loss
es (as determined by 9::' - li nO ) are along the propagating 
modes of the array. See analogous detailed discussion 
for the grating. 

We convert (7) and (108) and all subsequent results 
stated in terms of an and H::' = 9::' + iN::' to the corre
sponding results in terms of a~ and 

656 J. Math. Phys., Vol. 16, No.3, March 1975 

H ,m -Hm ~ - (),m 'Nm 9,m '\' 2C ym(~) 
n - n + VnO - (/ n + Z n, n = L.J VI" n "v • 

( P 
(136) 

Thus with 

do (-nm;,:) H8 = do(HQo - 1), (-nm 
1 ~)' = 6d!(-nm;;) H;t-m 

we rewrite (108) originally as 

A;;' = (- l)man[y~m - A;;'do(";,m;:) +"0 A,:(";,m 1;)'] 

- { (-1)
m
an l[y-m '\' A t(-m 1 I),] (137) 

- 1 + (-l)ma,{I~.\ n +L.J TnT • 

To evaluate do, we consider the special case of (107) 
corresponding to y~my:. If we integrate both sides of 

~mu;)p;;'(i;) =:0 d1 C,m;;;,)p~(?:) 

over J~t d{:;, then only the do term survives, and we have 

do(-;,"';::') = (-1)m/(2n + 1). (138) 

Using this value in (137), we identify the function in 
braces as a~ of (134), and thereby reduce A;;' to 

Am = (_ l)"'a'[y-m +/, AI(-m 1 1)'] n nJ1 L..i rny , (139) 

i. e., to the original form (108) in terms of the stripped 
functions. Similarly all the explicit results for A;;', in 
terms of an and H in (110)f£, hold equally in terms of 
a~ and H'. 

The results (110)- (131) for the coefficients A;;' and 
the corresponding scattering amplitude G of (4) enable 
us to construct the associated transmission and reflec
tion amplitudes of (1:15) and (1:16), i. e., 

TT=2C TG(kT)+6T(), RT=2CTG(k~), CT=rr/l?2bd{:;T 

(140) 
with T = T(V, J1), and ko suppressed in G. 

We may also apply the results to the related problem 
of the corresponding array of protuberances on a rigid 
(+) or free (-) plane. The symmetry components of 2(; 
with respect to reflection in the plane of the array pro
vide the corresponding amplitudes for the bosses, 

P,.=G(kTl±G(k~), k'=k-21:z. (141) 

For an incident wave ± 1>(kQ), the reflection amplitudes 
for the embossed plane equal 

R\ = 2C T [ G(k,) ± G(k~) 1 + liT() (142) 

as discussed in detail for the two-dimensional problem. 3 

For a rigid base plane, we work with R +; however, the 
bosses may be free or rigid or general. 

The present closed form representations (110)-(131) 
in terms of H::' of (73) allow for more detailed develop
ment of the resonances for near-grazing modes than 
(1 :37). However, since (1 :39) suffices for the essen
tials, and since we have considered the additional de
tails obtained from the closed form approximations of 
A for the analogous3 two-dimensional problem, we re
strict the sequel to the novel low-frequency coupling 
effects for small spacings. 

ACKNOWLEDGMENTS 

Part of this work was done at the Hebrew University 
in Jerusalem and at Stanford University while on sab
batical leave from the University of Illinois. I am 

Victor Twersky 656 



                                                                                                                                    

grateful to the Mathematics Departments of the Univer
sities for their hospitality, and to the John Simon 
Guggenheim Foundation and to the National Science 
Foundation for the support that made the visits feasible. 

*Work supported in part by National Science Foundation Grants 
NSF GP-27953 and GP-33368X. 

tFellow of the John Simon Guggenheim Foundation, 1972-1973. 
IV. Twersky, J. Math. Phys. 16, 633 (1975). 

657 J. Math. Phys., Vol. 16, No.3, March 1975 

2V. Twersky, J. Acoust. Soc. Am. 53, 96 (1973). 
3V. Twersky, IRE Trans. AP-10, 737 (1962). 
4B. Friedman and J. Russek, Quart. Appl. Math. 12, 13 
(1954); S. Stein, Quart. Appl. Math. 19, 15 (1961). 

5A. R. Edmonds, Angular Momentum in Quantum MecJumics 
(Princeton U.P., Princeton, N.J., 1957). 

6V. Twersky, Arch. Rat. Mech. Anal. 8, 323 (1961). 
71. S. Gradshteyn and 1. M. Ryzhik, Tables 0/ Integrals, Series 
and Products (Academic, New York, 1965). 

8W. Magnus, F. Oberiettinger, and R. P. Soni, Formulas and 
Theorems/or the Special Functions (Springer, New York, 
1966). 

Victor Twersky 657 
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The solution for the three-dimensional problem of multiple scattering by a doubly periodic planar 
array of bounded obstacles is specialized to consider low frequency coupling effects for spheres. For 
all of the usual boundary conditions, we derive closed form approximations for the transmission and 
reflection amplitudes explicitly in terms of the physical parameters of the isolated scatterers, lattice 
spacings, and direction of incidence. The results are compared with those obtained earlier for the 
grating of parallel cylinders and for the periodic line (and planar random distribution) of spheres. 
We show, for example, that the pseudo-Brewster effects are anisotropic for the rectangular lattice cell, 
and that the leading effects of close packing for a square array of rigid spheres may be 
approximated by single scattering by an equivalent spheroid representing elongation in the plane of 
the array and contraction along the normal. For dense packing at very low frequencies, we obtain 
explicit closed form approximations including up to octupole-<lctupole coupling effects. 

INTRODUCTION 

In previo1.ls papers!,2 we consider m1.lltiple scattering 
of waves by a d01.lbly periodic planar array of obstacles. 
In the first! we emphasized the plane wave array-mode 
representations for the sol1.ltion and for the m1.lltiple 
scattering amplit1.lde, and investigated the resonances 
corresponding to near-grazing evanescent modes. In 
the second2 we derived rapidly convergent representa
tions of the spherical wave lattice S1.lms that character
ize the array, and obtained closed form approximations 
for the multiple scattered coefficients of small scatter
ers in terms of their single scattered values. 

Now we consider the second major class of interac
tion effects which invalidate a single-scattering approxi
mation: low frequency coupling of the multipole moments 
of the component scatterers. We take the obstacles to 
be spheres subject to the usual boundary or transition 
conditions; for concreteness, we use the terminology of 
small amplitude acoustics. We derive closed-from ap
proximations for the corresponding transmitted and re
flected fields (explicitly in terms of the physical pa
rameters of the isolated scatterers, lattice spacings, 
and direction of incidence) and compare with earlier re
sults for the grating of parallel cylinders, and for the 
periodic line (and random planar distribution) of 
spheres. 

We show, for example, that the pseudo-Brewster 
effects are anisotropic for the rectangular lattice cell, 
and that the leading effects for a square array of rigid 
spheres are described in terms of a multiple scattering 
amplitude approximating the single scattering function 
for a spheroid elongated in the plane of the array and 
contracted along the normal. For dense packing at very 
low frequencies, we obtain explicit closed form approxi
mations including up to octupole-octupole coupling 
effects. 

For brevity we use the notation (1 : 9) to indicate Eq. 
(9) of Ref. 1, etc. We start by stating several results 
derived earlier!·2 and then go directly to physical appli
cations, and generalizations. 

1. TRANSMISSION AND REFLECTION COEFFICIENTS 

The radiation field for a plane wave cp (k) = exp(ik· r) 
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incident on a planar lattice of obstacles with spacings 
band d (along x and y) small compared to wavelength is 
specified by the transmission and reflection amplitudes 

(1) 

Here G = G(k, k) is the forward multiple scattering am
plitude for Adirection of incidence k = tz + ~x ";..1)y = Z cose 
+ (Xcoscp+ysincp) sine; similarly, G'=G(k',k), with 
k' = - tz + ~x + 1)Y as the image of k in z = 0 (the plane of 
the array). We have 

~ n 

G(;,k)=6 A ::,(k)r.;'(;), 6=6 6 
n, m n=:O m=-n 

(2) 

with the multiple scattered coefficients A;:' expressed 
algebraically2 in terms of their single scattered analogs, 
and in terms of the basic lattice sums H;:' = f);:' + iN;:' 
= H~m + '\0 for the array. 1.2 For spherically symmetric 
obstacles, in terms of the coefficients an of the isolated 
scattering amplitude, 

g(r, k) = 6 an(- l)my;;'(r)y~m(k), 
n.m 

a~ (3) 
a n = 1-aj(2n+1)' 

we conSidered the algebraic system A =A(a,Hl as in 
(2:7) and (2:108), as well as the form, A=A(a',H'l of 
(2:139), in terms of the radiation-stripped coefficients 
a' and the sums H'. Now we specialize the closed form 
approximations for A~ and the rapidly converging 
representations for H developed earlier, 2 and construct 
explicit low-frequency practical approximations for T 
and R for the usual acoustic conditions3 at the obstacles. 
In addition, we obtain more complete closed forms than 
before2 in order to investigate higher-order multipole 
coupling at dense packing, and generalize some of the 
results to ellipsoids. 

We also apply the results to the related problem of 
the corresponding array of protuberances on a rigid (+) 
or free (-) plane. For an incident wave ± cp(k'), the 
reflection amplitudes equal 

1Z±=T±R=1+2CF±=(1+Z±)j(1-Z,,), F±=G±G', (4) 

as discussed in detail for the two dimensional problem4; 

F+ and F are the symmetrical and antisymmetrical com-
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ponents of 2G for reflection in the plane of the array. 
In using (4) say, for a rigid base plane, we work with 
R+; however, the bosses need not be rigid, but may cor
respond to other boundary conditions. The impedance 
Z = CFI(1 + CF) facilitates comparison with related re
sults for the random distribution5 (rough surface). 

For the small spacings of present interest, the scat
tering theorems1 for G are particularly simple. For 
lossless scatterers (Rea~ = 0), 

-ReG=C(IGI2+ IG / 12), -ReG I =2CG' G*, (5) 

or, equivalently, 

ITI2+ IRI2=1, ReR*T=O, IT±RI =1. (6) 

Similarly, 

-ReF,,=CIF,,12, z,,=ilz,,1 sgnZ", IR" 12=1. (7) 

We use these forms as checks to insure the develop
ment of energy conserving approximations. 

All cases we consider are based essentially on (2:139) 
in the form 

( 
- m I f) I = 6 d (- m .t)H tt-m 
n r I I\n 'r I 

(8) 

where the numbers d l arise6 in the expansion r,;my! 
='Zd1y!-m. For n+r> 1, the largest terms of (';,ml;) are 
of order k-2 (n+r)-1. We begin by listing the long wave-
length (small k = 21T/A) approximations of the coefficients 
a~ and of the lattice sums H:;: that we require. Then we 
proceed directly to obtain explicit results for Rand T. 

A. Stripped coefficients 

The leading terms of the following approximations 
are based on the small x values of the spherical Bessel 
and Newmann functions, 

. xn (2n-1)!! 
In(x) '" (2n+1)!! ' nn(x) "'- xn+l , 

(2n) ! 
(2n-1)!!=-2n , =1'3'5"'(2n-1), (±1)!!=1. n. 

If the field 1/! vanishes on the surface r = a, i. e., pres
sure release (free surface) scatterers, we have3 a~ 
=i(2n+ 1)jn(x)lhn(x) , x =ka: 

The next term of a~ (here, and in all subsequent illu
strations) are of order x2n+2. For rigid scatterers, 
or1/! = 0 1/!lor = 0 at r = a gives the same form for a~ in 
terms of orjn and o:x;nn; consequently, 

at'" - dx3 (1 - h 2
), at "'ih3(1- 10- x2

), 

(9) 

ix2n+ln 

a~ '" [(2n _ 1)! ! F (n + 1) . 
(10) 

More generally, 1/! is continuous and or1/! is discontinuous 
at r = a, and the propagation constant differs from k for 
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r <a. From (3:46) in terms of an inverse relative den
sity parameter 8 and a compressibility parameter [, 
such that ([18)1/2 = j.J. is the scatterer's relative index 
of refraction, we have 

a~ "'- itx3(1-C), aj "'ix3(1- 8)/(2 +8) =ix3
[, 

I",' x2n+l(1_8)n _ ix2n+1[n , 

an Z [(2n _ I)! ! ]2 (n + 1 +8) - [(2n - I)! ! ]2 

(11) 

where the next terms in aij and a{ are ot 01 ut;r x 5• II 
[= 8 = 0, then (11) reduces to (10). The m01l0poi.e co
efficient dominates for free surfaces or if the scatterers 
have the same density (B = 1) as the embedaing space, 
and the dipole dominates, if C = 1. For nglQ scaclt! .. t!rs, 
or for the general case (11), the monolJole and aipole 
terms are of the same order of magnitude. We also 
consider other scatterers in the course of the develop
ment, but the above shows the essentials of the depen
dence on the parameters. 

B. Low frequency lattice sums 

The original lattice sums (2:8) in terms of ou(~oing 
(hn ) spherical waves were slowly converging, but we 
developed alternative representadoils. In terms 01 ttlt! 
decomposition 

H
Im Hm '" (JIm 'Aim (J 1m (Jm '" 
7J = n +VnO=t/n +ZIVn, ;;-n =(In +vnO, rt- Til even, 

we obtain [) '(jn) from the one-mode case (~:27), 

[) ~m = 2Cy;;'(k) = (21Tlk2bdt,)P';(S) exp(i1llcp), 

t,=cos8, 1J/~=tancp. 

(12) 

(lJ) 

For N(nn), we work with small kd approximations based 
on the limiting values 

_N~';(kb)2n+l _ 2m' 
(4n-l)!!(-1)n~,;(0) L 2n \p), 

- N~::,+"l(kb)2n+l 2m+l' 2m+l 
(4n+1)!!(-1)np~::':80) -~oR2n+I(P)+Z1JoI2n+1 (P), (14) 

~m(O) = (2n + 2m)! (- l)n-m = (2n + 2m - I)! ! (_ l)n-m 

2n 22n(n + m)! (n - m)! 2n- m (n - m)! 

~::,+;1(0) = (2n + 2m + 1)~::'(0) 

where p = dlb?- 1. 

The n = 0 terms were given in (2:79) and (2:80): 

L~ = - 2 In (41T/yp) + 86Ko(a), 

y=1.781···, a=vf21Tp, 6=66, 
"=1 t=1 

R~ = - 2In(41T/yp) + 2 + 86 (Ko - aK1), 

ll=- 2+8~aKI' 

From (2:87), 

Lg = 2[,(3) +4t,(2)p-2 - 46 (27TV)t(Ko - K 2), 

L~ =2[,(3) -tt,(2)p-2 - t ~(21TV)2(3Ko +K2); 

R~ = 2t,(3) + t 1;(2)p-2 - t 6 (21TV)2(3Ko - K 2), 

II = fl;(2)p-2 + t 6 (21TV)2K2' 
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Ii = - -Is 1:(2)p-2 - fr, 6 (211'v)2 a (15K1 +K3); 

L~ = 21:(5) + t1:(4)p-4 + t 6 (211'v)4(3Ko - 4K2 +K4), 

L~ = 21:(5) - t1:(4)p-4 + -h 6 (211'v)4(5Ko - 4K2 - K 4), (19) 

L~ = 21:(5) + ~1:(4)p-4 + 1~5 6 (211'v)4(35Ko + 28K2 +K4). 

We also require L~m, which we obtain from the general 
form (2:86) 

L2m _ 21:(7) (- 1)m 
s - + (5-2m)!!(5+2m)!! 

+i6(211'V)SSim), 

S~ = - 10Ko + 15K2 - 6K4 +Ks, 

S~ = 14Ko - 17K2 + 2K4 +Ks, 

5: = - 42Ko + 15K2 + 26K4 +Ks, 

S~ = 462Ko + 495K2 + 66K4 + Ks. 

(20) 

From the results for p ~ 1 we can construct the values 
for p < 1 by using the interchange relations (2:91) 

(21) 

where we may replace p by p-l throughout. For the 
square unit cell (p=1), L~n(1)=L~n(1)=L~~21+1l(1)=0. We 
may construct the R's and 1's from the L's by using 
(2:93), i. e., R~::':l = t(L~::' + L~::,+2) and I~::'.:l = t(L~':: - L~::,+2). 
From (2:86, 98) we write 

L~::' = Z~::' +K~::', Z~::' = 21:(2n + 1) + (_1)mD~::'1:(2n)/p2n, 

n2m- 4(2n-1)! 
2n- (2n-2m-l)!!(2n+2m-l)!!' O<sm<Sn, 

(22) 

D2n+2 _ 4 (2n - 1)! . 
2n -- (4n+1)!! ' 

the exceptional case ~~+2 follows most directly from 
(2:96), and the rest from (2:86). For p~ 1, the infinite 
series in K~::' are very rapidly converging. Numerical 
computations for p = 1 to 10 show that to 6 significant 
figures, we need at most 9 terms of the K-series; the 
largest number of terms are required for p = 1 and 2m 
= 2(2l + 1), but if p ~ 2,3 the series do not affect the 
first 2,5 significant figures. For many practical pur
poses we may use the asymptotic form for the modified 
ltankel function, Kn(x) - K(x) = e-X(1I'/2x)1 12 and approxi
mate the rapidly converging sums by the leading terms. 
If Kn - K is adequate, then except for m = n, the K- series 
vanish in the L's; similarly, only R~~:f and ll:+il contain 
series in aK. 

2. MONOPOLES 

For pure monopoles, from (2:110), 
I 

('-Ao- ao _ ao =Ao 
J - 0 - 1 _ arllo - 1 _ af/l~ - 0, 

mo = 2C +iN~ ::::2C - iLVkb (23) 

with C = 1I'/k2bds, and Lg as in (15). For lossless scat
terers, Rea~ = 0, we obtain - ReA~ = 2C lAg 12 as required 
by (5). 
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For the free surface case, we neglect all but the lead
ing term of (9), i. e. , 

R= T-1 =2CAo=~ 
o 1- iL ' (24) 

L = kdt,(~ +LO) = kdt,(~ _ 2ln 411'b +86K). 
211' a 0 211' a yd 0 

The contribution of K~ is minor: Even for the worst case 
(p = 1), K~ effects only the fourth significant figure. This 
can be seen from, e. g. , 

kdt,(b 4 ) L"'2IT (j-3.908+2Inp+pmexp(-211'p), 

d 
P=b~l, e-2r "'1.87xl0-3• 

For the compressible monopoles, from (11) with B = 1, 
we may neglect Ng and work with 

I 211'ka3 Vk 
Qo= 2Cao = 3bdt, (1- C) = 2bdt, (1- 0, 

(25) 

where we introduced V for the volume of the scatterer. 
Equation (25) also holds for ellipsoids with V = 411'a1a2as/ 
3, provided that the semi-axes ai «A, etc.; similarly, 
for (24) with the radius a representing some appropriate 
length parameter of the scatterer. For either case the 
array becomes perfectly reflecting at grazing incidence, 
i. e., R--l as s=cose-o. 

We may also use (23) for small resonant scatterers, 

a~ "'- i(ka)2 ~ +k;t
3

, T = C (cot/lka - ~ \ , (26) 
+ a /l \ iJ.ka ) 

such that g = ao = - 1 for the resonance condition kaT 
= - 1; if ka/l is also small, resonance occurs for (ka)2 
:::: 3/(. Using (26) in (23) for G =Ag, we get the resonance 
value G = - 1/2C, and consequently R = 2CA~ = - 1 and 
T = 0 for frequencies specified by 

ka(T - kaN8) = - 1 + (ka)Wg/3 '" - 1. 

If ka/J. is small, then 

(ka)2 ::::3/C(1- kaN~) ::::3/C [1- ~ (In ~; - 46K~ ] 

gives the frequency shift for resonance arising from 
coupling effects. 

(27) 

(28) 

For the analogous boss problems of (4), we have F_ 
,0 and F .. =2G. Thus 

IZ- = 1, J\ + = 1 +4CG = (1 +Z.)/(1- Z .. ). (29) 

The reflection amplitude is unity for a free base sur
face, but not for a rigid base. Corresponding to the free 
monopoles of (24), we now have 

J\+=(1-i/L)/(1+i/L), Z=-i/L (30) 

and for the compressible monopoles of (25) 

!\ + = (1- iQ)/(l +iQ), Z = - iQ. 

More generally, to include the resonant monopoles, 
we use 
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o = 1 4CAo = 1 +a6(2C - iN~) 
/\. + 0 1 - a0(2C +w8) 

z- 2CaQ 
- 1- ianN~ 

with an as in (26). At resonance, we get R. = - 1. 

3. DIPOLES 

(32) 

For pure dipoles, corresponding to C = 1 and af of 
(11) dominant, we work with the symmetry components 
of (2:113) in the form 

G=GA +Gs=tF_+tF., G'=- GA + Gs. 

We have 

GA =A11;2 ooafI;2/(I- afH~), 

H~oot(Hoo+2M) "'2CI;2_iLV(kW, 

(33) 

(34) 

where we used g~O +29g = 2C(1 + 2Fg) with Fg = (31;2 -1)/2, 
and neglected;Vg compared to Ng. Similarly, in terms 
of 9~(± cp) = 2C~(I;) exp(± i2cp) with ~ = 3(1- 1;2), 

Gs ooaf(l- 1;2)N/D, 

N 00 1 - afH~ + (aVI2)lh'~(- cp) exp(i2cp) +H~(cp) exp(- i2cp)], 

D = 1 - 2afHt + (aD2[(Ht)2 - HHcp)H~(- cp)/36], 

Ht =t(H~O-M) "'C(I- 1;2)+iLgj2(kW, 

H~(± cp) '" 6C(1- 1;2) exp(±i2cp) +i9LV(kW, 

where N~ was neglected compared to N'2. 

In terms of af of (11), 

a' 1;2 . rrka32{ 
GA '" V_liQlI;2' Ql= z2Caf'" ~, V=I-v, 

a'LO a3 
v-~ - {LO - i(kb)3- b3 2· 

(35) 

(36) 

The K-sum in Lg of (17) vanishes if the asymptotic form 
of K, is used; more generally, to two significant figures, 
Lg '" 2. 4 + 6. 6/ p2. In reducing G S' the 9 terms of Nand 
of D cancel, and we obtain 

N= 1 + tv - tv' cos2cp, 

D = (1 + tv + tv')(1 + tv - tv') - iQl (1 - 1;2) N, (37) 

3a'L2 a3 { V'-~--3 L2 
-i(kW-b3 2· 

Using (1- e) cos2cp = sin2e(cos2cp - sin2cp) = e - TJ2, etc., 
we write 

For the square cell, L~(I) of (17) vanishes, and v' drops 
out of the forms. 

The approximations (36) and (38) are energy conserv
ing forms. For lossless scatterers, from (36), we have 
-ReGA =2CIGA I2; similarly, from (38) -ReGs =2CIGs I2• 

In view of (33), these correspond to -ReF~=CIF~12 in 
accord with the energy theorem (7). 

We specify the direction of observation by ~r' TJr> I;r 
and combine (36) and (38) as 

G I;rl; !;r~V_+TJrTJV. 
af V-iQ11;2 + V.V_-iQl(~2V_+TJ2.) (39) 
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where Q1o:k, but the V's are independent of k. The 
cases involved in T and R correspond to I;r = ± 1;, ~r = !;, 
TJr = TJ; however, the present form facilitates various 
considerations. 

Initially, we consider the low frequency limit. For 
k - 0, we have Ql - 0, and, consequently, 

£_ I;rl; + j!;r!; j + prll. 
af 1 - v 1 + 21) + 2V' 1 + 21) - tv' , 

(40) 
G '" 'k3 3 (1 - B)"<;' I;r,l:, 

z a 2 +B LJ Vi ' 

where I;i stands for 1;, !;, TJ, and V, for the respective 
denominators V, V., V_. The analogous result for an 
isolated ellipsoid8 with semi-axes a, in the form (3:88), 
is 

This approximation corresponds to the leading terms 
ge"'L:afil:ril:i=g~; for energy conservation, we replace 
afi by au =af,/(I- tafi) as in (3:140). 

We compare (40) to (41) for 

ala2a3 = a3, (2 +& Vi = 3[1 + (B - 1) q I], 

2+B / 
3q , -l=B_l (Vi -l)=-(VI-l)/{. 

(42) 

If we sum over i and use L: q i = 1, we require L: VI 
=3[3 + (B -1)L:q,V(2 +B) =3, as is fulfilled by the 
denominators Vi in (40). Thus at very low frequencies, 
the sphere of volume V = 4rra3/3 in a rectangular lattice 
is equivalent to an isolated ellipsoid of volume V and 
semi-axes determined by (42). The analogous monopole 
term a~ for the ellipsoid in (3.38) is the same as a~ in 
terms of V; consequently, the equal volume condition in 
(42) also insures that (25) corresponds to A~ "'a~ "'a~o. 

For a nearly spherical ellipsoid we approximate ql 
by using ai =a(1 +EI ) with Ei "'0. To first order in E, we 
have, e. g., ql = t + ts(- 4El + 2E2 + 2E3), and Similarly for 
the others; these approximations satisfy L:ql = 1. The 
equal volume condition requires L: Ei = 0, and consequent
ly 3q i = 1 - 6Ej5. Substituting into (42), we obtain 

5 v + v' 5 (a) 3 0 2 
E2=12y=12 b (L2+3L2»0, 

5 v - v' 5 fa) 3 0 2 
E3= 12 T = 12 \b (L2- 3L2) <E2, (43) 

where E3 changes sign at p '" 1. 65 (for which L~ '" 3L~ 
"'4.8). We assume E3> 0 to facilitate discussion; thus 
al < a and a2 > a3 > a, i. e., the equivalent ellipsoid cor
responds to flattening of the sphere along the array 
normal and to broadening in the plane of the array, the 
elongation being greatest perpendicular to the closest 
spaced lattice lines (the lines spaced b < d apart along 
x). For the square cell, 
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Q _ ?;r?; ~T~ +1/rT/ V-I 
a' V + v: ' - - v, 

t 0 
Vo=l +~, (44) 

corresponds to an oblate spheroid with symmetry axis 
at < a2 = a3 along the array normal, 

(45) 

On the other hand, if p - 00 in (43) then L~ - L~ - 2?;(3), 
and the general results reduce to those for a single 
periodic line along x, Le., at=a3 =a(1-E), a2=a(1+2E), 
E = (5/3)(a/b) 3 ?;(3), which corresponds to a prolate sphere 
elongated along the axis of the line. See (4:143) for the 
analogous comparison of a circular cylinder in a grating 
with an isolated elliptic cylinder. These low frequency 
effects are independent of k, A or B; the E'S depend only 
on scatterer radius and spacing. 

For the square cell, from (39), 

R=,-iQt(Vocos2e- V sin2 e)/D , 

D ,,(V - iQt cose)(Vo - iQt sin2e), 

Too (VVo + Qi cos2e)/D. 

The reflection amplitude vanishes at the pseudo
Brewster's angle 

tan2eB " Vo/V" (1 + tv)/(l- v) ",1 +iv, eB "'450 +%v 

(46) 

(47) 

(48) 

with v depending only on alb and the relative density 
B·1• Corresponding to R B "0, the transmission ampli
tude is 

(49) 

For lossless scatterers, Qt is real; then 1 T B 12 = 1 as 
required. On the other hand, for grazing incidence, 
e - 42 in (46), we again obtain perfect reflection 
IRI 2 -1. 

For the general rectangular lattice, from (39), 

R=-iQt[?;2V+V.- V(~2V.+T/2V+WD, 

D = (V - iQt?:2)[V+ V. - iQt (eV. + T/2V+)], 

Too[VV+V.+Q2?:2(~2V~+T/2V.)VD . 

(50) 

The reflection amplitude vanishes, and we again obtain 
T B of (49), if 

?:2/Voo (~l!V+) + (T/l!V.) (51) 

corresponding to an anisotropic Brewster's effect 
We have 

cot28
B = (V/v.v.)(V_coS 241 + V. sin2 41) 

'" 1 - iv - tv' cos241, 
eB "'45° +%v +tv' cos241 (52) 

which indicates the essential effects of anisotropy. If 
41 = ° (incidence perpendicular to the longer spacing d), 
then tan2 8B = vjv, 8B ",45°+(3v+v')/8; If 41=rr/2 (inci
dence perpendicular to b), then tan2eB = VJV, 8B ",45° 
+ (3v - v')/8. Thus zero reflection occurs at a larger 
angle with the normal for incidence perpendicular to the 
larger spacing if B < 1. 
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For the analogous protuberances on free and rigid 
surfaces we have F.=2GA of (36) and F+oo2G s of (38). 
The corresponding reflection amplitudes p.. '" = (1 + Z",)/ 
(1 - Z",) are given by 

Z. =iQt?:2/V ooa\2rr?:/k2bdV, V = 1- v = 1- a\ Lg/i(kW, 

a\ooi(ka)3(1-B)/(2+B), (53) 

Z+ ooiQtW2/V.) + (T/2/V.)l. V", = 1 +tv ± tv', 
(54) 

For grazing incidence (?: - 0) we have Z. - 0 and Z+ - 00 

(as shown before5 for arbitrary scatterers); consequent
ly, p... - 1 and p.. • - - 1. 

For the square cell, v' = 0, we obtain 

2a' cos2e F = t 
• V - iQt cos2e ' (55) 

as well as the more symmetrical impedances 

Z.=iQlcoS28/V, Z+=iQtsin2e/Vo. (56) 

In terms of the corresponding symmetry components 
for an isolated scatterer, f",=g(r,k)±g(r,k') (or, equiva
lently, the scattering amplitude for a single protuber
ance), we obtain functional equations F[f] for the multi
ple scattered amplitude (and for the associated scatter
ing coefficients) with no cross-coupling terms between 
the symmetry components. 4 Thus, we may generalize 
(55) directly to small spheroids with isolated scattering 
amplitudes determined by inspection of (41): 

f. = 2aU?:r?:, f. = 2a12(~r~ + T/rT/) , 

_ ali , ik3ataW-B) 
ali - 1 - tal i' ali = 3 [1 + (B - 1)q I] . 

(57) 

We obtain 

F - 2ancos2e Q _ '2C' _ 2rr~1· 
.- Vt-iQtlCOS2e' 11--

1 al1-~' 

a'Lo 
Vt =1- v tool- i(kb~3 

(58) 

(59) 

The functions qt = 1- 2q2 are given, e. g., in (3:91) and 
(3:93) for the elongated and flattened spheroid respec
tively. For the elongated near sphere we have 

(1 - e 2
) (1 1 + e ) 2 (/)2 q t = --er- 2 In 1 _ e - e , e = 1 - a21 at , 

(60) 

q _1. .1.e2 _ 1: 2 (ai - a2) 
t - 3 - t5 - 3 - 15 al 

and for the near needle 

(61) 

For the flattened near sphere, 

qt = e·2 - e·3(1 - e2)t /2 sin·te, e2 = 1 - (at! a2)2, 

1 2 2 1 2 (a~ - a?) 
qt"'3+[5e =3+[5 2 ,a2?a j ; 

a2 

(62) 
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for the near disk 

-1 ~ 2al 
qj - - 2a2 + /if' aj« a2' (63) 

We may obtain more complete results for ellipsoidal 
scatterers by using the general algebraic system (2:6) 
in terms of the isolated ellipsoid coefficients9 ann. and 
the present lattice sums H. 

4. MONOPOLES PLUS DIPOLES 

If the monopole and dipole terms of the isolated scat
terer are comparable, then for arbitrary angles of in
cidence we work with G of (2:118). For normal inci
dence, the two different multipoles are uncoupled and 
G equals the sum of the ~o = 1 results for A~ of (25) and 
GA of (34). Thus 

, ~ , 
G = ~ + ~1 = G(~), G' = G(- ~). (64) 

1 +zQo 1 - zQl - v 

For the penetrable scatterers of (11), 

, _ - iQpo _ iQPl 2lTka3 4lT2a3 

CF+-1+iQPo' CF·-1_iQP1_v' ~ 3bd = 3Abd' 
(65) 

P = 1 _ s:- P = 3 (1 - B) 
o c, j 2+B 

with corresponding R = C(F+ - FJ and T = 1 + C(F+ + FJ. 
For the boss problem, 

_ 1 - iQPo R. = 1 +iQP/(1- v) 
R.+- l+iQPo ' • 1-iQPt!(I-v) ' 

a3 (1 - B) 0 
v = fj'J (2 + B) L 2(P) 

from which we may also construct R = t(f~ + - R. J, 
T = t(R. + +R. J. In particular, for rigid scatterers 

(66) 

(B =C = 0), we have Po = 1 and Pj = 3/2. Thus for the em
bossed surface 

l-iQ 1-i3Q/2(1-v) 
R.+= l+iQ' fL= l+i3Q!2(I-v) ' 

and for the complete lattice, 

a3 LO 
v=~.=:..z 

b 2 
(67) 

R = - iQ _ i3Q/2 T=1-~+ i3Q/2 
l+iQ 1-i3Q!2-v' 1+iQ 1-i3Q!2-v' 

(68) 

For lossless scatterers, these approximations satisfy 
IR. ~ 12 = 1 and I T ± R I = 1 as required. 

The expressions for Rand T have the same forms as 
for the grating given in (4:129); for the two-dimensional 
case we had 2 instead of 3/2 and the corresponding Q 

and v equalled Qc = lT2a2/Ad and Vc = lT2a2/ d23. We now 
have Q = Qc4a/3b, and for the square array v'>'vc4a/3b. 
For comparison with the results for the periodic line, 
we note that the present 

2CA~ = - iQ/(1 +iQ), 2CA~ = i(3Q/2)/[I- i3Q/2 - v 1 
(69) 

are the same forms as in (7:131); there we had 3/4 in
stead of 3/2, and the corresponding Q and v equalled 
Q L '>'4lT3a3/3A2b and v L = (a/b)3 ~(3) '>' 1. 2 (a/b) 3 , i. e. , 
Q = QLA/lTd and v ;::;vL(1 +3. 3b2/1. 2d2

). 

For pressure release scatterers, if we keep both 
monopole and dipole terms of (9), we supplement 2CA~ 
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of (24) with (34) in terms of at = - i (ka)3, i. e., with the 
smaller coefficient 

2CA~ '>' - i3Q/(1 +i3Q + 2v) (70) 

which differs from the corresponding result for the 
periodic line (7:134) in terms of Q L and v L in containing 
3 instead of 3/2. Although this coefficient is negligible 
compared to 2CA~, it provides the leading departure 
from unity for reflection from the corresponding pro
tuberances on a free surface. Thus instead of R. • = 1 of 
(29) obtained for the pure monopoles, we now have 

1 +2v- i3Q 
R..= 1 +2v+i3Q (71) 

From this expression we get the corresponding imped
ance Z. for reflection from an embossed pressure re
lease surface and, similarly, Z+ ofR.+ of (67) provides 
the mate for an entirely rigid surface. For these 
homogeneous surfaces we have 

Z.=-i3Q/(1+2v), Z+=-iQ, (72) 

which we compare with the imaginary parts of the anal
ogous expressions in (5:86) for the corresponding ran
dom distributions used to model rough surfaces. (The 
real parts of the earlier Z's correspond to incoherent 
scattering, and are therefore absent for the present 
periodic array. ) Except for the dipole packing factor 
1 + 2v in (72) the results are the same: The earlier 
function Q R = 1'2lTka3/3 with I' as the number of scatterers 
in unit area gives identical values as Q of (65), since 
db = 1/1' is the area of unit cell of the periodic array. 

For arbitrary angle of inCidence, if we neglect Q2 and 
smaller terms in the numerators and denominators of 
the individual coefficients 2CA:;' obtained from (2:116), 
then 

G-~ ai~T~ am2V.+1]2v.) (73) 
-1+iQo + V_iQj~2 + V+V.-iQj(eV.+1)2V.) 

in terms of the symbols given in (25) and (39). This ap
proximation neglects monopole-dipole coupling effects 
and is merely a superposition of the results we have 
already discussed. 

In particular, for the homogeneous reflection prob
lems, the pressure release surface is specified by 

CF = -i3Q~ 
• 1+i3Q~+2v' 

and the rigid surface by 

Q = 2lTka
3 

3bd 

For the square array, instead of (72), now 

(74) 

(75) 

(76) 

where we dropped Q2 in Z+. Except for the packing fac
tors in v these are the same as the imaginary parts of 
(5:86) for the corresponding random distributions. 

The sum of (25) and (47) is the corresponding trans
mission amplitude for the full array, and similarly 
(25) plus (46) is the reflection amplitude. To first order 
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in Q in the numerator, for the square cell in the nota
tion of (65), 

R '" - i(Q/t)[pVVo + Pj (Vo cos2e - VSin2e)]/O, 

0= (1 +iQo)(V - iQj cos2e)(Vo - iQj sin2 e) (77) 

'" VVo + [Po - Pj (VO cos2 e + V sin2 e) ]iQ/ t. 

For the single scattering approximation, R vanishes 
when cos2eB = - Po/Pj, e. g., for rigid scatterers, when 
cos2e=- 2/3. Now, however, the Brewster angle de
pends on v through V = 1 - v and Vo = 1 +v/2, i. e. , 

cos2eB "'- (Po/Pj)(l- v/4) + 3v/4 (78) 

which reduces to cos2 e B '" - ~ - flv for rigid scatterers. 

To include monopole-dipole coupling effects, from 
(2:118), 

G = Gj + Go(l + p)2/ [), P = - -Hc (- cp)ei~ +C (cp)e-i~] sine, 

0=1 + iGo[Hl(cpC(- cp) +H!(- cpC(cp)], (79) 

C(cp) = - (a;/D)[fll(cp)(l- aW~) +aiH~(cp)Hj(- cp)/6], 

where Gj is the dipole form of Sec. 3, and Go =A~ is the 
monopole coefficient of Sec. 2. For the general scat
terers in (11), we neglect N~ and specify Go by (25), and 
G j = G A + Gs by (39). Similarly, if we neglectN; ex k-1 to 
obtain HH± cp) '" gl(± cp) + 2CP1(t)e"i~ with pl = sine, then 

0'" 1 + CGo sine[ei~C (- cp) +e-i"C(cp)] = 1-/11 p, 

and 

C(cp) '" - (aVD)2C sine[e i~ (1 - aU,'~) + e- i ~Hl (cp)/6]; 

consequently, 

P '" (2Cai sin2e) N/D = 2CGs = CF. 

with Gs as in (38). Thus, we may write 

(80) 

(81) 

2CG"'2CGA + P+/I1 (1 + pj2j(1-/I1P) = 5A + 5s= 5 (82) 

with 5 A = 2CG A = CF_ as the asymetrical component in 
terms of GA of (36). If we neglect monopole-dipole in
teractions, we obtain 5'" 5 A + P +/11 = 2C(Go + G j ) of (73). 
Since /11 0: Caij and po: Cat are of order k, the first inter
action term /11 P is of order 7,2 as compared to the lead
ing quadrupole term Caf exk 3• 

A Simple way to construct (82) once we have obtained 
/I1for pure monopoles, and P for the symmetric part of 
pure dipoles, is to consider the system appropriate to 
coupling solely between /11 and p, i. e. , 

(83) 

Here the total monopole response M consists of two 
terms corresponding to multiple scattering by coupled 
monopoles (!11) of essentially two exciting fields, the 
incident wave (represented by 1) and the total symmetri
cal dipole response p. Similarly, P is the coupled di
pole factor (P) times the incident wave plus total mono
pole response iVI. Solving (83) we obtain 

664 

"vI = /11 (1 + P) 
, 1-/I1P' 

P= P(l +/11) 
1-/I1P , 

_ /11 + P + 2/11 P _ /11 P /11 P(2 + /11 + P) 
5s- ~-/I1P - + + 1-/I1P , 
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(84) 

as well as the less symmetrical form in (82). 

We may use (82) to derive more complete versions of 
(73) ff, but as they stand they show the essentials. 

5. HIGHER ORDER PACKING EFFECTS 

For normal incidence k= i, we have P'::(± 1) = (± l)n omO' 

From (2), we require only 

(85) 

with A~ determined by A':: as in (8) expressed in terms 
of a~ and H' [i. e., although only A~ appears in (86), 
these are in general coupled by the A::', m'" 0]. Alllat
tice sums except H~': vanish, and (8) reduces to (2:119) 
in terms of a~,H': 

A 2m =a,ro +6A2t(-2m i 2t )'o (n-r)] n n ~ mO ,. n ,. e (86) 

where Been - Y) means that n - Y is even. Thus the sys
tem consists of two uncoupled sets corresponding to 
even or odd values of n. 

Initially we consider the square cell (J = 1; then only 
the sums H~:: are nonvanishing and the results are 
relatively Simple. To include up to octupole-octupole 
coupling effects, we use (2:128) in the form 

A~ = ao(l +A~HOo +A~Hg), Ag = a2(l +AV/g +AgHe), 

Hoo = (~I~)', H~ = (~Ig) = (~I~), 

H' (0 10)' 1 H'O 2 H O 1liHo e = 2 2 = 5 ° +"7 2 + 35 4, 

and, similarly, from (2:130), 

A~ = af{l +A~H~ +A~Hg), A~ =a:J{l +A~Hg +A~H~), 

H ' (OIO)'-~H'O "Ho H,-(oIO)-(OIO)-l.HO .iHo a = j 1 - 3 ° + 3 2, g - j 3 - 3 j - 7 2 + 7 4, 

H' (0 10)' j H'O 4 HO j8HO JOOHO 
h = 3 3 = 7' 0 + 21 2 + 77 4 + 23i 6' 

The first pair takes into account all monopole
monopole, monopole-quadrupole, and quadrupole
quadrupole interactions. Explicitly, 

A~ =aij(l- afHe)/D02 , A~ =af(1- aoHOO)/D o2 , 

(87) 

(88) 

D02 = (1- aijHOO)(l- afH;) - aoa2(H~)2. (89) 

Similarly, for the dipole and octupole effects, 

A~ = aj (1 - a3 m)/ Dj3' A~ = a3H~)/ Dj3' 

Dj3 = (1- ajH~)(l- a3m)- aja3(Hg)2. (90) 

These forms may be applied for numerical computations 
for all kd by using the complete H's of (2:73) and the 
complete a~ of (3:46). However, we specialize them to 
determine the higher order low frequency closed pack
ing effects. 

For the pressure release scatterers as in (9), we re
tain only 

(91) 

which differs from (23) by containing/l1. For k '" 0, we 
have 

/11
- ikay547T/3 +r6(L2)2 4 _ y6(LV2/ 4 - /11 
- 1 +y5L49 4 1 +y5L29/4 - 0, 
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(92) 

in terms of LW) of (17) and L~(l) of (19). Since /!1o, the 
limit for k - 0, is a frequency-independent packing fac
tor, its inclusion in (24) does not alter the original 
form, i. e., 

kb(b ~ R = T-1 =-1/(1- iL'), L' = 21T a (1- /!10) +L~), 

L~(l) "'- 3.90 (93) 

with the term in b/a decreased by the closer packing. 
Similarly, for the resonant scatterers, we replace N~ 
of (27), (28), and (32) by N~ +/!1o/ka. 

For the general scatterers of (11), or the rigid scat
terers of (10), both a~ and at are of order k 3, and we 
retain A~ as well as A~. For these cases, /!1 of (91) is of 
order k 2 , and is negligible compared to N~ which we 
dropped to obtain (25). Thus. 

A~/a~-l, k-O, (94) 

and the monopole terms shows no frequency independent 
packing effects. 

The situation is quite different for the dipole coeffi
cient. From (90), 

AVaj = [1 - ajH~ - /!1'1-1, ;/]' = ajaHH ,t')2/ (1 - as m) 
(95) 

with 

ajH~ ",aji2NR!3 - r3L~[ 1 =r3d1 =v, [1 =[ = ! :i 
(96) 

r 1od2 
1 - r 7d

3 
= 1i11o 

, _ 3(1- 8) ° 
C3- 4+8 ' L 6 "'4.42. 

(97) 

Thus 

AO/ '-S-[l M ]-L 1-r
7
d3 

1 al - - v - /111 - 1 3d 7d lod' -r l- r 3- r 4 

d 4 = d 2 - d 1d 3, (98) 

where t' corresponds to the dipole-dipole coupling as 
before in (36), and/!11 to the dipole-octupole coupling 
effects. For rigid scatterers, [1 = t and [ = i. 

Although we could expand S in powers of r, or work 
with the expansion 

(99) 

we expect the closed form to be more accurate (as in
dicated before for the analogous problem of the grating4). 

The form for S-1 as a polynomial in r is the same as that 
obtained by RayleighlO for the related problem of the 
three-dimensional cubical lattice of spheres; however, 
the numerical coefficients are different. (In a subse
quent paper we consider the three-dimensional lattice 
and discuss the interrelations of the coefficients. ) 

The generalization to the rectangular lattice is pro
vided by (2:123) ff. In particular, to obtain the analogous 
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form of (96) for anisotropic packing effects, we use 
(2:127) in the matrix equation 

(1- CiH)A =a, 1= (Oli)' 

Ci = (CiUO li), CiU =af, Ci22 = Ci33 =as, (100) 

A = [Au] = [A~,A~,A~ +A;2/5 !], a = [aid = [aj, a~, 0]. 

Here H = (HIJ) is the matrix whose elements are the sets 
of lattice sums 

H -(OIO)'-H'--"Ho H -H. -(OIO)-H -.iHO 
11 - 1 1 - • - 3 2, 12 - 21 - 1 3 - ,t' - 7 4, 

H22 = (~I ~)' =H~ '" fflH~, H13 = (5!/2)H31 '" (~ I~) '" t HL 
H. -(51/2)H _(OI2)_60 H2 (101) 

23 -. 32 - 3 3 - 7" 6, 

H33 = (~I ~)(1/5!) + (;21~) '" -&[(1/5! )H~ + 3 H~] 

We kept only the largest value of n + r for a given entry 
with the understanding that we use H "'iN. Solving for 
A~, we write 

(102) 

with ~ as the determinant of (I - CiH) and Mij as the cor
responding minors. We see that M 11 , M 21 , and ~ are of 
order kO, and since as/ aj is of order k2 we obtain 

(103) 

where M11 and ~ now represent the limiting values. 
Thus, we require only the low frequency limits of the 
first minor and of the determinant of the system [and 
this holds even if we include a5, etc. in the n-odd sys
tem of (86)]. 

Corresponding to (101), we obtain 

1 7 14 
S= - rC

l-
r C2 r=a/b (104) 

1 - r3c3 - r 7c 1 - r10c4 - r14c2 - r17c5 ' 

where the numbers cn(p) will be given directly. The 
expansion 

S-I"'l_ r3c3 - r 10(c4 +C3Cl) - }"17(C 5 +C4Cl +C3C2 +c3ci) 

(105) 

contains no terms in r 7 or r14. 

Using braces to indicate the limit for k - 0, we con
struct the C n as follows: 

C3 = {a1Hl1/r
3} = [IL~, 

cl = {a 3(Hn + Hd/r 7}=[ 3(65L~ + 63L~)/8, 

C2 ={(a3)2(H23H32 - HZ2H33)/r14} 

= 3([:/ 4)2[ (3465Lij)2/5 - L~(21L~ + 5L~)25/2J, 

c4 = {ala3[H12H21 +H13H31 - H11 (H22 +H33 )Vr10} 

= ([ 1[ J 4)[9(L~)2 + 15(L~)2 - L~ (65Lg + 63L~)/2], (106) 

C5 = {a1aH(Hl1H22 - H12H21)H33 + 2H12H13H32 - Hl1H23H32 

- H22H13H3d/rl7} 

= [I ([ 3)2(3/32)[25LgL~ - 9(LV2](5Lg + 21L~) 

+[ 1 ([ 3)2(15/16)[6(693)L~L~Lij - (693)2 L~(Lij)2 

- 25L~(L~n. 
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+ 21L~) factors out of both numerator and denominator of 
(104), and the result reduces to (98) as required. The 
numbers L'::(p) for (106) are given in (17)-(20). If we 
may use the asymptotic form Kn(a) - K(a), then all the 
K-sums vanish and L~;;' - z~;;, as in (22). If p - "", then 
L~;;' - 21;(2n + 1), and the results reduce to those for a 
single periodic line along x. 
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We propose an intrinsic definition of reversible dynamical evolution of a physical system based on a 
unified formulation of the principle of superposition within an axiomatic approach to quantum 

mechanics. 

1. INTRODUCTION 

The fundamental role played by the superposition 
principle in physics and its distinguishing properties 
in classical and quantum theories are well known. Re
cently, several possible definitions of this principle 
have been proposed within the axiomatic approaches to 
quantum mechanics, 1-5 some of which have the advan
tage of providing a unified formulation of both the quan
tum and classical concepts of superposition. 2-5 

In Ref. 1 a formulation in terms of atomic proposi
tions has been given, which shows that the quantum 
superposition principle is in fact a consequence of the 
non-Boolean structure of the proposition system. This 
has also been emphasized in Refs. 2 and 3, in which 
the superposition principle has been given a unified 
formulation in terms of the states of the logic. Specifi
cally, it was shown, for example, in Ref. 3 that if a 
superposition principle holds, then the quantum logic 
is a complete atomic lattice, and if the latter is 
Boolean, then the only nontrivial superpositions are 
the statistical mixtures of states. 

In Ref. 4 a treatment of the facial aspect of the super
position principle has been given within the framework 
of algebraic quantum theory. The formulation contained 
therein is shown to satisfy the definition of Ref. 2 when 
applied to the logic of decision effects. 6 

In Ref. 5 we proposed a formulation of the superposi
tion principle which is based on the concept of maximal 
state in a proposition-state structure (pss). This formu
lation has been given in terms of principal ideals of the 
logic, 7 and it can be shown to be equivalent to the defini
tion of Ref. 2. However, in our scheme, additivity of 
states has not been assumed. 

In this note, the superposition principle is employed 
in order to give an intrinsic definition of reversible 
dynamics within a pss scheme. Precisely, we introduce 
the dynamics in terms of a one parameter group of 
permutations of the states preserving superposition and 
complementation. Our main result is the proof that 
these conditions univocally define a corresponding one 
parameter group of automorphisms of the lattice of 
propositions in such a way that the standard equivalence 
between the Schrodinger and Heisenberg pictures can 
be made to hold (Sec. 3). The proof is based on the 
existence of a natural closure operation on the subsets 
of states, which is discussed in Sec. 2. In the Hilbert 
model, which is a pss by the Gleason theorem, one 
recovers the standard evolution in terms of a one pa
rameter unitary group using the Kadison-Sirugue theo
rem (Sec. 4). The generalization of the dynamical 
scheme to include the description of irreversible pro-
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cesses will be the object of a future paper. 

2. A CLOSURE OPERATION 

Let L be a complete orthocomplemented lattice. By 
an automorphism of L we mean a bijection jJ.: L - L 
such that (i) a,,; b ~jJ.(a) ,,; jJ.(b) and (ii) jJ.(a~ = jJ.(a)', 
where a' denotes the complement of a. Then, WI is al
so an automorphism and if {aa} is any family of elements 
of L, jJ.(A",aa) =/\" jJ.(a,,) and jJ.(V"a,,) =V" jJ.(a,,) (Ref. 
1, Lemma 9.4.1). 

Definition 2.15
: A proposition-state structure (pss) 

is a pair (L, S), where L is a complete, orthocomple
mented, atomic lattice and S is a family of maps s: 

L - [0, 1] such that: 

AI. a, bEL, a,,; b ~S1(a) c S1(b), where 
S1(a) = {s Is E S, s(a)= 1}. 

A2. S1(a) =So(a' ) YaE L, where So(a) == {sis ES, 
s(a) == O}. 

A3. S1(o.) =S, where a. =VaELa. 

A4. S1(I\"a,,) ==n"S1(a,,) Y {a,,}c L. 

A5. S is convex, i. e., Y S1' S2E Sand Y YE (0,1) 
:3 s E S such that s(a) = ys1(a) + 0- y) s2(a), 
YaEL. We write S=YS1 + (1- y) S2' 

A6. (Maximality axiom). If jJ. is an automorphism of 
L, define SjJ. = {s Is: L - [0, 1], s(a) = s(jJ.(a)) 

YSES,Y aEL}. Then, SjJ.CS. 

Remark: The pair (L, SjJ.) satisfies A1-A5 and 
SjJ. CS=+SjJ. =S. 

To every phYSical system ~ we associate a pss (L, S), 
where L represents the set of classes (propositions) of 
equivalent yes-no experiments on~, and S the set of 
preparing procedures (states) pertaining to ~. The num
ber s(a) (s E S, a E L) is interpreted as the probability 
of the outcome "yes" for a test of the class a when ~ 
has been prepared according to the procedure corre
sponding to s. 

The physical motivations for axioms AI-A5 were 
discussed in Ref. 8. A condition for the atomicity of L 
was provided therein by the requirement of existence of 
suffiCiently many characteristic states. Actually, in 
this paper we do not make use of the atomiCity condi
tion. However, the latter has been included in the 
axioms to ensure the existence of maximal (nontrivial) 
superpositions of maximal states for non-Boolean lat
tices (see Ref. 5, Proposition 2). As to axiom A6, it 
will be seen in Sec. 3 that it ensures the stability of 
the states under dynamical evolution. 
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Apart from axiom A6, the scheme based on Defini
tion 2. 1 is similar to the one proposed by Pool in Ref. 
9, where, however, the problem of the dynamical evolu
tion of the system was not treated. 

For every family D of elements of S define 

D=n st (4) ~DSl(a). 

The map D - D is a closure operationlO on lhe subsets 
of S, namely, it satisfies Cl. DeIJ, C2. D=D, and 
C3. D e E~ 15 e E. The corresponding family of closed 
sets is J = {SI(a): a EL}. These assertions follow from 
Theorem 1, Chap. V of Ref. 7, J being a Moore family 
of subsets of S (Ref. 10) by A3 and A4. Under set in
clusion, J is a complete lattice which, by A1, is iso
morphic to L. The lub and glb of a family {SI(a"J}e] 
are, respectively, U",Si(a",) and n",Sl(a",). 11 If DeS de
fineL(D)={alaEL, s(a)=1 sED}={alaEL, Sl(apD}. 
Then L(D) is a dual principal ideal in L. 5,7 We denote 

/\L(D) =/\ bEL(D)b. 

Definition 2.2; A state s is said to be a superposition 
of the states in D if L(s) ~ L(D). 5 

Lemma 2.1: 'fI Des, 15= {s Is E: S, L(sP L(D)}. 

Proof: First note the identity a= /\L(SI(a» 'fI aEL. 
Indeed, SES1(/\L(s»eS1(/\L(SI(a»))'fI sE:S1(a). Hence, 
by A1, a~ /\L(SI(a». On the other hand, a >-- /\L(SI(a» 
because a is an element of L(SI(a». If L(s) ~ L(D), then 
s E SI(/\L(s» e SI(/\L(D». On the other hand, if 
s E: SI(/\L(D» , then /\L(s) ~ /\L(SI(/\L(D))) = /\L(D) by 
the previous identity. Since L(s) and L(D) are dual 
principal ideals, this implies L(s) ~ L(D). Hence 

{s Is E: S, L(sP L(D)}= Sl(/\L(D» 

=.li.W)SI(a)= n SI(a) =15. 
SI(·)~D 

By definition, a state s belongs to 15 iff any proposi
tion (and hence the smallest) which is true on the ele
ments of D is also true on s. Lemma 2. 1 states that 
for a state to belong to D it is necessary and sufficient 
that it is a superposition of states of D. Therefore, we 
can refer to the map D - 15 as closure under 
superposition. 

The following lemma will be used in the next section. 

Lemma 2.2: Let a be a permutation of S. Then the 
following conditions are equivalent: 

(i) L(sPL(D)~L(aspL(aD), SE:S, DeS. 

(ii) aD=o.D'fIDes. 

Proof: Use Lemma 2. 1. (i) ~ (ii): s E: D~L(sP L(D) 
~L(aspL(QD)_asEaD. (ii)~(i): L(sPL(D) 
~s E:D~as E 0.15= aD~L(as)~ L(aD). 

3. THE TIME EVOLUTION 

Definition 3.1: Apseudodynamical group of a pss 
(L, S) is a one parameter group of permutations of 
S: t - at, t E R, a t+t ,= atat' such that 

(i) L(sPL(D)~L(atspL(a~) 'fI tElR(SES, Des) 

and 

(ii) /\ L( a tS1(a» = (J\ L(atSl(a'») I 'fI a ELand 'fI t E R. 
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Lemma 3.1: Conditions (i) and (ii) of Definition 3.1 
are jointly equivalent to the following condition: (iii) 
'fI a ELand 'fI t E R:3 bEL such that a tS1(a) = SI(b) and 
a tSI(a') =SI(b'). 

Proof: (i) + (ii) ~ (iii). Since SI(a) is closed, by the 
group property, by (i) and by Lemma 2.2 we have that 
atS 1 (a) is closed, hence :3 bEL such that a,S1 (a) = S1 (b). 
By the identity b = /\L(S1(b» and by (ii) it follOWS that 
b'=J\L(atS1(a')}o Therefore, S1(b')=atS1(a'). 

(iii)=t(i) +(ii). By hypothesis, we have b=/\L(atSl(a» 
and b'=/\L(atSI(a'» which proves (ii). By Lemma 2.2 
in order to demonstrate (i) it is enough to prove that 
£ltD = £ltD 'fI t E JR and 'fI Des. By hypothesis, at maps 
closed sets to closed sets. Therefore, from £ltD ~ £ltD 
there follows atD~ £ltD 'fI DeS and 'fI t E JR. Moreover, 
from a_ t ( a~) ~ D by taking closures we get 
a_t( £ltD) ~ 15 and hence £ltD ~atD. 

Given a pseudodynamical group t - at> by Lemma 3.1 
for every t E lR we can define a map J1.~ of L into itself 
by a_ tS1(a) = SI(J1.~(a». Then the following proposition is 
a straightforward consequence of axiom A1 and of 
Lemma 3.1. 

Proposition 3, 1: The map t - J1.~ is a one parameter 
group of automorphisms of L. 

We refer to t - J1.~ as the group induced on L by the 
pseudodynamical group t - at. On the set of pseudo
dynamical groups of a pss (L, S) there exists a canoni
cal equivalence relation defined by {t - at} -{t - tlt} if 
J1.~ = J1.~, 'fI t E JR. Conversely, the following proposition 
shows by construction that everyone parameter group 
of automorphisms of L is induced by at least one 
pseudodynamical group. 

Proposition 3.2: Let t - J1.1 be a one parameter group 
of automorphisms of L. 'fI t E lR define P,: S - S by 
(pts)(a) = s(J1. t(a». Then (i) t - Pt is a pseudodynamical 
group and (ii) 'fI t E: lR the map Pt is affine. 

Proof: Note first that PI is indeed a map of S into it
self by axiom A6. (i) s E: SI(J1._t(a))~s(J1._t(a)) = 1~ 

(p_ts)(a) = 1 ~ P_tS E SI(a)~s E ptSl(a) whence PtSI (a) 
= SI(J1.ja». Moreover, ptSl(a') = SI(J1._t(a'» = SI([J1._t(a)]'). 
Therefore, by Lemma 3.1, t-Pt is a pseudodynamical 
group. 

(ii) If s == L: j'l al Sl with 0.1 E: (0, 1) (i = 1, 2, ... n) and 
L:i'l Q i = 1, we have 'fI t E lR and'fl aE L 

(pts)(a) = s(J1. t(a» == t a jSi(J1. t(a» == t aj(ptsj)(a) 
i =1 1=1 

whence 

Pts="t al(ptSi). 
i -1 

Definition 3.2: A dynamical group of a pss (L, S) is 
a pseudodynamical group t - at of (L, S) such that 
(ats)(a)=s(J1.~(a», 'fI tElR, aEL, sES. 

Proposition 3.2 shows that every equivalence class 
of pseudodynamical groups contains exactly one dynami
cal group. In order to ensure the standard equivalence 
between Heisenberg and SChrOdinger picture, we assume 
a reversible time evolution of the states of a physical 
system characterized by a pss (L, S) to be described by 
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a dynamical group of (L, S). Accordingly, we refer to a 
dynamical group t - at as a (reversible) Schrtidinger 
dynamics and to t - J.l.~ as the corresponding (reversible) 
Heisenberg dynamics. With the further assumption of 
continuity of the map t - (ats)(a)," s E S, 
a E L which has to be required on physical grounds, such 
a reversible dynamics could possibly be ascribed to the 
idealized situation of the time behavior of a strictly iso
lated system. If the system interacts with its surround
ings it evolution is irreversible and the above scheme is 
not adequate for the description of its time behavior. 12,13 
In a forthcoming paper, we propose a generalization of 
the present dynamical framework to accommodate the 
description of irreversible processes as well. The new 
feature introduced by such a generalization and which is 
connected with the dispersion of information taking 
place in an irreversible process is that the lattice of 
propositions is no longer stable under the Heisenberg 
dynamics. Rather, the latter acts on the set of all ef
fects, of which the propositions form the subset of the 
so-called decision effects. 6 

4. THE HILBERT MODEL 

Let L = L (~) be the complete, orthocomplemented, 
atomic, weakly modular lattice of the closed subspaces 
of a separable complex Hilbert space ~ of dimension 
'" 3 (possibly infinite)14 and let S be the set of maps 
s: L - [0, 1] such that (i) s(l1.) = 1, 11. '" ~ and (ii) s(V jaj) 
= L:js(aj) if aj .:; aj for i *j (a-additivity). It follows from 
the weak modularity and from (ii) that s(O) = 0, where 0 

denotes the null subspace of ~ (0 = 11. ~. The Gleason 
theorem15 implies that there exists an affine isomor
phism p - sp of the convex set K(.f» of positive trace 1 
operators on ~ (density operators) onto S, such that 
sp(a) = TrP"p," p E K(.f» and "a E L, where p. is the 
orthogonal projection whose range is a. Using the spec
tral decomposition of a density operator p = L:!'YjP·j 
('Yj *0), where the aj's are the eigenspaces 
of p in the range of the latter, one gets Sl(a) 
={sp Ip EK(~), pap=p} and So(a) ={sp Ip EK(~), p·P= O} 
whence it readily follows that the pair (L, S) satisfies 
axioms A1-A5. As to axiom A6, it holds since a-addi
tivity is preserved under an automorphism of L. There
fore, (L, S) is a pss. We have the following formulas 
(see Lemma 1 of Ref. 5 and Lemma 2.1); (1) L(sp) 
={a I a E L, pap = p}; (2) 1\ L(sp) = V jaj \lI[ p] '" the range 
of p; (3) if DC S, 1\ L(D) = V & ED(P]; (4) if DC S, 
D=Sl(I\L(D»={splpEK(~), pALW)p=p}. Moreover, if 
Des, L(sp) ~ L(D) iff the range of p is contained in the 
closure of the linear span of the ranges of all density 
operators a such that sa ED. 

Let now t - at be a dynamical group of (L, S). Since 
at is affine (see Proposition 3.2), " t E lR there exists 
a unitary or antiunitary operator U ~ on .f> such that 

atsp=sU" U"*, "pEK(.f».16 
t P t 

Antiunitary operators are ruled out by the group prop
erty. Therefore, with the further assumption of contin
uity, a reversible dynamics is described by a weakly 
(hence strongly17) continuous one parameter group of 
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unitary operators on .f>18 whose generator can be inter
preted as the Hamiltonian of the system. 19 

5. CONCLUDING REMARKS 

In this paper we have tried to give an intrinsic charac
terization of a reversible time evolution of a phYSical 
system within a possible exiomatic approach to quantum 
mechanics based on Definition 2.1. This characteriza
tion is based on Definition 3. t and 3. 2, whose physical 
motivations are plausible. In this connection, there 
arise some interesting problems. First of all, one 
might ask whether, in the general scheme as well as in 
the Hilbert model, there exist pseduodynamical groups 
which are not dynamical. Secondly, the question arises 
whether axiom A6 is independent of At-A5 and whether 
in Definition 3. t condition (ii) is independent of (i). In
deed, if one defines a pseudodynamical group t - at in 
terms of condition (i) of Definition 3. 1 alone, it is still 
possible to prove, using the property of closure under 
superposition, that t -at induces a one parameter group 
t - J.l.~ of partial order preserving permutations of L, 
but there is no guarantee that J.l.~ preserves comple
mentation. Furthermore, if we relax A6, there might 
a Priori exist equivalence classes of pseudodynamical 
groups which do not contain any dynamical group and 
one parameter groups of automorphisms of L which are 
not induced by corresponding pseudodynamical groups. 
Besides the situation in the Hilbert model, another 
problem of interest is the study of conditions for the 
existence of nontrivial (* 11., 1\.') constants of motion 
(J.l.~(a)=a, " tElR) and of invariant states (ats=s, 
" t E lR). These problems are currently under 
investigation. 
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The Cauchy problem in general relativity. I. Metrics containing 
arbitrary functions 
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This paper develops a Lagrangian formalism (the Y A ·formalism) for use in investigating the Cauchy 
problem in general relativity. In particular it will be used in a subsequent paper to present a 
Lagrangian formulation of the characteristic initial-value problem in general relativity. The formalism 
enables one to define "field equations" and "Bianchi identities" for metrics containing arbitrary 
functions in the case when the arbitrary functions are treated as the field variables. 

I. INTRODUCTION 

This work was instigated by a discovery of A. Held l 

(private communication) in which he found that a varia
tion of the Einstein Lagrangian of Bondi's radiating 
metric2 with respect to the four arbritrary functions 
contained in the metric resulted in Bondi's so-called 
"main equations" up to unimportant factors. This paper 
develops a formalism, the Y A -formalism, for investigat
ing variations with respect to arbitrary functions con
tained in a metric. In Paper II the formalism will be 
used to present a Lagrangian formulation of the char
acteristic initial-value problem of general relativity. 

Sections II and III contain a short development of 
Noether's basic identity together with some of the re
sulting expressions in the context of general relativity. 
Section IV develops the Y A -formalism in some generality 
and Sec. V applys the formalism to metrics containing 
arbitrary functions. After a brief discussion of special 
coordinate systems in Sec. VI, the formalism is applied 
to a derivation of Bianchi identities. A final section 
collects together the more important formulas. 

II. THE BASIC IDENTITY 

We start by considering the Lagrangian density 

L(x;y(x)) '" L(y A (x"), y A. b(x"), y A .bC(x"), xc) (2. 1) 

where y A.b = ay A/axb, etc., x" are local coordinates de
fined on an n-dimensional differentiable manifold, and 
the y A are A field variables. If we consider an 
infinitesimal symmetry transformation3 

(2.2) 

which leaves the Lagrangian density form-invariant, 
then integration over an arbitrary volume n of R" leads 
to 

0", r L (x' . v' (x' ))dn x' - 1 L(x . v(x))d"x .In' ,. n'-

= k(LA 6y A + ta.a)d"x, 

where 

and 

(2.3) 

(2.4) 

(2.5) 

aL - aL - (aL)-
l"=_L~a+ a;-0YA + -av--OYA.b - -a-- oYA· 

-A.a -A.ab YA •ab ,b 

Since n is arbitrary, we obtain Noether's basic identity 

LA oy A + l" .a '" O. (2.7) 

In particular, if we consider the case when ~a = 0 and the 
variations 6y A and 6y A.b vanish at the surface an, then 
(2.6) leads to the field equations 

II\, THE EINSTEIN LAGRANGIAN 

The Einstein Lagrangian 

L=V-gR 

(2.8) 

(3.1) 

remains form-invariant under an infinitesimal coordi
nate transformation since it remains so under a general 
coordinate transformation. Taking the field variables 
Y A to be gab' the field equations (2.7) become the 
Einstein (vacuum) field equations 

(3.2) 

Under an infinitesimal coordinate transformation of the 
form (2.2) 

ogab=£;gab=~a;b+~b;a' (3.3) 
e 

where £; denotes Lie derivative, so that the basic 
identity becomes 

-20Gab~a;b+l".a=O. (3.4) 

A long but straightforward calculation reveals that 

l" = 20 Gab ~b + (20 ~[a;b[).b' (3.5) 

The second term in this equation is an interesting 
quantity since it is the same term as A. Komar4 con
structed and which gives rise to an infinite number of 
conservation laws since clearly its divergence vanishes 
identically. The quantity becomes M~ller' s energy
momentum tensor for the choice ~a = o~ in an appropriate 
coordinate system. 

IV. LAGRANGIAN DEPENDING ON TWO 
SETS OF FIELD VARIABLES 

We now restrict attention to a Lagrangian density 
which may be considered simultaneously to be on the 
one hand a functional of the field variables }'A their 
first and second derivatives and the coordinates xa and 
on the other hand a functional of the M field variables 
ZM' say, and their first and second derivatives only. 
Thus we assume 

(4.1) 

(2.6) where L depends explicitly on XC whereas K does not 
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(in the next section we shall take the ZM to be gab)' We 
also assume that the Z Mare functionals of the Y A and the 
coordinates only, i. e., 

ZM = ZM(Y A' x"). (4.2) 

We define 

XA- OZM 
M- 0YA 

(4.3) 

and so by (4.2) 

X~ =X~ (Y B ' x"). 

In this section only we let 0 loxa denote the partial 
derivative keeping the Y A and the Z M fixed, whereas 
comma or DIDx" denote total or implicit derivative, 5 

so that, for instance, 

D 0 0 0 0 
---+Y -+Y --+Y -_. Dx" - ox" A.a oY A.ab oY A.abe oy A A,b A.be 

(4.4) 

Now, in addition to the basic identity (2.7) for the Y A 

we also have the basic identity for the ZM 

KMBz +sa =0 
M .a 

(4.5) 

where the quantities involved are defined in an analogous 
manner to the definitions of Sec. II. We wish to prove 
that 

(4.6) 

Some key formulas needed and which follow directly 
from Eqs. (4.1)-(4.4) are given in the Appendix. If we 
now contemplate an arbitrary variation of the Y A' the 
resulting variation of the Z M is given by 

6Z M= ZM(Y~(X), x) - ZM(YA(X), x) 

= Z M(Y A (x) + 6y A (x), x) - ZM(Y A (x), x) 

=X~ 6y A (4.7) 

to first order, where we have used (2.5) and (4.3). 
Using these relationships and the fact that B and total 
differentiation commutes, we find 

l oK (OK) J oK-sa=_K~a+ -- - --- oz + -- 15z OZ OZ M oz M.b 
M.a M.ab ,6 M.ab 

[
oK (OK) ] -=_K~a+ ~ - ~ X~15YA 
M,a M.ab ,b 

=_K~a+ ~(XA ~ +2XA ~) \"M OZ M,b OZ Mfa M,ab 
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We have used the fact that K=L when considered solely 
as a function of x". Using the above result together with 
(2. 7) and (4. 5), it follows that 

L A6y A =KM6ZM = (X~KM) 6y A 

and since the By A are arbitrary 

LA =X~KM. (4.8) 

This relates the A field equations LA = 0 to the M field 
equations KM = O. The result can be proved directly by 
substituting the expression (2.4) for LA in terms of K 
using the above relationships. J. stachel has pOinted out 
that (4. 8) is virtually immediate since in the variational 
notation it follows in a straightforward manner that 

15L oK OZM 
15YA = OZM oyA ' 

V. METRICS CONTAINING ARBITRARY 
FUNCTIONS 

We now apply the theory of the last section to the case 
when ZM is gab' L =K = r-g R, gab contains A arbitrary 
functions Y A' and satisfies (4.2), namely 

(5.1) 

Considering K as a functional of gab (or equivalently gab) 
and its derivatives, then the field equations KM = 0 are 
the Einstein field equations (3.2). If on the other hand 
we consider the Lagrangian density as a functional of 
the Y A and its derivatives, we obtain the A field equa
tions LA = 0 and from (4. 8) 

(5.2) 

or equivalently in terms of gab 

(5.3) 

In applications A is less than ten and so the equations 
LA = 0 are only a restricted set of the Einstein field 
equations, or rather combination of the field equations. 

Under an infinitesimal symmetry transformation Eq. 
(4. 7) requires 

(5.4) 

These equations do two things, they impose differential 
conditions on ~a and also serve to determine By A in 
terms of ~a' More precisely the role of Eq. (5.4) is to 
restrict the infinitesimal coordinate transformation to 
a transformation which preserves the functional form 
of the metric assumed in (5. 1). In many cases (5.4) 
allows a determination of ~a and By A' In such cases 
given (5.1) and (2.1) we can calculate ta since 
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(5.5) 

The resulting expression will be equivalent to that given 
in (3.5). The formalism developed in this section forms 
the essential component of what we shall term the Y 
formalism. A 

VI. SPECIAL COORDINATE SYSTEMS 

From Eq. (3.5) ta differs from 2F-::g Gab ~b by 

(2r-g~(a;bl) =(2r-glf'Ct'd~ ) 
.b I c.dl ,b 

which vanishes in particular if 

~a = 4>, •• 

(6.1) 

(6.2) 

A particular solution of this equation in a given coordi
nate system is any coordinate x(c) for which 

,{3 gab=-2r~g)=x:bi5YA' (6.3) 
6Jcl 

In general of course these equations will not form a 
consistent set. 

We may solve (5.4) directly for ~. and 6Y A when the 
metric does not depend explicity on a coordinate x(C), 
i. e., when 

(6.4) 

where the partial derivative is to be taken in the sense 
of Sec. IV. For taking ~a=o~c) we find 

D 
Jtgab=gab.(C)= Dx(c) gab 

B B&b B&b 
= BX(c>gab+YA,(cl aY

A 
=YA,(c) aY

A 

Thus 

and 

If ~a is a Killing vector field, i. e. , 

,{3gab =0, 
~ 

then 

i5y A = 0 

and (5.5) and (3. 5) result in 

2,r:::g Gab~b=-L~a_(2v=g ea;bl),b 

or equivalently 

R\ ~b=gc!a~bl;Cb' 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

Finally, if the metric does not depend explicitly or 
implicitly on a coordinate x(c), then ~a = o~c) is a Killing 
field and so combining (6.6) and (6. 7) we find 

2v-g Ga(c)=-Lofc>-(21=ggadt'eg(C)(d.e,).b' (6.9) 
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VII. BIANCHI IDENTITIES 

In general, the Bianchi identities are derived from 
(2.3) by assuming that ~a and its derivatives vanish on 
the boundary and by assuming that By A satisfies an 
equation of the form3 

(7.1) 

For then (2.3) becomes 

0= 1;. [LAy Aa + (LAY~a) .bl ~ad4x + vanishing surface 
terms 

and since n is arbitrary 

[LAYAa+(LAY~a),bl ~a=o. (7.2) 

Finally, since ~a is arbitrary the expression in square 
brackets vanishes and these are then the so-called 
Bianchi identities. In particular, in the case of the 
Einstein Lagrangian, Eq. (3.3) is of the form (7.1) and 
the above procedure results in the (contracted) Bianchi 
identities 

Gab;b = O. (7.3) 

In order to develop these identities in the Y A

formalism it is necessary to solve (5.4) for i5yA. We 
start by considering the Y A as functionals of the gab and 
the coordinates, i. e. , 

(7.4) 

It is emphasized that these equations are not unique. 
However, proceeding as before a variation in the gab 
results in 

6y A = Y A (gab + 6gab , XC) - Y A (gab' XC) 

BYA -
= a-g ogab 

ab 
(7.5) 

to first order. We define 

(7.6) 

where the matrix y~b is assumed symmetrized, but un
like X:b it is not unique. Nonetheless we may work with 
Y"l' since, in a sense, the nonuniqueness is factored out 
in the following equations by multiplicative expressions. 
Combining (5.4) and (7.6) leads to 

(7.7) 

This allows inversion of some of the previous formulas, 
for example (5. 2) becomes 

_ ~g Gab 6g =LA6y =LA y ab 6g ab A A ab' 

so that 

(LA y~b + 1=g Gab) 6gab = O. 

If for a particular choice of the variations By A there 
exists values of a and b such that ogab'" 0, then for these 
values 

(7.8) 

Now for an infinitesimal symmetry transformation 
(5.4) gives 

(7.9) 
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which is of the form (7.1). We cannot proceed exactly 
as before because although we can obtain an expression 
of the form (7. 2) the ~a are no longer arbitrary but must 
in fact satisfy (5.4). Of course since the ~a must there
fore be of a particular form, this will result in certain 
relationships among the terms in the square brackets 
of (7.2). However the expressions so derived do not 
lend themselves very well to the Y A -formalism and so 
we proceed in a slightly different (but equivalent) 
manner. 

Again, starting from (2.3) 

O"'l(LA6"y +ta )d4x n A .a 

= 1 [2LA yab(~ - r c n + ta ld 4x o A arb ab C .0 

= 1 {- [2LA yab r: ~ + 2(LA yac) t 1 n A ab c A .a "c 

+ [ta + 2LA y~b ~bl..}d4X. 

The second term in square brackets can be converted 
into a vanishing surface integral and so since n is 
arbitrary we get 

[2 LA y~b ~b ~c + 2(LA y~C).a~cl = O. 

However since the integrand in the above integral is 
identically zero this last expression is identical to the 
simpler expression 

(7.10) 

This is the expression we choose to define as the 
"Bianchi identities" in the y.-formalism. Substituting 
the solution for ~a of (5.4) in (7.10) results in differen
tial constraints on the full field equations (3.2). If 
the field equations LA =0 are assumed to hold, then 
(7 0 10) reduces to 

ta =0. .a 

VIII. SUMMARY OF BASIC FORMULAS 

Starting from a metric of the form 

gab = gab(Y A' XC) 

(7.11) 

where Y A denote A arbitrary functions, we can calculate 
the Einstein Lagrangian 

L =L(YA' YA.b, YA.bc' x') = /:::gR. 

The Y A formalism allows us to define the "field 
equations" 

O=LA=~_(~) +(~) 
oy A OY A.a.a OY A .ab .ab 

or equivalently from a knowledge of the Einstein tensor 

0= LA = ogab (_ /:::g Gab) = ogab (/:::g Gab). 
0YA OY A 

Next we attempt to find a solution of the differential 
equations 
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for both ~. and 5y A' From a solution we can calculate 
ta either in the y A -formalism using 

oL - aL - ( oL ) ta =- L~a + -o--OYA + -a-- OYA •b - -a-- OY A YA•• YA,.b YA •• b .b 

or equivalently using 

ta = 2~ Gab ~b + (2/:::g ~[.;bJ).b' 

In special coordinate systems we have in addition the 
results of Sec. VI. 

Finally, we calculate the nonunique symmetrized 
expression 

y.b_ 0YA 
A - ilgab 

and from it the "Bianchi identities" 

[ta + 2LA y~b ~bl .• = O. 
In Paper II we shall describe how these results can be 
used to help devise an integration scheme for the 
Einstein field equations. 
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APPENDIX 

The key formulas referred to in Sec. IV are 

OZM •• =XA OC 
0Y

A
•

C 
M., 

aL XA oK 2 A oK 
-0--= M az- + X M •b az-' 

YA,d M,a M,ab 
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This paper applies the "y A ·formalism" of a previous paper (Paper I) to a Lagrangian formulation of 
the characteristic initial·value problem in general relativity. The essential content of the paper is the 
respective identifications of the "field equations" and "Bianchi identities" of the Y A ·formalism with 
the "main equations" and "constraint equations" of a metric in a Bondi coordinate system. The 
identifications are developed in detail in the case of Bondi's (axially symmetric) radiating metric. 

I. INTRODUCTION 
In paper I (Ref. 1) a Lagrangian formalism, called the 

y[formalism, was developed and "field equations" and 
''Bianchi identities" were defined in terms of it-the 
field variable y A corresponding to arbitrary functions 
contained in a metric. Extensive reference to paper I 
will be made throughout this sequel. Although the for
malism can be applied quite generally to any metric con
taining arbitrary functions, it is used in this paper to 
present a Lagrangian formulation of the characteristic 
initial-value problem in general relativity (or more pre
cisely it identifies those equations which can be employ
ed to construct an integration scheme for the Einstein 
field equations). 

In Sec. II Bondi's solution2 of the problem is outlined 
(other formulations due to Sachs3 and Tamburino and 
Winicour4 follow essentially similar lines). The disad
vantages of such solutions are that on the one hand they 
are somewhat ad hoc and on the other they are couched 
in coordinate -dependent language. The y [formalism 
goes someway to meet these criticisms. Section ill con
tains the essential point of the paper, namely the re
spective identifications are made of Bondi's so called 
"main" and "constraint" equations of a metric in a Bondi 
coordinate system2,3,4 with the field equations and 
Bianchi identities mentioned above. 

The remainder of the paper is concerned specifically 
with developing the equations in the case of Bondi's ra
diating metric2 which is axially symmetric. There is 
little loss in generality in assuming axial symmetry, 
since the procedure is quite analogous in general, but 
there is a considerable simplification in the expressions 
involved in this case. Section IV develops the main equa
tions and Sec. V the constraint equations in the YA -for
malism. A final section presents an alternative deriva
tion of the constraint equations by directly employing an 
integration procedure. 

II. BONDI'S SOLUTION OF THE CHARACTERISTIC 
INITIAL-VALUE PROBLEM 

Bondi's radiating metric2 has the form 

_ r(e2Y d82 + e-2Ysin2 8d¢2) 

where the coordinates ares 

(2.1) 
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and V, U, f3, and yare four arbitrary functions of u, r, 
and 8. The null coordinate u is the "retarded time," r 
is a luminosity distance along null rays, and 8 and ¢ 
are the usual colatitude and azimuth coordinates (as de
fined on a 2-sphere L on future null infinity j+). The 
metric is both axially symmetric, i. e., ~a = Ii~ is a 
Killing field and so 

and azimuth reflection invariant, i. e., the 
transformation 

is an isometry and hence 

g"'3=0. 

The two symmetries are often referred to simply as 
axial symmetry and we shall use this terminology in the 
rest of the paper. The contravariant form of the metric 
is given by 

e- 28 ° 
(2.2) 

_ Ve-2Br- 1 U e-2B 

_ e-2Yr-2 

and 

r-g = e2Brsin8. 

Bondi splits the Einstein vacuum field equations Rab 

= ° into various groups which he and others have given 
various names. The axial symmetry leads immediately 
to 

(0) three symmetry conditions 

R03 =R13 =R23 = 0. 

The remaining equations are 

(i) four main equations 

Rll =RlX =RXY=O; 

(ii) one trivial equation 

(2.3) 

(2.4) 

(2.5) 

(iii) two supplementary conditions (or subsidiary 
equations) 

Roo=Rox =0. (2.6) 
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The main equations are split further and combined to 
give 

(ia) three hyper surface equations 

(2.7) 

(ib) one dynamical (standard, propagating) equation 

RXy-~gxygWZRwz=O. (2.8) 

[There is only one independent equation in (2.8) as con
traction with geY and use of (2.1) and (2.3) will reveal.] 
This last important breakup is made since the dynamical 
equations are the only equations involving derivatives 
with respect to the retarded time u. We have written the 
equations in a slightly more general form to that given 
in Bondi since if we wish to drop the symmetry assump
tions we simply ignore (2.3) and the break-up is then 
as given in Eqs. (2.4)-(2.8), although the numbers of 
equations involved are now 6,1,3,4, and 2, respectively. 
In some contexts it is slightly more convenient to use 
the Einstein tensor in which case the above equations 
are equivalent to 

(0) G"'3=0, 

(ia) Gla =0, 

(ib) GXy-~gXygwzGwz=O, 

(ii) g1l2G wz = 0, 

(iii) Go", = O. 

(209) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

The contracted Bianchi identities Gab:b = 0 can now 
be used to prove the following lemma3

: The trivial equa
tion is an algebraic consequence of the main equations, 
and the supplementary conditions hold everywhere if 
they hold on a hypersurface r = const and the main equa
tions hold everywhere. There last consequences are 
called the constraint equations and they are 

ROl =0, 
(iv) Roo = j(u, xW)r-2

, 

Roz ='kz (u, xW)r <l 

(2.14) 
(2.15) 
(2.16) 

or more precisely, if the main equations hold, then 

ROl =0, 
R01 =O~ (rRoz).1 =0, 
ROl = Roz = O~(?-2Roo).l = 0, 

(2. 17) 
(2.18) 
(2.19) 

where of course Eqs. (2.18) and (2.19) lead immediately 
to Eqs. (2.16) and (2.15), respectively. 

It now becomes a straightforward matter (in principle) 
to specify the initial data and integrate the field equa
tions thus solving the characteristic initial-value pro
blem. In particular, Bondi and Sachs adopt the boundary 
conditions that space-time is asymptotically flat and 
proceed to expand all quantities in inverse powers of r. 
This allows an investigation of the asymptotic proper
ties of a bounded radiative source. Although the proce
dure outlined above solves the characteristic initial
value problem, as we have pointed out, it suffers on the 
one hand from being rather ad hoc (where does the par
ticular break -up of the field equations come from?) and 
on the other from being formulated in a non covariant 
manner. The YA-formalism goes some way to satisfying 
these objections. 
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III. THE YA-FORMULATION 

We start off by assuming that we have in a Bondi co
ordinate system a metric containing A arbitrary func
tions YA' We now identify the main and constraint equa
tions with the field equations and Bianchi identities of 
paper I. Thus employing the formalism of I and the 
numbering of the last section we define 

(i) main equations6 

LA=O; 

(iv) constraint equations 

[f' + 2LA YAb ~b],a = O. 

(3.1) 

(3.2) 

The dynamical equations are contained in (3.1) and are 
those equations which correspond to the Y A defining the 
so-called "conformal 2-structure," which for example is 
defined by the arbitrary function Y in (2.1). (This result 
will be elaborated in a paper with J. stachel.) The hyper
surface equations are the remaining main equations, 
hence we define 

(ib) dynamical equations 

LA = 0 corresponding to Y A defining conformal 2-
structure (e.g., in Bondi YA -y, in Sachs YA -Y, 0, 
and Tamburino and Winicour Y A - gxr); 

(ia) hyper surface equations 

remaining main equations LA = O. (3.4) 

In addition, in the axially symmetric case ~a = o~ is a 
Killing vector in which case equation (6.9) of paper I 
holds and this reduces to Eq. (2.3), namely 

(0) three symmetry conditions 

2..)- g G"'3 = - LO"'3 - (2r-::g gCllegbdg3Ie ,dJ),b' (3.5) 

Altogether we have reexpressed the following equations 
of Sec. II in the YA-formalism: 

(0) (3.5), (i) (3.1), (ia) (3.3), (ib) (3.4), (ii) included 
in (3.2), (iv) (3.2). 

However the author has been unable so far to formulate 
the supplementary conditions (iii) in the YA -formalism. 
Of course it may be that such a reformulation is not 
possible. One way out of this problem is the adoption of 
the following viewpoint: our starting point is Einstein's 
equations r-::gGab = 0, the above formalism allows us to 
extract a great deal of information contained in these 
equations directly applicable to the characteristic initial
value problem, any information not so gained is still 
contained in them and it follows from inspection that the 
only additional information they provide is precisely the 
supplementary conditions. It might be mentioned that 
some of the above formalism has been used by Chell one 
and Williams6 (private communication) to help solve the 
characteristic inital-value problem for a radiating per
fect fluid. The remainder of this paper is concerned with 
the application of the formalism to the case of Bondi's 
metric (2.1). 

IV. THE MAIN EQUATIONS 

Adopting Bondi's metric we find first of all that equa
tion (3.5) leads to the symmetry conditions 
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G"'3=0=> G"'3 =R"'3=0. 

We now take 

YA = (Yo, YH Y2' Y3) = (V, U, (3, y) 

and then using (2. 2) a direct calculation of 

X ab _ alfb 
A - aYA 

leads to 
~l= _ e-2Byl 

(4.1) 

(4.2) 

X~2 =~l = e-2B 

~l =X~o = _ 2e-2B 

~l =X~o = _ 2e-2B, X~l = 2Ve-2By-l 

~2 =~l = _ 2Ue-2B 

rest zeroo (4.3) 

~2 = 2e-2Yr-2, X~ = _ 2e2Yy-2 sin-28 

Hence 

LA =X'lb';_g Gab=O 

gives as the four main equations 

LO= - 0e-2Br-1Gll = -rsin8Rll =0, 

Ll = 2e-2B,;_ g G12 = 2r sin8R12 = 0, 

(4.4) 

(4 0 5) 

L2=_4e-2B';_g GOI +2Ve-2By-l';_g Gll -4e-2BU0G12 

=U - g(g22R22 + g33R33) = 0, (4.6) 

£3 = 20 <g33G 33 - g22G22 ) = 20 (g33R 33 - g22R22) = 0, 

(4.7) 

where in the second equality in (4.6) use has been made 
of the identity 

R =ftbRab =2gJ1Rol + g11Rll + 2g12R12 + g22R22 + g33R33 • 

The first three of the main equations are the hypersur
face equations and (4.7) is the dynamical equation (since 
Y3 = Y). The four main equations given above are equi
valent to the main equations as given by Bondi, which 
with our sign conventions are 

-Rll=O, 

2rR12 =0, 

sin-180(g22R22 + g33R 33) = 0, 

sin-l 80 <g33R 33) = 0. 

The first three of each set of equations are the same 
(apart from unimportant factors) and the last equations 
is equivalent to L2 + L 3, where in each case the last equa
tion alone contains retarded time derivatives. Of course 
we could calculate LA directly from L = 0 R using 

LA_~ 
- liYA' 

but the above procedure relates the results more easily 
to those of Bondi. 

In a similar manner to the above we can calculate 

XA=~ 
ab aYA 

(the results are given in the Appendix) and hence obtain 
the main equation in terms of Gab using 
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LA = -X:b,; _ gGab. 

They then become 

LO= _r-l e2B0Goo =0, 

Ll = 2 Ure2Y 0 GOO - 2re2Y 0G02 = 0, 

L2 = _ 2Vy-le2B0Goo _4e2B0GOl =0, 

L3=2U2re2Y0Goo -4Ure2y .;::gG02 

- 20 (g22G22 - g33G33) = 0. 

Hence the main equations are equivalent to 

GOo = GOI = G02 = (g22G22 _ g33G33). 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

This form of the main equations will be used in the next 
two sections. 

V. THE CONSTRAINT EQUATIONS 

In order to find the ~b in Eq. (3 0 2) we need to solve 
Eq. (5.4) of paper I, namely 

EleT - eT tc + eT tc +g tc _XA Ely (5.1) 
6ab-bab,c~ bac~ ,b be S ,a- be A· 

This is a straightforward procedure as long as the equa
tions are integrated in the correct order; for example, 
since Xtl = ° (see Appendix) 

0= Bgll = 2g1c~C,1 = 2g0l ~O, 1 = 2e2B~0,1 

and hence 

~o=f(u, 8) 

where f is an arbitrary function of u and 8. Proceeding 
in this manner, we find 

~O=f(u, 8), 

~l = tr{Uf.2 - (~2sin8),2sin-18], 

e = h(u, 8) + f . .J, 

e=c, 
where 

I =I(u, 8) = J: r- 2e2 ({>oY)dr. 

(5.4) 

(5.5) 

Thus ~a involves two arbitrary functions f and h and a 
constant c. These equations determine the descriptors 
~ of the infinitesimal coordinate transformations which 
preserve the coordinate conditions used in deriving 
Bondi's metric. 

We next need to construct the nonunique matrix 

Y'lb=~. 
agab 

For example, when YA = {3 then using gOl = e 2B (the only 
covariant metric component involving (3 alone) we can 
write 

{3= tlngol 

and so 

~=_1_=te-2B 
ago1 2g01 ' 

a{3 
-a-=O for a* 0, b* 1. 

gab 

Since we require Y1b to be symmetrized, we take 

~l = ~o = ie-2B, 
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or alternatively we could have obtained this by writing 

(J = tln(gol + glO)' 

The nonuniqueness shows itself in the fact that we can 
take y to be defined in terms of g22' or g33' or g22 and 
g33' but this does not materially affect the ensuing cal
culations. One choice of YAb is 

¥go = re-2B, l'gl = 11;0 = _ tVe-2B 

l'g2= ~0=rUe-2B 

~2 = 110 = tr-2e-2Y 

IT = - Ue2Yr-2sin-28 

~l = ~o = te-2B 

r;3 = tr-2sin-28e2Y 

rest zero. (5.6) 

From this and from Eqs. (4.8)-(4.11) we can calculate 
LA YAb in terms of Gab, say, to get 

LA~O=_RGOO 

LA~l=_RGOl 

LA~2=_RG02 

rest zero, 

(5.7) 
LA 113 = _ r-2e2Ysin-28R(g22G22 - g33G33) 

[compare with (4.12)]. The first three equations are 
particular instances of Eq. (7.8) of Paper I. 

The constraint equations are 

[t" + 2LAYlb ~b],a = [2RGab ~b + 2(r-g ~[a;b),b 

+2LAyabt] =0 
A '::tb ,a 

where we have used Eq. (3.5) of Paper I. Since the mid
dle term in the second square brackets vanishes iden
tically when its divergence is taken, we can write the 
equation in the form 

ba = 0 ,a , 

where 

ba =2r-gGab~b +2LAYAb~b 

=2R[0, (Gll~l +G12~2)' (G12~1 +G22~2)' e4Ysin-28G22]. < 

Hence 

b",a=[2R(Gll~1 +G12~2)],l +[2r-g(G12~1 +G22~2)].2=0. 

(5.8) 

Using (5.2)-(5.5) we can find ~a=gab~b and in 
particular 

~l = e2Bj, 

~2 = Ure2Yj - re2Y(h + j,.J). 

Substituting in (5.8) gives 

b",a =2[ RGll e2B-J + RG12(Ure2Yf - re2Yh - re2Yj,.J)],l 

+ 2[ RG12e2B-J + RG22(Ure2Yj - re2Yh 

- re2Yf,.J)J,2 =0. (5.9) 

Since this expression vanishes identically the coeffi
cients of algebraically independent terms must vanish. 
The coefficient of h,2 is 

- e2 (6)Y)r4sin8G22 =£;> C22 = O. 

But 
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LA=O and G22 =0=tR=0=tR01 =0 

which gives the constraint equation (2.17). Similarly, 
assuming LA = 0 and the algebraic consequence ROl = 0 
then the coefficient of h in (5. 9) reduces to 

[(rR02»)sin8=0 

which gives (2.18). Finally, assumingLA=R01 =R02 =0, 
the coefficient of j in (5.9) reduces to 

[(rRoo»)sin8=0 

which gives (2.19). So collecting the results together we 
obtain the constraint equations 

LA=O =tR01 =0, 

LA =R01 =0 -R02 = k(u, 8)r- 2
, 

VI. AN INTEGRATION PROCESS FOR THE 
CONSTRAINT EQUATIONS 

We finally show how the constraint equations may be 
derived directly by the integration process described in 
Sec. VII of I for obtaining Bianchi identities. The inte
gration will be taken over the region D lying between 
two null hypersurfaces on which u = constant, called ST 

(top) and SB (bottom), and two time-like hypersurfaces, 
exterior to any source, on which r + constant, called SI 

(inside) and So (outside), (see Fig. 1). The basic identity 

L A 6y + f-' =0 A ,a 

implies that when the main equations hold 

t",a = (2-/- g G\~b).a = 0 

so that 

ID t",a rrx = faD 2r-gGab~bnarPx= O. (6.1) 

Now on S TO SB' so, and S 1 the normal vector field na is 
given by 6~, - 6~, 6!, and - 6!, respectively. Assuming 
the main equations (4.12) then the integrand in the sec
ond integral in (6.1) vanishes on ST and SB' Hence Eq. 
(6.1) reduces to 

u=u 
2 

r=r 
2 

FIG. 1. The region of integration D. 
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and since 8 1 and 8 0 are arbitrary, this implies 

2... r r-:gelb~btf3X=O. 
2r i'l 

However, 

j r-:gelb~ tf3x=j r-:gelb~ dud8dcp =211J 
'1 b '1 b 

where 

J = 1. U2 r 2r r-g (ell ~l + e12 ~2) dud8, 
U-u1 )8=0 

so that Eq. (6.2) becomes 

J,l =0. 

We now evaluate J for two choices of ~l and ~2. In 
Eqs. (5.2)-(5.5) we let 

(a) f=O, 

(6.2) 

(6.3) 

h= o(u - uo)o(8 - ( 0) where u1 < Uo < U2 , 0< 80 < 11, 

c=O. 

Then using the main equations we find 

J = [r R02 lU=UO sin80 
8=80 

and so Eq. (6.3) leads to Eq. (2.18), the second con
straint equation. Similarly, the choice 

(b) f= o(u - uo)o(8 - ( 0) where u1 < Uo < U2, 0< 80 < 11, 

g=O, 

c=O, 

leads to Eq. (2.19), the third constraint equation. We do 
not obtain the trivial constraint equation ROI = ° with this 
approach, but as its name implies the equation contains 
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no additional information being merely an algebraic con
sequence of the main equations. 
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APPENDIX 

The quantities X:b for Bondi's metric are 

xgo = y- 1e28, 

~o= -2Ure2Y , ~2=X~0=re2Y, 

~0=2Vr-le28, ~l =Xio= 2e28, rest zero. 

X~o= - 2U2re2Y , X32 =X~o =2Ure2Y , 

Xi2 = - 2re2Y , X~3 = 2re-2y sin2 8 
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The Weyl and Dirac equations in terms of functions over the 
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Carmeli's approach to Maxwell's equations, in which the field variables are considered as functions of 
the group S U 2' is extended to two-component Weyl spinors and four-component Dirac spinors. The 
Weyl and Dirac equations are formulated over the group S U 2' the relevent functions are shown to 
be "quantities of spin-weight s = ± 112"; they are expanded in a generalized Fourier series and the 
equations for the coefficients are derived. The "quantities of spin-we~ght s" are shown to be closely 
related to eigenvectors and eigenspinors of the radial spin operator n • s. 

1. INTRODUCTION 

A method for writing vector fields as functions over 
the elements u of the group SU2 (the group of all unitary 
matrices of order two and determinant unity) was re
cently developed by Carmeli. 1.2 He utilized the method 
to write down and solve Maxwell's equations without 
sources. 3 Instead of describing the electromagnetic field 
in terms of electric and magnetic vector fields, or a 
vector potential, he introduced three complex functions 
7)*, 7)0, whose independent variables are f, r, u, (f-the 
time, r-the radius in polar coordinates, u-an element 
of the group SU2), rather than the customary variables 
f, r, e, </>. The exact definitions of functions 7)*, 7)0 is 
given in Sec. 2. The elements U E SU2 depend on three 
parameters, e, </>1, </>2' and one obtains the physical 
field functions by setting </>2 = 0. 

It was shown by Carmeli that the problem of solving 
Maxwell's equations reduces to the solution for one sca
lar complex function only, namely 7)0' and the other two 
functions, 7). and 7)-, are uniquely determined by 7)0' 

Since the electromagnetic field has, in fact, two degrees 
of freedom, this formulation is free of all gauge prob
lems. This formulation was subsequently extended to in
clude Maxwell's equations with sources. 4 In the same 
paper Carmeli quantized the wave equation for 7)0 for the 
case without charges, the canonical quantization proce
dure being entirely gauge-free. 

Barut, Carmeli, and the present author have subse
quently applied Carmeli's approach to the general form
ulation of scattering of eletromagnetic waves. 5 In par
ticular, the differential cross section was obtained as a 
sum of two noninterfering spherical waves, which can be 
conSidered as the sphericaL wave analog of the positive 
and negative helicities of plane waves. 

In the present paper Carmeli's method is further 
developed by writing spinor fields as functions of the 
elements u of the group SU2• After summarizing pre
vious results in Sec. 2 we derive in Sec. 3 the Weyl 
equation over the group SU2• This derivation features 
the so-called "quantities of spin-weight s" which were 
first introduced by Newman and Penrose in their spinor 
formulation of the Einstein equations of general relativ
ity, as "spin-s spherical harmonics"6 and subsequently 
used and investigated by Moses, 1 Goldberg et al. ,8 and 
Carmeli. 1 These quantities are expanded in Sec. 4 in a 
generalized Fourier series9 and the equations for the co
efficients are obtained. 
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Section 5 includes the expression of four-component 
Dirac spinors as functions of the elements of the group 
SU2, derivation of the Dirac equation within this frame
work, the corresponding generalized Fourier expansion, 
and the equation for the coefficients. 

The physical interpretation of "quantities of spin
weight s" is derived in Section 6. They are shown to be 
closely related to the eigenvectors and eigenspinors of 
the radial spin operator n . s (ii is the unit vector in the 
radial direction, S is the spin operator). 

2. CARMEU'S GROUP ANAL YSIS OF MAXWELL 
EQUATIONS 

Consider Maxwell's equations with or without sources 
and introduce the complex vector field 

V=E+iB. 

Using the notation 

V* = - 2-1 
/2(V4> ± VB), Vo'" Vro 

we introduce the functions 

7)* '" V* exp('F i</>2), 7)0'" Vo, 

where </>2, together with the usual angular variables 

(2.1) 

(2.2) 

(2.3) 

cp, e, is such that with any value of the variables </>, e, </>2 
we can associate a rotation gE 03, whose Euler angles 
are (1T/2) - ¢, e, ¢2' The functions 7)*,7)0 can be consid
ered, therefore, as functions over the group 0 3 for each 
value of the time f and the radius r in polar coordinates. 
It turns out to be more convenient to consider the func
tions 7)*,7)0 over SU2, the covering group of 03, rather 
than 0 3 itself. Euler angles are again employed to de
scribe an element u E SU2, 

_(cosie exp[ii(¢1 + ¢2)] i sinie exp[- ii(¢I- ¢2)]) 
u- iSinieexp[ii(¢I-¢2)] cosieexp[-ii(¢I+¢2)] , 

(2.4) 

where ¢1 '" 1T/2 - ¢. 

It was shown by Carmeli3 that Maxwell's equations in 
free space are equivalent to the following set of equa
tions for the 7) functions: 

1 1(0 0) 2 
{2 r or ± of (r 7)0) 'FK*1). '" 0, 

f a 0) 1 
~± or + of (r1)*) + {2 K*1)o = 0, 

(2.5) 
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where the operators K± are defined by 

K±=exp(±i¢2)(±cote a~2 +i a~'Fcsce a~1} 
These operators, along with 

K =i-~ 
3 a¢2' 

(2.6) 

(2.7) 

are well known from the theory of representations of 
SU2• They satisfy the following relations1: 

K±T:"" = [(j ± m + l)(j 'F m) P 12T~±1,n' 
K3T:""=mT~n' 

(2.8) 

where T~n(u) are the matrix elements of the irreducible 
representation of weight j of the group SU2• 

The functions 1)± and 1)0 can be expanded in the follow
ing way: 

00 j 

1)±(t,r,u)=6 6 a!l,n(t,r)T!1,n(u), 
j=l n=-j 

(2.9) 
00 .J 

1)0(t, r, u) =6 6 atn(t, r)T~,n(u), 
)=0 n=-J 

where the coefficients are given by 

(2j + lrla!l,n(t, r) = I 1)±(t' r, U)T!1, n(U) du, 
(2. 10) 

(2j + 1rla~,n(t, r) = J 1Jo(t, r, u)Tt.n(u) du, 

and du = (1/16)1T-2 sined¢l de d¢2 is the invariant measure 
over SU2, normalized so that f du = 1. 

Substitution of Eq. (2. 9) in Eq. (2. 5) yields the par
tial differential equations for a!l, m' ah, m: 

1 1 ( a a )' 1/2 ' -- -±- (r2a) )'F[J'(J'+l)] a 1 =0 ..f2 r ar at O,m "l,m , 

( a a) (j(j+1»)112 , 
± ar+ai (ru!l,m) + --2- a~,m=O' 

(2.11) 

(2.12) 

wherej=1,2,3,'" fora!1,mandj=0,1,2,3,'" for 
at m, and m = - j, - j + 1, ... ,j for both cases. By 
elimination we get a separate partial differential equa
tion for a~,m and expression of U!l,m in terms of atm: 

( 
a2 (

2
) ( 2 j ) '(' 1) j 0 at2 - a1,2 r ao,m +J J + a O• m = , 

jooO,1,2,"', m=-j, ... ,+j, 

j=1,2,''', m=-j, ... ,j, 

(2.13) 

(2.14) 

We thus arrive at the conclusion that the functions 
O!h. m(t, r) determine a!l, m completely, through substitu
tion in Eq. (2.14), The problem of solving MaxweU's 
equations reduces, therefore, to the solution of Eq. 
(2.13) for a single scalar complex function 1/0(t, r, u). 

3. THE WEYL EQUATION 

The Weyl equation in the natural system of units If = c 
= 1, 

i :t </!= (0" pi</!, (3.1) 

where p= (- i a/ax, - i a/ay, - i a/az) and 0'1,0'2,0'3 are the 

680 J, Math. Phys .• Vol. 16, No.3, March 1975 

usual Pauli matrices, can be expressed in spherical co
ordinates using the following relationshipsl0,11: 

p=n(ii· p) - nX(nXp) =~(n' p) - nXL/r, (3.2) 

(0" p) = (0" n)(n' p) - (1/r)(0" n)(O" L). (3.3) 

where ii is the unit vector in the radial direction. One 
then obtains the equation 

o [ AO 1 A ] at</!= -(O'·n)ar+y:(O'·n)(O'.L) </! (3.4) 

for the two-component spinor </!(t, r, e, ¢), where t is the 
time and r, e, ¢ are spherical coordinates in Euclidean 
space. Defining now, in each point of space-time, the 
fundamental two-component spinors 

_ (i coste exp(- icp/2)\ _ (- sinte exp(- iCP/2) 
q.- iSinteexp(icp/2) /' q.- costeexp (icp/2) 

(3.5) 

we expand the given spinor </! in terms of q. and q. as 
follows: 

1f!( t, r, e, ¢) = f+ (t, r, e, ¢) . q. + fj t, r, e, ¢) . q _, (3. 6) 

where 

f,,(t, r, e, ¢) = if/(t, r, e, ¢). q,,(e, ¢) . (3.7) 

1f!t is the Hermitian conjugate of 1f!. Equation (3.7) is 
derived using the orthogonality relationships 

q~(e, ¢)q.(e, ¢) =q~(e, ¢)qje, ¢) = 1, 
(3.8) 

The fundamental two-component spinors q. and q. are 
eigenspinors of the radial spin operator 0' • n: 

A (COSe sine exp(- i¢») 
(O"n)q±=\sineexP(iCP) -cose q±=±cl±' (3.9) 

A straightforward calculation yields, furthermore, 

(O'·L)q±= 'q± ~ 
i aOcp exp(- iCP)(- :e +i cote aOcp) 

eXP(iCP)(:e +i cote aOcp) i a°(/} 

=-q,,+ticoteq.. (3,10) 

Substituting the expansion (3.6) in the Weyl equation 
(3.4), one obtains 

af. af. of. af_ 
ai q + + at q - = - ar q. + a;; q. 

1 {' + - (0" n) [(0" L)f.lq. + f.(O'· L)q. 
r 

+ [(a 0 L)fJq_ + fja' L)q _}. (3.11) 

The two-component spinors [(0" L)f.]q. and [(0" L)fJq_ 
can be expanded in the form (3.6) as follows: 

[(u . L )f+]q + = a .. q. + a+.q_, 

[(u' L)fJq_ = a.+q. + a_.q_, 
(3.12) 

where, by Eq. (3.7), 

a .. = q![ (0" L)f+]q + = 0, 

t[ ] l- 0 1 a ) a+_=q. (O"L)f+ q+= ~ae+ sine ocp f+, 
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a •• =q~[(o· L)fJq.= (i :e- s:ne aa<i»f., 

a •• = q![ (0' L)fJq. = O. 

(3.13) 

Substitution of Eqs. (3.9), (3.10), (3.12), (3.13) in Eq. 
(3.11) and equating the coefficient of q. and q. to zero 
yields the wave-equations for f. and f.: 

(~± ~ ± 1.)f:'f 1./i.i. ± ~e :'" + !:..2· cote\f.=O. (3.14) 
at ar r r\' ae sm V'f' J 

To write Eqs. (3.14) over the group SU2 , we express 
the polar angle ¢ in terms of one of the Euler angles 
¢1 = h - ¢; a/a¢ will be replaced, therefore, by - a/a¢1' 
Furthermore, defining now the functions 

~:=f:exp('fi¢~2) (3.15) 

and introducing the operators (2.6) and (2.7), namely, 

. (.e 1 a a) 
K: = exp(H¢~2\1 ae 'I' sine a¢1 'I' cote a¢2 ' 

K . a 
3=1 a¢2 ' 

we can write Eq. (3.14) in the form 

(:t± :r)(r~:)'fK:~>=O. 

(3.16) 

(3.17) 

Equation (3.17) is the Weyl equation written partially 
over the group SU2• The functions ~. and ~_ are functions 
of the space-time coordinates t and r as well as the 
three parameters e, ¢t> ¢2 of the group SU2• As pointed 
out in the previous section the operators K. and K3 are 
the infinitesimal operators of SU2• 

4. QUANTITIES OF SPIN WEIGHT s = ± Y2 

In their spinor formulation of the equations of general 
relativity Newman and Penrose6 introduced a class of 
functions sYjm (¢, e), defined on the surface of a sphere 
and called spin-s spherical harmonics. These and 
related functions were subsequently discussed by other 
authors 7,8 and were shown to be related to the matrix 
elements T~n of the representations of the rotation 
group. The group theoretical and geometrical interpre
tation of these functions was established by Carmeli. 1 
He has shown, in particular, that functions f(u) defined 
over the group SU2 are quantities of spin-weight s if and 
only if they satisfy the equation 

f(xu) = exp(isa)f(u) 

where 

X 
__ (eoxp(- icl2) 0 ) a real, exp(ia/2) , 

is an element of the group SU2• 

(4.1) 

(4.2) 

Since the matrix elements T~(u) of all the irreducible 
representations of the group SU2 form a complete 
orthogonal set over the group, any function f(u) , U E SU2 , 

,which satisfies 

(4.3) 

can be uniquely expanded in the T~m(u): 
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(4.4) 

where 

{3{..n = (2j + 1) J f(u) T;"';(u) duo (4.5) 

TJ (u) is the complex conjugate of Ti".,,(u). Equation (4.5) 
mn •• J 

follows from the orthogonalIty relatIOns of the Tsm: 

f T~n(u) T!;m' (u) du = 2/+ 1 0JJ' 0ss' 0mm" (4.6) 

Carmeli has shown that if the functionf(u) is a quanti
ty of spin weight s then the triple sum (4.4) reduces to 
a double sum as follows: 

~ J 

f(u) = 6 6 (3!nT~(u). 
i=lsl n=·J 

(4.7) 

It follows from Eqs. (2.4), (4.1), and (4.2) that the 
functions ~.(t, r, u), introduced in the last section, are 
quantities of spin ± i. Consequently, they can be ex
panded in the series (4.7): 

'" J 
~.(t, r, u) = J~2 ~J (3!1/2,n(t, r)T!1/2,n(u), (4.8) 

where 

(3!1 /2,"(t, r) = (2j + 1) J T!1 /2,n(uH .. (t, r, u) duo (4.9) 

substituting Eq. (4.8) in the Weyl Equation (2.8) and 
making use of Eq. (3.16), we obtain the equations for 
the coefficients (3;1/2, n(t, r): 

(:t ± a~)(r{3!1/2,n) 'I' (j +i){3~1/2,n= 0, (4.10) 

wherej=i,i,~,'" andn=-j,-j+1, ... ,j. For each 
value of (j, n) we obtained a separate set of two partial 
differential equations for ~1!2,n(t, r) and ~1 /2,"(t, r). 

By elimination we can obtain a separate partial dif
ferential equation for (3!1 /2, n and express (3~1 /2, n in terms 
of (3!1 /2, n: 

L a2 
(

2
) J ) ( a ~) j ) (. -1)2 J _ 0 '\at2 - ar2 (r{3.1I2,n - at - ar (r(3+1/2,n + J + 2 (3.1/2,"- , 

(4.11) 

(3~1/2,n= j ~i Ut + :r)(r{3!1/2,n). 

Or, equivalently, one can solve for {3:1 /2, n and express 
(3!1/2,n in terms of 13:1/2,n: 

f.. a2 
(

2
) J ) (a a ) (j ) (. -1)2 j \at2 - ar2 (r{3.1 /2," + at + ar r{3.1 /2, n + J + 2 {3.1 /2, n = 0, 

{3!1 /2, n = - j ~ i (:t - :r) (r{3:1/2, n)· (4.12) 

If the solution of Eq. (10) is expanded in the form 

(3:1/2,n(t, r) = (l/r) J Q!1/2,n(k, r) exp(- ikt) dk, (4.13) 

we obtain for Q!l /2, n(k, r) the following pair of ordinary 
diff erential equations: 

(ik ~) Qj (. -1) Q j 0 \- r ± or :1/2,n'f J + 2 >1/2,"=' (4.14) 

5. THE DIRAC EQUATION 

In Dirac theory the four-component wavefunctions i/J 
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satisfy the equation 

i :t 1fJ = [- ili(Ci1 :x + Ci2 :y + Cia :z )+m,8}, (5.1) 

the natural system of units Ii = c = 1 is used again and 
Ci1> Ci2, Cia, and,8 are 4 X4 matrices satisfying the anti
commutation relations 

CijCij+ ajaj=2(jji, 

{3aj+aj,8=O, 

,82 = I, 

(5.2) 

I being the unit matrix. The derivations of the present 
section will be carried out in Pauli's representation of 
the matrices al,,8. 12 Defining the 2 x2 matrices 

(
0 1) (0 - i) (1 0) 

P1 = 1 0 ' P2 = i 0 ' Pa = \0 - 1 ' (5.3) 

the 4 x4 matrices ai' (3 are given in Pauli's representa
tion by 

aj=p1Uj=(~j ~j), ,8=P3I=(~ _OJ (5.4) 

where the Uj are Pauli's spin matrices. 

Dirac equation in spherical coordinates is given in 
Pauli's representation as follows 10, 11: 

(5.5) 

Consider now the following four-component spinors: 

y~o= (~:), y2)= (:J, (5.6) 

where q: are the fundamental two-component spinors 
(3.5). It follows from Eqs. (3.9), (3.10), and (5.3) that 
the four-component spinors y~1,2) satisfy the following 
equations13 : 

(U. n)y!1, 2) = y11, 2), 

P1y~1, 2) = y2' 0, 

PaY!O=y!ll, paY!2)=_y!2), 

(5.7) 

(5.8) 

(5.9) 

(U 0 L) y!1, 2) = _ y!1, 2) + ti cotey!1, 2). (5.10) 

Furthermore, because of Eqs. (3.12), (3.13), and 
(5.10), given any function/=/(t,r, e, cp), 

(u 0 L)(fy!1, 2») 

= [(U. L)/]y!1, 2) +10 (u • L) y~1, 2) 

= - y!1,2) + [(i :e 'I' si~e aacp + h cote) I] y!1,2). (5.11) 

In analogy with Eqs. (3.6), (3.7) for two-component 
spinors, any four-component Dirac spinor 1fJ(t, r, e, cp) 
can be uniquely expanded in y!1) and y~2) as follows: 

2 
z/!(t, r, e, cp) = 1] [g~/) y!/)(e, cp) +g~/) y~/)(t, r)], 

j=1 
(5.12) 

where 

g!O(t, r, e, cp) = iJlf(t, r, e, cp) y!/)(e, cp). (5.13) 

The orthogonality relations 

Y
(/)ty(J) =y(/)ty(J) = (j 
• • - - jj, 

y~/)t y~J) = y~/)t y!J) = 0 
(5.14) 
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are used in deriving Eq. (5.13). 

Substituting the expansion (5.13) in the Dirac equation 
(5.5) and equating the coefficient of y!ll and y2) to zero, 
we obtain, by virtue of Eqs. (5.7)-(5.10), the wave 
equations for the g!ll and g!2): 

.£...g<ll± (~ +.!) g(2) _ mg(1) at: ar r: : 

'I' - t - ± -. - - + -t cote g = 0 1 ~. a 1 a 1. ) (2) 

r ae sme acp 2 0' 

~ g(2) ± (~ +.!) g(ll mg(2) at: ar r;' : (5. 15) 

I 1 • 0 1 a 1 • ) (ll \'1'2 zaii±sine ocp+2Z COtB go =0. 

Equations (5. 15) will now be written partially over the 
group SU2• Expressing the polar angle cp in terms of the 
Euler angle CP1 = trr - cp, and, furthermore, defining the 
functions 

(5.16) 

we can write Eqs. (5.15) in terms of the SU2 infinitesi
mal operators K. and K_ [see Eqs. (2.6)] as follows: 

1;(1) ± .! ~ (rl;(2») 'F.! K 1;(2) = 0 : r ar : r ± 0 , (a~ -m) 
(a~ + m) 1 a 1 

(5.17) 
1;(2) ± - - (r,.(1») 'I' - K ,.(1) = 0 : r ar b± r ± bo • 

Equations (5.17) are the Dirac equations, written 
partially over the group SU2• The functions I;!O and 1;!2) 
are functions of t and r as well as the elements u of the 
group SU2• 

It follows from Eqs. (5.16), (4.1), and (4.2) that the 
functions 1;~1) and 1;2) are quantities of spin weight s = t, 

h 'le ,.(1) d ,.(2) t·t· f" 1 W I b_ an b_ are quan 1 les 0 spm weIght s = - 2. 

The I; functions can be expanded, therefore, in the 
T~1/2,n(U) [Eqs. (4.5) and (4.6)]: 

w j 

1;<1,2)= 1] 1] IJ. j (1,2) Tj (u) 
± j=1/2 ,.._j :1/2, n :1/2, n , 

(5.18) 

where 

IJ.!P/2~)n (t, r) = (2j + 1) f 1;!1, 2)Ti1 /2,n(U) duo (5.19) 

Substituting Eqs. (5.18) in the Dirac equations (5.17), 
and making use of Eq. (3.16), we obtain the equations 
for the coefficients lJ.iP/2, nand 1J.!f'%, n: 

(-
a \ j (j ) 1 1 ( j (2 ) ) 1 (. 1 ) j (2 ) 
ot - m) 1J.:1 /2, n± r or rlJ.±1/2,n 'Fr J + 2 lJ.ol /2, n = 0, 

(5.20) 

(~ ) j(2) 1 a ( j(ll ) 1(. 1) j(1) \-ct +m 1J.±1/2,n±r ar rlJ.±1/2,n 'Fr J+2 lJ.ol/2,n=0. 

Defining the functions 

v~~i'z, n = 2-1 
/2 (lJ.iPA, n + lJ.il%, n), 

vih~,n = 2-1 /2(lJ.im, n - lJ.im,n), 
we obtain the equations 

(-~ .£...\( j(.») (. 1.) j(.) j(.) 0 at ± ar) rV±1/2,n 'I' J + 2 Vol/2,n- mV:l/2,n= , 

( 0 a ) ( j (_) ) (. 1) j (_) j (.) \-at ± or rVol/2,n 'I' J +2 v:1/2,n- mVo1/2,n=0, 

j=t,i,~,'" andn=-j,-j+1, ... ,j. 
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Equations (5.22) are a generalization of the Weyl 
equations (4.10). They reduce to Eqs. (4.10) in the 
limit m - O. For each value of (j, n) Eqs. (5. 22) form 
a set of four partial differential equations for the four 
functions 1I1t'1tn(t, r). 

The functions 1I11~tn can be expanded in a Fourier in
tegral. The energy spectrum of the Dirac equation is 

-oo<E""-m, m""E<oo, 

and therefore the Fourier integral of the functions 
vl/iLn is 

1I11(nn(t, r) '" ~[j~m + i"]r~N2,n(r,k) exp(- ikt)dk]. 

(5.23) 

Substitution of Eq. (5.23) in Eq. (5.22) yields the four 
ordinary differential equations for the functions 
~:~)2, n(r, k): 

f.·k 0 )pJ(+) 1 (. 1.) nl(+) m pJ(-) 0 
\- z ± or ,.1/2, n =F r J + 2 ~1/2, n - r ,.1/2, n '" , 

(5.24) 

f.·k O)nll_) 1(. l)nJ(_> m pJ (+) 0 
\ z ± or Y,,1/2, n =F r J + 2 ~1/2, n - r ~1/2, n '" • 

6. PHYSICAL INTERPRETATION 

Theorem: In three-dimensional Euclidean space the 
vectors 

(6.1) 

are the eigenvectors of the radial spin operator ~. S with 
the eigenvalue ± 1 and 0 respectively. 

Proof: The spin matrices in three-dimensions are 
given by14 

S,,=(~ _Oi ~\ Sy= (~ 00 ~\ S,,=(~ ~i O~\ (6.2) 
i 0 ~J \- i 0 oj \~ 0 ~ 

Therefore, the operator ii· S is given by 

(

0 -n" ny~ 
~ . S = i nz 0 - n" 

-ny n" 0 

= i (co~e - ~ose _ :!:: ~~:~\. (6.3) 

~ sine sinc,o sine cosc,o 0 ) 

On the other hand the vectors X,., Xo are given in Car
terean coordinates by 

1 (cos e cosc,o =F i cosc,o) (Sine cosc,o) 
X,. = fl cosB sln~ ± i cosc,o , Xo = sine sinc,o . (6.4) 

- sme cose 

A straightforward calculation yields 

(ii·S)x,.=±x,., (~·S)·Xo=O. (6.5)(QED) 

If the complex vector field V = E +iB is expanded in 
terms of the radial helicity eigenvectors X,., Xo, one 
obtains 

V = (- i) V+X+ +iV_X_ + VoXo, (6.6) 

where V,., Vo are defined by Eqs. (2.2). The quantities 
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of spin weight s, 17,., and 1)0 [Eqs. (2.3)] are obtained, 
therefore, as functions over the group SU2 through the 
following procedure: The complex field V is expanded in 
the eigenvectors of the operator ii· S; the coefficients of 
the expansions are then multiplied by the phase factors 
exp(is<P2), where s is the corresponding eigenvalue. 

We conclude that the functions 1),.,1)0 are, up to a 
phase factor, the coefficients of the eigenvectors of the 
radial spin operator ii . S, and the infinitesimal opera
tors 1(. and K [Eq. (2.6)] are the raiSing and lowering 
operators for these coefficients. 

The physical interpretation for the Weyl equation 
(3.17) and the Dirac equation (5.17) is the same. The 
quantities q+ and q_ [Eqs. (3.5)] and yi1), y~t), y!2), y~2) 
[Eqs. (5. 6)] are, again, eigenspinors of the radial spin 
operator (1. ii, 15 and the ~ and t functions over the group 
SU2 are obtained by multiplying the coefficients in the 
expansions (3.6) and (5.12) by exp(is¢2), where s is the 
corresponding eigenvalue. 

When the 1), ~, or t functions were expanded in the 
matrix elements T~n(u) of the group SU2, we obtained a 
separate set of partial differential equations for each 
pair of the eigenvalues (j, n) of the total angular mo
mentum operator and its projection along the z axis. By 
using the Fourier integral, each "partial wave" was 
written as a superposition of energy eigenstates [Eqs. 
(4.13), (5.24)]. Since the radial spin operator (1. ii does 
not commute with the Hamiltonian, Eqs. (4.10) and 
(5.25) cannot be further decoupled into separate equa
tions for the different quantities of spin s. 

What is the phYSical meaning of a solution consisting 
of a single representation of the group SU2? For the 
case of the electromagnetic field it was shown by Barut, 
Carmeli, and Malin5 that if the a~m' a!lm are nonzero 
only for one given value of (l, m), then the electromag
netic field contains just an electric multipole of order 
(l, m) and a magnetic multipole of the same order. For 
a detailed derivation of the relationship between the 
usual multipole expansion and the expansion in the T!m, 
the reader is referred to Ref. 5. The corresponding 
analysis for the case of the Weyl and Dirac equations 
can be carried out in complete analogy. The usual 
multipole expansions of the Weyl and Dirac wavefunc
tions is carried out in the eigenfunctions of the opera
tors J2Jz and K, where J is the total angular momentum 
operators and K is defined by to 

for a Weyl spinor, 
(6.7) 

K = P3(L • (J + n) for a Dirac Spinor. 

By comparison, expansion in terms of the T!m are ex
pansions in the eigenfunctions of the operators J2, J 2, 
and (J. n. Therefore, if a solution of the Weyl or Dirac 
equations consists of a Single representation (j, m) of 
the group SU2, the corresponding multipole expansion 
will contain terms of the order (j, m) only. 
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We show that an elastic scattering amplitute may be defined as an implicit function of the 
differential cross section. A practical method is given for a numerical investigation of this 
dependence, both in the elastic and in the inelastic regions. In particular, we consider the case of a 
polynomial amplitude, and we show that the Crichton ambiguity is not isolated. 

1. INTRODUCTION 

In recent years our understanding of the nature of the 
unitarity constraint upon scattering amplitudes has 
greatly improved. 1-32 In particular, sufficient condi
tions under which an elastically unitary scattering 
amplitude is unique, once the differential cross section 
is specified, have been given. 4-7 Further, the existence 
of a continuum ambiguity in the inelastic region has 
been investigated in detail. 7-17 Some preliminary in
vestigations of spin and isospin complications have also 
been made. 12,13,24,25,29,30 

In this paper we investigate a different, but mathe
matically similar problem: given the differential cross 
section and a set of phase shifts that fit it, we show 
that in general one may change the cross section by a 
small increment, and find the correspondingly altered 
phase shifts that fit the new cross section. This is 
interesting (if not wholly unexpected) from an epistomo
logical point of view; and it is also of importance prac
tically, for it means that we can explore systematically 
the uncertainty in the phase shifts that is generated by 
the experimental error associated with a measurement 
of the differential cross section. In this paper we limit 
our attention for simplicity to spinless, isospinless 
scattering. 

The basic result of the present work is set out and 
proved in Sec. 2. Here we use the Hildebrandt-Graves 
theorem to show that the unitarity equation defines the 
amplitude as an implicit function of the cross section. 
We employ a certain set of Hilbert spaces of functions 
that are analytic in the cose-plane, and the key of the 
proof is the demonstration that the Frechet derivative 
of the unitarity mapping is compact. For the singular 
situation in which unity belongs to the point spectrum 
of this derivative, we show by means of bifurcation 
theory that the amplitude is still defined (though in gen
eral no longer unique). The precise nature of the solu
tion manifold in the vicinity of a singular point depends 
on the number of real solutions of the bifurcation 
equation. 

In Sec. 3 we show how to prevent zeros of the dis
persive part from turning into unwanted square-root 
branch pOints, and in Sec. 4 we sketch the Newton
Kantorovich method that can be used for a numerical 
investigation. In Sec. 5 we generalize the method to the 
inelastic region, where we now have the choice of vary
ing the inelastic term, or the cross section, or both. 
Finally, in Sec. 6 we use our methods to investigate the 
case of a polynomial amplitude. In particular, it is 
shown that a continuation away from both of the Crichton 
amplitudes is in general possible. 
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2. IMPLICIT FUNCTION THEOREM 

Suppose that we know an elastically unitary scattering 
amplitude, Fo(z), that is analytic in the small Martin 
ellipse, E:(zo)' Suppose that Fo fits the given cross 
section, uo(x), i. e., 

(2.1) 

for - 1 ~ x ~ 1. As in Ref. 11, one continues this equa
tion into E(ZO) by writing 

O"o(z) = Fo(z)Ft(z*) = D~(z) +A~(z), (2.2) 

where Do and Ao are the dispersive and absorptive parts 
of Fo, respectively. We wish to find sufficient condi
tions under which we may change O"o(z) to O"o(z) + 1iO"(z) , 
and find a corresponding unitary amplitude Fo(z) + liF(z). 

In this general demonstration, we allow Do(z) to have 
zeros in t'(zo). However, for the given Do(z), we can 
certainly find 1;0 < zo, such that 1D0(z) I does not vanish 
on 01.'(1;0)' We shall define a set of real Hilbert spaces, 
H(I;), parametrized by the real number I; > 1, by means 
of the inner product, 

~ 

(f,g)~ = 6 (2l + l)flg,[ Q,(!;) ]-2, 
1=0 

(2.3) 

on the set of functions, f(z), that are real-analytic with
in 1.'(1;). Here 

f, = ~ L~ dzf(z)P,(z) , (2.4) 

and similarly for g. P, and Q , are the Legendre func
tions of the first and second kinds. 

Note that an arbitrary function that is real-analytic 
in 1.'(1;) does not necessarily belong to H(I;), but it does 
belong to H(1)) , for any 1) < 1;. Since O"o(z) is real
analytic in E(ZO), it belongs to H(I;({), I;({ <zo, and for 
later convenience we choose I;({ so that 1;0 < I;({ < zoo Be
cause of the unitarity condition, we know that Ao(z) is 
real-analytic in the large Martin ellipse, E(2z~ - 1). 
Hence it belongs to H(l;t), where 

(2.5) 

where 1;0 < zoo For convenience we choose 1;0 < 1;(,. Let us 
summarize the foregoing: 

1 < 1;0 < 1;0 < I;({ <zo, 

O"oEHU;({); DoEH(!;({); AOEH(l;t). 

We may define 

(2.6) 

(2.7) 

no = inf 1 Do(z) I, (2.8) 
zE:3e(tij> 

where it will be recalled that 1;0 was chosen speCifically 
to ensure that no is strictly positive. We can arrange 
without difficulty that 
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I;j> I;({. (2.9) 

Let us define, for each pair 

(2.10) 

the following two sequences: 

D/ = t r: dxP/(x)[a(x) - A 2(x)P /2, (2.11) 

15/ = f f dzQ,(z)(a(z) _A2(z)]1!2, 
1TZ ~E(C;') 

(2.12) 

1 = 0, 1, 2, 0 • '. In order to give a precise meaning to the 
integral (2.12), we must explain how to treat possible 
zeros of a(z) _A2(z) within or upon the contour of in
tegration, a€(I;G). Odd-order zeros will give rise to 
square-root branch points of the integrand of (2.12). In 
the case that the number of odd-order zeros in €(I;G) is 
even, suitable cuts may be drawn within the ellipse, 
and the integrand is then continuous around a€(I;G). If 
the number of odd-order zeros is odd, at least one such 
zero must lie on the real axis. In this case, we draw 
a cut from the rightmost real odd-order zero towards 
+ 00 along the real axis. Suitable cuts may be drawn 
within the ellipse between the other odd-order zeros. 
In this case the contour is open, but the integral is still 
well-defined, and moreover 15/ is always purely real or 
purely imaginary. Hence 15~ is well-defined and real. 

The necessary and sufficient condition for the P z-

transform (2.11) and the Qz-transform (2.12) to be 
equal is that there should be no odd-order zeros in 
€(I;o), so that the surd in (2.12) is analytic in E(l;o). We 
know from (2.7) that Do(z) is analytic in €(I;o), and from 
(2.2) that 

hence certainly 

Do/= Dn/. 

Let us define the nonlinear operator 
~ 

M(A.a; z) = '6 (2l + l)P/(z)(A~ +15D, 
/=0 

where 15/ is given by (2.12), and where 

1 Jj A Z=2 _jdxPz(x)A(x). 

We will also use the operator 

S(A, a; z) = A(z) - M(A, a; z). 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2. 17) 

Because Fo(z) is an elastically unitary amplitude, and 
because of the equivalence (2.14), we know that 

(2.18) 

where we have suppressed the variable z. In this sec
tion, we shall use the Hildebrandt-Graves theorem to 
show that 

S(A. a) = 0 (2.19) 

defines A(a), as an implicit function of a, for a in some 
neighborhood of ao, such that 

(2.20) 

This is not in itself enough to show that there exist 
unitary amplitudes, F(a) , for a in some neighborhood of 
ao, since in general 
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(2.21) 

We shall postpone until the next section the proof that 
there is an infinite-dimensi~nal subset of the neighbor
hood of ao, in which indeed D z and DI are the same, so 
that unitarity is satisfied. Fo...!: the present, we consider 
only Eq. (2.19), so we treat D/ only, and temporarily 
forget about D z• 

The form of the Hildebrandt-Graves theorem that we 
shall use, adapted to our particular case, is as follows 
(Ref. 33): 

Let S be an operator taking pairs (A,a)EH(l;j) x HU;,({) 
into H(l;j). Suppose that S(Ao, ao) = 0, and that S is con
tinuous with respect to (A, a), in some neighborhood of 
(Ao,ao). Suppose also that SA(A,a), the partial Frechet 
derivative of S with respect to A, exists as a bounded 
linear operator on H(r;l), and that it is continuous with 
respect to (A, a) (in the operator topology) in the above 
neighborhood of (Ao, ao). Lastly, suppose that SA(Ao, ao) 
has an inverse, as a bounded linear operator onH(l;j). 
Then S(A, a) = 0 has a unique, continuous solution, A(a), 
for a in some neighborhood of ao, with A(ao) =Ao. 

This theorem is usually stated for Banach spaces 
rather than for Hilbert spaces. We understand that H(I;) 
is to be regarded as a Banach space, by means of the 
usual norm (f,J)~/2. We could have worked with the 
Banach space of Ref. 11, instead of H, but we shall in 
fact find it very convenient to have a Hilbert space at 
our disposal, when we come to consider the singular 
case at the end of this section. 

We need to check all the conditions of this theorem. 
Let us first prove that 

(2.22) 

Now a(z) _A2(z) is analytic in E(I;({) , and hence 

N2= sup la(z)-A2(z) I (2.23) 
Ea«co) 

is finite. We can deduce from (2.12) (see Ref. 11) that 

I-I LN D/ ,,:; 27T Q,(I;G) (2.24) 

where L is the circumference of E(r;G). Also the fact that 
IIAllcj exists implies that 

IAzl,,:; IIAllcjQz(l;j) < IIAllcjQ,(l;o). 

Hence 

where 

where 

1;1=2I;G2-1>1;j, 

and where 

as in Ref. 11. Hence 
~ 

II M(A, a) II ~ = '6 (2l + 1)[Ai +15~]2[ Q/(l;j)]-2 
1 /=0 
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(2.26) 
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~ 

'" ["n(tuF 6 (2l + 1)[QI(W/Q,(tl)]2. 
1=0 

(2.30) 

This norm exists, since the series on the right con
verges exponentially, thanks to the inequality (2.28). 
This concludes the proof of (2.22). 

Since Fo(z) is analytic in E(Zo), the zeros of O'o(z) 
-Aij(z) in E(t~) are certainly of even order, and there 
can only be a finite number of them. If we change 0'0 to 
0' 0 + 00, and wish to induce a change Ao to Ao + 1iA, con
sistent with Eq. (2.19), the zeros will in general move, 
and may split up into zeros of lower, and possibly odd 
order. Thus the surd [O'(z) _A2(Z)]1/2 in (2.12) may no 
longer be analytic in E(t~). This does not affect the 
applicability of the Hildebrandt-Graves theorem, pro
vided we ensure that some neighborhood of aE(t~) re
mains zero-free and is not intersected by square-root 
branch cuts. We will show that there is a neighborhood 
of (Ao,O'o) inH<tl) xH(t!), say Z, for which O'(z) _A2(z) 
does not vanish on aE(t~). In fact, we shall take any n, 
such that 0 < n < no, and show that a neighborhood Z 
exists, such that 

n2", inf, 10'(z)-A2(z) I. (2.31) 
ZEaE<Co) 
(A,a)E:;;: 

Since O'(z)-O'o(zkHW{), we see that for ZEE(to), 

I O'(z) - O'o(z) 12 = 16 (2l + l)P,(Z)[O' ,- O'OIW 
I 

by the Schwarz inequality. The first sum here is 

(2.32) 

110' -O'o/l~ .. , and the second sum converges exponentially. 
Hence wOe have shown the existence of a constant, "1> 

such that 

sup la(z)-ao(z)! "'Kllia-aoll e". 
zE E(C~) 0 

(2.33) 

Similarly, we may show that there is a constant, "2, 
such that 

sup IA(z) - Ao(z) I '" "211A - Ao II, , 
zE 6 <CO) I 

(2.34) 

so that 

sup IA2(z) -A~(z) I 
zE E(CO) 

'" sup {( I A(z) - Ao(z) I + 2I A o(z) I] IA(z) - Ao(z) I} 
zE.(C

O
) 

"'KHIIA-Aollc +211 A ollc ]IIA-Aoll,. (2.35) 
I I I 

Hence 

sup I[O'(z)-A2(z)]-[O'o(z)-A~(z)]1 (2.36) 
"EE(eQ) 

is bounded by the sum of the right-hand sides of (2.33) 
and (2.35). By making /lO'-ao/lco and /lA-Aollc! small 
enough, we may make (2.36) smaller than n~ - n2 , and 
in view of (2.8) this suffices to demonstrate (2.31). 

There is therefore a neighborhood, Z, of (Ao, 0'0), 

such that a(z) - A 2(Z) remains zero-free for z E OE(ta). 
We may therefore assert, by the theorem of Rouche 
(Ref. 34), that the number of zeros of a(z) - A 2(z) in
side aE(t~) is the same as that of O'o(z) -A~(z) (the zeros 
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being counted according to their multiplicity). Any 
splitting of even-order zeros into odd-order zeros may 
be accommodated by cuts that do not intersect OE(ta). 

Let us now consider the Frechet derivative 

(2.37) 

where 
~ 

MA(A, O')M = 6 (2l + l)P,(z)<pI, 
1=0 

(2.38) 

with 

1 I ( D0(t») <P,= irrY'ae(c'o)dtQI(t) A , - [O'(t)_A2(t)]1l2 .M(t) (2.39) 

for any i5AEH(tl)' We will now show that MA(A,a) is a 
bounded linear operator on H(tl ), if (A, a) belongs to 
the neighborhood Z of (Ao,O'o)' In view of (2.24), (2.25) 
(2.31), and 

sup IM(t) I '" K211M II CI' (2.40) 
tE'<Co) 

which one can prove as in Eq. (2.34), we see that there 
is a constant, say K3, such that 

1<p/1 "'K3[Q/(t~)]21IMllcl"'K3n(WQI(wIIMllcl' (2.41) 

tf being defined in (2.28). Hence [much as in Eq. (2.30)] 

II MA(A, a)M II ~ =6 (2l + 1) I <p/12[Q/(tl) ]-2 
I 

'" {K3 n (W 11M II C F6 (2l + l)[Q/(W/Q,(tl) ]2. 
1 I 

(2.42) 

The series converges, and so we have proved that 
MA(A,a) is a bounded linear operator. By Similar, but 
somewhat longer calculations, it may be shown that 
MA(A,a), and S(A,O') itself, are continuous with respect 
to (A,O'), for (A,O')EZ. 

We have now verified all the conditions for the ap
plicability of the Hildebrandt-Graves theorem, except 
the existence of an inverse linear operator SAl (Ao, 0'0)' 
We show first that MA(Ao, 0'0) is compact, which we do 
by a method due to Johnson (Ref. 8). Let us define a 
ball of radius r inH(tl): 

Tr={a(z): Ilallcl"'r,r>O}. (2.43) 

We prove that, for every E> 0, and any r, there exists 
a finite E-net for the set MA(AO,O'o)Tr , which means that 
it is totally bounded. For any i5A E Tn we see from 
(2.41) that there is a constant, say K4, such that 

I <P, I '" K4Q,(W, (2A4) 

Hence, given any E> 0, we may find an L such that 
~ 

6 (2l + 1) I <p,12[Q,(tl )]-2 < E. 
'=L 

(2.45) 

The L-tuples (<Po, <PI> ••• , <P L~I), corresponding to all 
METro constitute a bounded set in the locally compact 
space ffiL, and so the set can be covered by a finite 
E-net, which clearly also serves as a finite net for 
MA(Ao,O'o)Tr , in view of (2.45). Hence MA(Ao, 0'0) is a 
compact linear operator on HU;'I), and we may apply the 
Riesz-Schauder theory (Ref. 35). In particular, the 
spectrum is a point set, and if unity does not belong to 
it, SA(Ao,ao) has a bounded inverse, and the Hilde
brandt-Graves theorem applies. If unity is an eigen-
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value of MA(Ao, ao), nevertheless the corresponding 
eigenspace is only finite-dimensional, by Riesz
Schauder, and we will show that Eq. (2.19) can still be 
used in general to define an implicit function, A(a). 

We attack the Singular case, when unity is an eigen
value of M A (Ao, a 0), by a modification of bifurcation 
theory (Ref. 36). We define 

U(M, 15a) = S(A, a) - SA(Ao, Go)M, (2.46) 

where 

15A=A-Ao, 

15a=a- aDo 

(2. 47a) 

(2. 47b) 

Again we start from (2.18), and we wish to demonstrate 
the existence of a solution, A(a), of Eq. (2.19), for 
a;loao• At such a solution, 

(2.48) 

but now we assume that unity is in the spectrum of 
MA(Ao,ao). so that SA(Ao,ao) has no inverse. We will 
show nevertheless that there does exist a so-called 
pseudoinverse. We know that MA(Ao, ao) is compact, and 
this allows us to assert two things: 

(a) the nullspace of SA(Ao,ao), say N, is a linear sub
space of H(?;t) of finite dimension, say n; 

(b) the range of SA(Ao, aD), say R, is strongly closed. 

These results follow from the Riesz-Schauder theory. 

We define the quotient space 

(2.49) 

in the standard way. This is a Banach space, normed by 

(2.50) 

where 15AN is the equivalence class, modulo N, that 
contains 15A (i. e., 15AE MN and XE 15AN, yE IIAN=*x- Y 
EN). There exists a continuous, linear one-to-one 
mapping, from H N(?;t) to R, say SN, such that 

(2.51) 

Then the inverse mapping theorem tells us that SN has 
a continuous inverse, sil, as a linear mapping from R 
to H N(St). Let IIN and IIR be the orthogonal projection 
operators from H(?;t) onto Nand R, respectively. Then 
the pseudoinverse of SA (A o, a 0) is defined, as a bounded 
linear mapping from H (St) to N\ the subspace of H(Sl) 
orthogonal to N, by 

(2.52) 

where (/ - IIN)N is the linear mapping from H N(?;j) to N L 

defined by 

(1- IIN)NMN = (1- IIN)M. (2.53) 

Clearly (1- IIN)N is an isometry. 

The pseudoinverse, s;l, will now serve to transform 
Eq. (2.48), but only on condition that U(oA, oa) belongs 
to R. Consider in fact the equation 

(2. 54) 

where U EN. We may write 
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(2.55) 

where {urn} is a real basis for N, and {AJ is a set of 
real numbers. We shall show presently that, if II oollc" 

. 0 
and Ilull e are small enough, Eqo (2.54) defmes a con-
traction lmapping, so that then a locally unique solution, 
say oA(oo,u), exists. Now from (2 0 52) we have that 

SA(Ao, a 0) SAl =II R (2.56) 

so that (2. 54) implies 

SA(Ao,ao)M = - IIRU(M, 00), 

and this reduces to (2.48) only if 

(l-II R)U(M(oo,u),oo)=O, 

as expected. 

(2.57) 

(2.58) 

The system (2.58) is in fact of dimension n, since 
(1 - II R) is the projection operator onto the nullspace of 
the adjoint operator S~ (Ao, a 0)' Since u depends on the n 
real numbers A1> A2, ••• ,An [Eq. (2.55)], we may regard 
(2. 58) as a system of n nonlinear algebraic equations 
for the n variables Am, with 00 as an infinite-dimension
al parameter. This system is called the bifurcation 
equation, and in general there will be more than one 
.solution for the Am. Clearly only real solutions are of 
interest: complex ones are simply to be ignored. For 
each real solution for the Am' there corresponds a 
solution u( oa) of the bifurcation equation (20 58), and for 
this solution, the function 

M(15a, u(15a)) 

solves not only (2.54) [with u=u(oo)], but also the 
original equation (2. 48). 

It remains to supply the contraction mapping proof. 
Define the nonlinear mapping F onH(sl): 

F(M) = - S;;.tU(M, 00) +U, (2.60) 

Now according to (2.46) and (2.18), 

U(M, 00) = S(Ao + M, ao + 00) - S(Ao, ao) - SA(Ao, ao)M 

(2.61) 

and hence we infer that 

II U(M, 00) lie"" IIS(Ao+ M,ao + 15a) - S(Ao + M, ao) lie 
1 1 

+ II S(Ao + M, ao) - S(Ao, ao) 

-SA(Ao,ao)Mllc. (2.62) 
1 

To bound the first term on the right-hand side of (2.62), 
we use the Banach space version of the mean-value 
theorem: 

II S(A, ao + 00) - S(A, ao) II Cl "" sup II S,,(A, ao +x15a II 0 l115a II CO, 
O~x~1 

(2.63) 

where Sa(A, a) is the partial Frechet derivative of S(A, a) 
with respect to a, This is defined by 

00 

Sa(A,a)00=6 (2l +1)Pl(Z)<Pl, 
1;0 

(2. 64a) 

(2. 64b) 
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and where 00 E HU;f)). It is easy to show that S,,(A, a) is 
a bounded, and in fact a compact linear operator from 
H(~f)) to H(~I)' if (A, a) E E. The method is precisely 
similar to the demonstration that MA(A,a) is compact, 
and we leave the details to the reader [see Eq. (2.38) 
et seq.]. Hence there is a constant, Cj, such that the 
right-hand side of (2.63) is bounded by Cliloolictf, so 
long as (A, a) E E. 

We turn now to the second term on the right-hand 
side of (2.62). Here we shall use the Banach space ver
sion of the second mean-value theorem, viz., 

II S(A, a o) - S(Ao, ao) - SA(Ao, ao)M II 

~t sup II SAA(A o+xM,ao)HIMI12 (2.65) 
o "'r",1 

where all norms refer to H(tl ). Here the second partial 
Frechet derivative with respect toA, SAA(A,a), may be 
shown to be a bounded bilinear operator from H(~I) 
xH(~I) to HU:I), if (A,a) EE, by methods similar to those 
used to show that MA(A, a) is bounded. Hence there 
exists a constant C2 , such that the right-hand side of 
(2.65) is bounded by C2I1MII~ (see Ref. 13 for a dis
cussion of the second Freche1 derivative in a mathema
tically similar problem). 

From the definition (2.60), we may therefore write 
the inequality 

IIF(M)llc ~ II SAl II{CI II oollc" +c21IMII~}+ Iluli c . I 0 I I 
(2.66) 

We have already shown that the pseudoinverse, SAt, is 
a bounded linear operator, so it suffices to take 

II M IlcI ~ b, 

II 00 II c .. ~ b[311 SAl II CI ]-1 , 
o 

Ilu II c ~ b/3, 
I 

where b is a number that satisfies 

(2. 67a) 

(2. 67b) 

(2. 67c) 

(2.68) 

and is small enough to ensure that (2. 67a, b) implies 
(A, a) E:S. The above conditions are sufficient to give 

IIF(M)llcI~b, (2.69) 

so F is an injective mapping of the ball (2. 67a) into 
itself. 

To show that F is contractive, and not merely injec
tive on the ball (2. 67a), we consider 

F(MI) - F(M2) = - ~1{U(Mj, 00) - U(M2' oo)} (2.70) 

for any oAI and OA2 in the ball (2. 67a). SO 

II F(MI) - F(M2) IlcI 

~ II SAl II {II S(Aj, a) - S(Aj, ao) - S(A2' a) + S(A2, ao) II CI 

+ II S(Aj, a 0) - S(A2' ao) - S A(Ao, ao)(AI - A 2) II cl}. (2. 71) 

The first term within the parentheses may be bounded 
by 

sup sup liS Aa(AI + x(A2 - AI), a 0 + yoo) II-II 00 II c .. IIA I - A211 cI 
O~x~10~y~1 0 

(2.72) 

where S Aa is the mixed second-order Frechet derivative 
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of S(A, a) with respect to A and a. It may be shown to be 
bounded. The second term within the parentheses is 
bounded by 

t sup IlsAA(AI +X(A2-AI ),ao) 1I'IIAI-A211~1' (2.73) 
O"'r"'l 

Hence there are constants, C3 and C4, such that 

II F(MI) - F(M2) IlcI ~ K IIAI -A2 11 cI 

with 

K = C3 11 00 II c .. + C4b. o 

(2.74) 

(2.75) 

Clearly it is possible to choose b so small that simul
taneously (2. 67b) and (2.68) are satisfied, and K < 1. 
This is the condition for a contraction, and with it we 
have ended the proof. 

3. ZEROS OF THE DISPERSIVE PART 

In this section we consider how to ensure that 

15/(a) = D/(a), (3.1) 

so that elastic unitarity is satisfied by the implicit func
tion D(a;z) +iA(a;z), the existence of which we dem
onstrated in Sec. 2. We have shown that, if Ila-aollcH 
is small enough, the algebraic number of zeros of 0 

R(A, a;z) =a(z) - A2(Z) (3.2) 

within €(~~) is constant, where we understand that A(z) 
in (3. 2) is the implicit function defined by 

S(A, a;z) = O. (3.3) 

Suppose that R(Ao,ao;z) has N zeros within E(t~), at 
the positions z =POI,P02,'" ,PON' and that the orders of 
the zeros are respectively 2ql, 2q2, ••• ,2qN [the orders 
must be even, since Do(z)=RI/2(Ao,ao;z) is analytic in 
E(~~)]. Then we know that 

(3.4) 

where m = 0,1, ... ,2Qn -1, n= 1,2, ... ,N, and where 

R(m)(A, a;z) = (iJ~r R(A, a;z) (3.5) 

(with the understanding of course that R(m) just reduces 
to R for m = 0). We shall show that a can be so con
strained that also 

(3.6) 

for the same values of m and n. In other words, the 
zeros of R(A, a;z) have moved from the old positions, 
POn' to new pOSitions Pn, and are of the same (even) 
order as before. Thus D(z) is still analytic and (3.1) is 
guaranteed. 

To make this quite precise, we shall ensure that all 
the Pn, n= 1, 2, ... ,N, remain distinct, so that then the 
zero at Pn is precisely of order 2Qn [for if it were of 
even higher order, the algebraic number of zeros of 
R(A, a;z) within E(t6) would be greater than 2(QI +Q2 
+,oo+QN), which is impossible]. 

We Simply need to apply the implicit-function the
orem to the finite-dimensional system 

(3.7) 

for m=O, 1, ... , 2Qn-1, n= 1, 2, ... ,N, where A(a) is 
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the implicit function defined by (3.3). There are in fact 
2(ql +q2 +""" +qN) complex equations, and so we cannot 
hope to use (3.7) to define the N p's as implicit func
tions of an unrestricted a. We shall in fact write 

(3.8) 

where we define the "constrained part" of the cross 
section by 

Q 

ac(z)=6(2I k +1)a l PI (z), (3.9a) 
k=1 k k 

where 11 ,12, ••• ,ZQ, is an arbitrary sequence of integers 
(we shall define Q presently), and where the "free part" 
of the cross section is 

We may then write (3.7) as 

R(m)(A(af+ac)' af +ac;p,,) = O. 

(3.9b) 

(3.10) 

Although there are 4(ql +. " • + q N) real equations here, 
only half this number are independent, since complex 
P's must come in complex conjugate pairs, and for real 
P's, the corresponding equation is manifestly real. 
Accordingly, it is sufficient to consider only zeros on 
the real axis, or in the upper half-plane [and inside 
E(tO)], and to define 

(3.11) 

Then (3.10) is a system of Q +N real scalar equations 
for Q + N real unknowns (namely the a I and the real and 
• • , k 
Imagmary parts of the p s in the upper half-plane). The 
equations are to be solved for these unknowns, in terms 
of a" which may be chosen freely. 

The question of the existence of solutions of (3.10), 
for a, sufficiently close to ao!> can be answered by an
other application of the implicit function theorem. 

The derivatives of R(m)(A(af+ac),a,+ac;Pn), with 
respect to ac and Pn, are easy to calculate, and may be 
shown to be bounded, and continuous with respect to 
a" ac ' and Pn by methods following closely those of 
Sec. 2. The ordinary implicit function theorem is 
applicable if the derivative system has an inverse; if it 
does not, we can treat the bifurcation equation, as in 
Sec. 2. 

The shifts in the positions of the zeros, IPn- Ponl, 
are proportional to II a, - a 0,11, and so by making the 
latter quantity small enough, we can ensure that none 
of the zeros move by more than (say), one-third of the 
distance between the closest pair of zeroS. In this way 
we can be sure that all zeros remain distinct, and that 
the orders, 2qm do not change. 

4. PRACTICAL IMPLEMENTATION OF THE METHOD 

In practice, we set up a modified Newton-Kantorovich 
iteration for the numerical calculation of the new 
amplitudes that correspond to the changed cross- sec
tions. We shall simply write down the equations and 
refer the reader to Ref. 14 for a detailed discussion of 
the method. 

690 J. Math. Phys., Vol. 16, No.3, March 1975 

(4. 1a) 

+Ii R(m+1)(A(O) a(O)+a .p(O»)"p(j+1)=O 
m,2Qn-i 'c fjJ, nUn • (4.1b) 

Here SI is the partial-wave projection of S, i. e. , 
2 -2 

SI(A,ac +af ) =A, - A I - DI(A,ac +a,). (4.2) 

For numerical convenience, we work in Eq. (4.1) 
directly with the partial waves A, and a" rather than 
with the functions A(z) and a(z). The partial-wave index 
Z runs from 0 to 00, although in practice this means 0 to 
Some sufficiently large Lma:x, at which point the r-series 
in (4.1) are also cut off. In (4.1b), m runs over 
0,2, ... , 2qn - 1, and n over the subset of 1,2, ... ,N 
that corresponds to the zeros in the upper hali-plane, 
or on the real axis, and within the ellipse E(t({). We 
have used the notation 

p:m)(z) =(:Jmpl(Z), (4.3) 

lia jm+1)(z) = (:z) m+l oof(Z) 

=6 (2Z+1)oo'IP :m+1)(z), k=1,2, ... ,Q, 
Ink 

(4.4) 

and we have taken account of the fact that 

R(m)(A (0) a(O) +a 'p(O») = 0 
'c 0/, n 

form=0,1, ... ,2qn-1, n=1,2, ... ,N, in order to 
simplify the Pn-derivative term in (4.1b). Finally, j 
labels the iteration step, and we define 

M?+1) = A;J+1) _ A;i>, 

(4.5) 

lia(J+1) = a(j+1) - a(j) 
Ik Ik Ik ' 

(4.6) 

lip~j+l) = p~J+1) _ p~j). 

The Kantorovich theorem33 guarantees the conver
gence of the iteration (4.1), if the corresponding invers
es exist, 14 since it may be shown that Sand R(m) are 
twice Frechet differentiable with respect to A and a c' 

In the event that (4.1) cannot be inverted to give the 
quantities (4.6), one may approximate the bifurcation 
equation by extending the Newton expansion to second 
order. We refer to Refs. 11 and 36 for further detailS. 

5. EXTENSION TO INELASTIC UNITARITY 
In Secs. 3 and 4 we discussed at length the construc

tion of new amplitudes corresponding to changed cross 
sections. The continuum ambiguity resulting from 
changes in the inelastic contributions to the amplitude 
has been treated in Refs. 11 and 14. In this section we 
extend these methods is such a way as to allow us to 
change the cross sections and the inelasticities 
simultaneously. 
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At energies above the first inelastic threshold we 
write the unitarity condition 

(5.1) 

where the inelasticities It have to satisfy the inequality 

(5.2) 

Following the technique of Sec. 2, we define an opera
tor S, which will now also depend upon the Iz's, 

SeA, <1,I;z) =A(z) - M(A, <1;z) - I(z) (5.3) 

where 

I(z) =6 (2l + 1)I,P,(z). 
I 

(5.4) 

Because of (5. 1) and the equivalence (2.14) we know 
that 

(5.5) 

where Io(z) is the inelastic contribution to the amplitude 
Fo(z). We now change the differential cross section 
<1o(z) and the inelastic part Io(z) by small amounts oo(z) 
and OI(z), and we want to construct a new absorptive 
part A(z) such that 

SeA, <10 + 00, 10 + 6/) = 0 (5.6) 

where we have suppressed the variable z. The proof 
that such an A(z) exists is essentially the same as that 
given in Sec. 2. Again we have the problem of the zeros 
of the dispersive part. To prevent the zeros from 
parasitizing, we have to ensure, as in Sec. 3, that (3.6) 
is satisfied. However, we now have the choice of con
straining either part of <1(z) , or part of I(z) , or both. 
We therefore write the following system of equations 

SeA, <1e +<1" Ie +1,) = 0, 

R(m)(A(<1,+<1e, I, + Ie), <1, +<1e;P,J = 0 

(5.7) 

(5.8) 

and apply a modified Newton-Kantorovich iteration in 
order to solve them. The final equations are then 
similar to Eqs. (4.1) except for a term 

R 

-615 I5l J+1) 
n=1 ',n In 

(5.9) 

in Eq. (4. la) where R is the number of constrained It's 
and the index k in (4. la) and (4.1b) runs from 1 to 
Q-R. 

6. NEIGHBORHOODS OF THE CRICHTON AMBIGUITY 

In this section, we shall first discuss in more detail 
the nature of the Singularities of as/aA. Then we shall 
illustrate the foregoing ideas by considering the case 
of a polynomial amplitude, in particular, certain as
pects of the Crichton ambiguity will be elucidated. 

As in the previous section, we set 

(6.1) 

where I, is zero if the energy is below the first in
elastic threshold, and is otherwise bounded between 0 
and t Then we may write the partial Frechet derivative 

as, [ vDI 
aA = 1 - 2A 1]I5 'm - 2D, aA 

m m 
(6.2) 

with 
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aDt 2m+l t A(z) 
vA = - -2 -.- dZQ,(Z)Pm(z) D( ) • 

m 1Tt ae(Co) z 
(6.3) 

We know that as,!vAm - 15 'm is a compact linear operator 
on the Hilbert space H(r.l) of Sec. 2, and therefore as,! 
aAm will fail to have an inverse precisely when there 
exists a nonzero sequence {a,l, belonging toH(r.1), for 
which 

~ as, 
6 aA am=O. 
m=O m 

If we consider only first order changes in A and <1, 

we may write for (2.19) . 

as M+ as 00=0 
aA 0<1 

(0. :i) 

where we have not made the distinction between 00 c and 
00, explicit, and where the partial wave subscripts and 
summations are also impliCit. If 

as 
-a=O 
aA 

(0.6) 

which is (6.4) written implicitly, and if the normalized 
null function a is unique, then we impose the following 
linear constraint on 00: 

~, as 15) = 0 (6.7) 
\'- 0<1 ") Cj 

and then solve (6.5) as 

- as 
I5A = - s':l 0<1 00 + .\a (6.8) 

where s-:l is the pseudoinverse that was introduced in 
Sec. 2, and (6.8) is the first-order version of (2. 54). 
The number A has to be determined from the bifurcation 
equation (2.58), which may be approximated by extend
ing (6.5) to second order in I5A, and by contracting this 
against a. It is easy to see that, as 00 - 0, A is gen
erally of a lower order (apart from exceptional cases, 
A is of order 001 / 2). Hence, to order A only, I5A = .\a, 
and since 

I5D= (00 - 2AM)/2D, 

it follows that 

(6.9) 

I5D= - MaiD, (6.10) 

to order A. If we have a bifurcation point of the com
plete system (3.3) and (3.7), then I5D must be analytic 
within the ellipse of integration aE(r.~). Therefore any 
zeros of D within a€(r.~) which are not cancelled by zeros 
of A must be cancelled by zeros of <l'. 

One interesting property of <l' immediately follows 
from the analyticity of I5D within aE(r.~). USing (6.2) and 
(6.3), we write for (6.4) 

(l_2A,)a,+D.
, I dZQ,(z)A(z)a(z) =0 

1Tt Ya'(Col D(z) 
(6.11) 

where 
~ 

a(z)= 6 (2m+l)amP m(z). 
m=O 

(6. 12) 

Because of (6.10) and the analyticity of I5D, we can 
distort the contour aE(r.6) and squeeze it around the cut 
(-1, +1) to obtain 
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(+1 A(x) a (x) 
(I-M/)a / +DI )-1 dxP/(x) D(x) =0. 

If we now multiply this by (21 + 1) and sum over 1, we 
find 

Co! (1) = 0 (6.13) 

so that Co! vanishes in the forward direction. 

Let us conclude this general discussion by listing suf
ficient conditions such that F = D + iA is a bifurcation 
point of the complete system. 

(a) there is a nontrivial solution a of (6.4); 

(b) A(z)Q(z)/D(z) is analytic within e(1:o); 

(c) a2S(A,a)/aA2'a'a,oO; 

(d) F satisfies unitarity and I F I 2 = a. 

Now we shall consider the case that both A(z) and 
D(z) are polynomials of degree L, and that all zeros of 
D(z) are simple and lie within the ellipse a€(1:o). We 
may write 

A(Z)=Yo+t~ (6.14) 
D(z) s=l z - fls 

where the fl's are the zeros of D(z). We may identify Yo 
by considering the limit z - co in (6.14): 

Yo ",AJDL • (6.15) 

We now evaluate the integral (6.3) as follows: 

aD, = _ AL 6 _ 8(m -l-1)(2m+ 1) 
aAm DL 1m 

L 

X ~ ys[Q,(fl.)P m(fls) - PI (fls)Qm(fls)] (6.16) 

and express the condition (6.4) in the form 

[ 1- M, + 2~D D,]UI = - 2DI "£ (2m + l)a m 
L m=l+l 

L 

xL; 'Ys[Q,(fls)Pm(fls) - P,(fls)Qm({3s)]' 
s=l 

(6.17) 

For 1 > L we have DI '" 0 =A" and therefore u, = O. Hence 
we deduce from (6. 17) in the case 1 = L that Q L = O. The 
sum (6.4) is thus automatically truncated at 1", L - 1 or 
lower. For 1 = L - 1 one finds 

Co! L-l = 0 or 1- ML~l + MLDL~/DL = 0, 

In the first case one then has 

QL-2 = 0 or 1- M L_2 + MLDL_JDL = 0 

and so on. If 

1- M,+MLD/DL,oO 

(6.18) 

(6. 19) 

(6.20) 

for 1 = 0,1,2, ... ,L -1, then u, = 0, alll, which means 
that there is no nontrivial null sequence, and hence 
that as/aAm is nonsingular and has an inverse. If, on 
the other hand, 

(6.21) 

with 1 = n, for one and only one integer n between 0 and 
L - 1, then there is just one independent null function, 
which one may obtain from (6.17) by setting un = 1, and 
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then by solving successively for a n_1> a n_2, •• , ,Qo• In 
the case that (6.21) is satisfied for more than one value 
of 1, there may in general be more than one independent 
null function; but we shall not examine this case further. 

For purely elastic amplitudes, the condition (6.21) 
for a singularity of as/aA can be reduced to: 

(6.22) 

where the oz's are the real phase-shifts and N is an 
integer. There are many polynomial amplitudes that 
have one or more partial waves satisfying (6.22). How
ever, the subsidiary condition that oA/D be analytic is 
met only in a few cases. Explicit examples of these are 
given by the endpoints of the SPD 26 and SPDF 2B Crich
ton-like ambiguities. Crichton-like ambiguities exist 
whenever there are two polynomial amplitudes F and 
F', with the same fixed inelasticities, each of degree 
L, that have the same modulus. It has been shown in 
the L = 2 and L '" 3 cases, that the amplitudes F and F' 
are on closed curves in the space spanned by 
A o,A1 , ••• ,ALo These curves can be parametrized by 
the change in the differential cross section a. The end
points of the ranges of a for these curves correspond 
precisely to bifurcation points of the complete system. 
In the SPD Crichton case there are in fact two singular 
points, in addition to the bifurcation points (which occur 
at O2 ''' 12. 5° and 02'" 24. 2°). They correspond to the 
satisfaction of Eq. (6.22) for the S wave: for O2 ''' 13.5°, 
as/aA is singular at F, and for O2 ''' 23. 0°, it is singular 
at F'. 

Given F and F' with the same a it is generally possi
ble to construct two new amplitudes F + of and F' + of' 
corresponding to the same Slightly changed cross sec
tion a + Do by a simple modification of the method of 
Sec. 4. In particular, it is possible to fOllow the 
Crichton curves mentioned above, and we shall outline 
the method for the case L = 2. In this case D and D' each 
have two real simple zeros, and therefore two of the 
00 1 must be constrained in order to prevent the zeros 
from parasitizing. These constraints are different for 
D and D', and therefore in general we would expect 
00 c * oo~. Nevertheless, we now show that it is possible 
to ensure that Oac '" oo~, and thus to ensure that IF + oFI 
'" I F' + of' I. Indeed the cross section a(z) is a fourth
order polynomial, so there are five Legendre coeffi
cients, 00, 01, ••• ,a4; so that it suffices to take four of 
the a" instead of two, as members of the constrained 
set 0c' If we exclude the Singular points of as/aA (which 
are the two bifUrcation points, and the points O2 ''' 13.5° 
and O2 ''' 23.0° to which we alluded above), we may mul
tiply Eq. (4. la) by (as/OAt1 and substitute the resulting 
expression for oA~j+l) into Eq. (4.1b). This gives four 
real inhomogeneous equations for the six unknowns, 
o,,(j+1) o,,(j+1) and the four Oa(j+1) Now we write the rl , 1'2 'k • 

corresponding equations for the alternative amplitude 
F' and obtain four more equations for the six unknowns 
opt<J+1>, opf{j+ll, and the same four 60Wl). Evidently we 
have in all eight equations for eight unknowns, and in 
general we can find a solution, Hence we generate new 
amplitudes that satisfy the Crichton requirement 
IF + oFI '" IF' + 6F' I. Evidently, since 00 f contains only 
one Legendre coefficient, the one-dimenSional degree 
of freedom corresponds precisely to following the SPD 
Crichton curve. 
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It is possible with the same method to obtain non
trivial continuations away from the Crichton SPD 
crOSS section by including some new components /Sal, 
1> 4, in /Sa,. If the number of the new /Sal is finite then 
CJ + /Sa will still be a polynomial, but F + 6F and F' + 6Ft 

will in general possess parasitiC branch cuts which can 
be kept out of the ellipse of integration by choosing /Sa, 
small enough. It is possible that, by a sequence of 
Newton-steps, one could get rid of the branch cuts and 
finish with new polynomial amplitudes F + ~F and F' 
+ ~F', of a higher degree than F and F'. For example, 
there may well exist a continuous connection between 
the SPD ambiguities and some, or all, of the SPDF 
cases that have been studied by Berends and 
Ruijsenaars. 

The above demonstrations have been based on the 
Newton method; but a more satisfactory existence proof 
may easily be constructed by using the Hildebrandt
Graves theorem, as in Sec. 2; and one could also con
sider then nonpolynomial changes in a. 
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We derive the critical concentration for site percolation on a Cayley tree "decorated" with second 
nearest neighbor bonds. For a tree with connectivity K the result is C "it 

= < I+K -[(1 +K)2_4]'I2>12K. 

The percolation problem l
- 6 deals with a lattice com

posed of sites and bonds. It is assumed that a finite 
fraction c of the sites are marked or "open," the re
maining ones being unmarked or "closed." Clusters of 
open sites interconnected by bonds will be formed, and 
one wants to study the distribution of cluster sizes as a 
function of c. Of particular importance for several ap
plications (e. g., magnetism) is the appearance of the 
first infinite cluster, which occurs at some critical 
concentration cerlt called the percolation threshold. 

Let us pick at random one of the open sites and de
clare it "wet" (suggesting that some kind of fluid is 
poured into the lattice at this site). We will refer to this 
site as "the origin" or site 0, but it should be remem
bered that it could be any open site. We will define any 
other site j to be wet if and only if it is open and there 
exists a path on the lattice going from 0 to j and avoid
ing all closed sites. (To give some physical interpreta
tion to this definition, imagine that the fluid poured into 
o flows along the bonds but is stopped by closed sites.) 
We shall say that a site j is at distance n if there exists 
an n-step path but no (n -1) step path from 0 to j. 

Let Pn(c) be the probability that at least one site at 
distance larger than n is wet. Pn<C) is a decreasing 
function of n, and the following limit exists, 

and is called the percolation probability. The critical 
concentration or percolation threshold is defined as 

cerlt == sup{ c I P(c) =:: O}. 

(1 ) 

(2) 

This quantity depends, of course, on the lattice under 
consideration. We study here the problem of a Cayley 
tree "decorated" with second nearest neighbor bonds. 
A Cayley tree7 is a pseudolattice containing no closed 
loops, and on which each site has the same number 
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FIG. 1. Portion of 
a Cayley tree with 
K=2 and bonds be
tween second near
est neighbors (dot
ted lines). 

Journal of Mathematical Physics, Vol. 16, No.3, March 1975 

y '" K + 1 of nearest neighbors. K is called the connectiv
ity of the tree. Figure 1 shows in full lines a portion of 
a Cayley tree of connectivity K = 2. The percolation 
problem can be solved exactly on a Cayley tree7

; the 
percolation threshold turns out to be cerlt = 1/ K. The 
persent work differs from that of Ref. 7 in that we will 
include second nearest neighbor bonds (dotted lines in 
Fig. 1), thus increasing the number of paths along which 
the fluid can flow. For simplicity we still define dis
tances on the lattice in terms of the original bonds (full 
lines) . 

Since our bonds are not oriented (liquids can flow 
either way) the following alternative but equivalent defi
nition of Pn(c) is possible: Let us pick one of the open 
sites at random and call it the origin O. Imagine liquid 
poured into all open sites at distances larger than n, 
and define Pn(c) as the probability that the liquid, now 
flowing inwards, will reach the origin O. It is this sec
ond definition of Pn(c) that will be most convenient for 
our purposes. 

We also introduce the idea of an n-branch, we define 
this term in the following way: take one site and call it the 
the zeroth generation or vertex; connect it to K other 
sites and call these the first generation sites; connect 
each first generation site to K others and call these 
the second generation sites, etc. Stop the process when 
nth generation has been added. The resulting graph is 
an n-branch. Figure 2 shows a 3-branch of connectivity 
K=2. Since an infinite Cayley tree is obtained by attach
ing y=K + 1 oo-branches to any of its sites, we expect 
some relation between percolation on trees and branches. 
We will make this relation explicit later, and work only 
with branches for the time being. 

Let Ci be the probability that the vertex of an n-branch 
is dry if all open sites on both the nth and (n -l)th gen
eration are wet. Let {3n be the probability that the vertex 
and all its nearest neighbors are simultaneously dry 
under the same conditions. It is clear from our defini
tions that 

Ci
1
=::I-c, (3) 

{31 = (1 - C)K+l. 

/' 
ver1u 

first generation 

sites 

third generation 
sites 

FIG. 2. A 3-branch 
for K= 2 
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An (n + I)-branch is formed by attaching K n-branches 
to its vertex. We use this fact to write down recurrence 
relations for the quantities an' ~n' The vertex of the 
(n + I)-branch will be dry if (a) it is closed or (b) it is 
open and all its first and second nearest neighbors are 
dry: 

an+1=I-c+c~ (5) 

For f3n+1 we need the vertex of the {n + I)-branch and all 
its nearest neighbors to be dry. Situation (b) above 
meets this requirement, but (a) does not. We must im
pose in addition to (a) that all first generation sites, 
which are themselves vertices of attached n-branches, 
should be dry. We therefore get 

f3n+1 = (1 - c) Ct~ + c~. (6) 

It is not difficult to find the behavior of the sequences 
{aJ, {f:ln} for n- OO • From (3)-(6) we have a 1 ~ a 2 , 

f:ll ~ 132 , Moreover, since the right-hand sides of (5) and 
(6) are increasing functions of both an and f3n, the two 
sequences {an} and {f:ln} are nondecreasing. 

Consider next the equations obtained by requiring that 
a point (a, (3) be a fixed point of the transformation 
(5), (6): 

Qi = 1 - c + c{3K, (7) 

(8) 

Let ~ be the smallest root of (8) in the interval [0, IJ 
and a = 1 - c + c[3K the corresponding ~. We have [3 
:= I(§, c)? 1(0, c) = /3 1 and a = 1 - c + c/3K ? 1 - C = a p One 
can now USe the monotonicity of the right-hand sides of 
(5) and (6) to prove by induction that f3n ~ [3 and Qin"'" a for 
all n. Jhus the sequences {Qi n} andJf3J have ~nite limits 
a and 13 respectively, with 0:"", Ct, 13"",~. But i3 < ~ is im
possible since /3 is the smallest root of (8) in [O,IJ. We 
conclude that 

lim an=a "",a(c), 
n~" 

(9) 

(10) 

The function 1(13, c) is convex in [0, 1] as a function of 
f:l (it is polynomial of degree 2K with positive coeffi
cients), and 1(0, c) < 1,/(1, c)=1. There will be a solu
!!on if < 1 if and only if dl(fl, c)/ df:lI IM > 1; otherwise 
f:l = 1. The function I(f:l, c) is explicitly known [Eq. (8)], 
and after some elementary algebra we can express this 
as 

i3<1 iff c>{1+K-[(l+K)2-4]1/2}j2K. (11) 

Let us now return to the infinite Cayley tree. We as
sume that we have picked one open site as the origin, 
and ask for the probability Pn(c) that it will be wet when 
every open site n + 1 or more steps away is wet. There 
are only first and second neighbor bonds in the problem; 
we can therefore eliminate all sites at distances larger 
than n + 2 without modifying Pn(c). Once this elimination 

695 J. Math. Phys., Vol. 16, No.3, March 1975 

is done, what remains of the tree looks very much like 
an (n + 2)-branch, with the only slight modification that 
the vertex has K + 1 neighbors instead of K, and is open 
by definition. 

The probability iin+2 that this vertex will be dry is 
consequently 

(12) 

obtained from (6) by letting c - 1 (it is open) and K - K 
+ 1. But iin+2 == 1 - Pn(c) so that 

P(c) == limP (c) = lim 1 - flK+l == 1 _ j3K+1 n ~l • (13) 
n-OO n" cO 

We conclude that the critical concentration is the highest 
one that makes i3 = 1, and from (11) 

cerlt :={1 + K - [(1 + K)2 - 4]l/2}/2K. (14) 

We also find from our discussion the behavior of p(c) 
for c-~rlt. Close to cerlt we can expand Eq. (8) in the 
form 

(15) 

It is readily checked that 02/(1, cerlt)/O 130 C > 0 and 
02j(.!,cer1t )/0(32>0, which implies a linear increase of 
1 - f:l with C - cerlt for C - c~rlt. From (13) 

P(c) a: (c - Cerlt)' C - C;rlt. (16) 

We conclude this work with a few remarks. First, the 
procedure can be generalized to include bonds of any 
finite range. For third neighbor bonds, for example, 
one would define in addition to Qin' f:ln a third quantity Yn 
equal to the probability that the vertex of a branch and 
the two adjacent layers are all dry, and set up an equa
tion for Y in analogy with (8). And second, one can study 
properties other than the threshold, for instance the 
mean cluster size at C < cerlt ' by investigating the be
havior of an and (3n as functions of n, not just their 
limits. 
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Given a Lagrangian which is an invariant density and a concomitant of a set of independent 
geometrical objects, it is shown that there is a unique conserved vector associated with the 
Lagrangian. For cases of interest the vector is constructed and is seen to be identical with Komar's 
conserved vector for general relativity. For a general Lagrangian we also construct the "compatability 
identity" relating the Euler-Lagrange tensors. The connection between these identities, the invariance 
identities of Rund, and Lie derivatives of invariant densities is found. 

INTRODUCTION 

In theoretical physics it is well known that there are 
numerous symmetry and differential identities as
sociated with the Lagrangian formulation of multiple 
integral field theories. For example, in relativity 
theory, one often considers invariant densities of the 
form L(giJ,gij,pgij,kl) where gij is a metric tensor. 
Taking L as a Lagrangian and performing a variation 
with respect to the metric tensor one obtains 

.. 6L aL a aL a2 aL E'J=--=-- _ - -- + --- -__ _ 
- 6gij - agjj axk agij,k axkaxl agji,kl 

as the result of the action principle. Alternately, it has 
been shownl that 

Eij '" ~gij L - tRistuZistu + Ziikl Ikl 

is an equivalent definition for Eli and clearly, of more 
use than the usual definition. 2 This tensorial identity is 
one example of a symmetry property derived from the 
fact that L is an invariant density. In addition, Eii Ii'" 0 
for any choice of L where the slash denotes covariant 
differentiation. This type of differential identity which 
we call the "compatability identity" is also a consequence 
of the transformation property of L. In general relativ
ity, for L = Rj g where R is the scalar curvature, one 
has Komar's conserved vector (~ili _ ~jli) Ii' where ~i 

is an arbitrary vector field. 3 Recently a conserved vec
tor of the Komar-type has been constructed by us for 
the Brans-Dicke Lagrangian. 4,5 This kind of conserved 
vector also arises from the invariance of L . 

Below we show that the three types of identities de
scribed above are closely related and may be derived 
for arbitrary scalar densities constructed from ar
bitrary tensor fields. Some applications of interest are 
considered. 

In the past there have been numerous discussions on 
identities and conservation laws arising from 
Lagrangians which are scalar densities. 6 However, 
these papers seem to be restricted to Lagrangians con
structed from objects and their first derivatives. This 
is done to allow a Hamiltonian formulation at a later 
stage, but is a severe restriction on the Lagrangian it
self. For example, it is well known that a scalar denSity 
cannot be constructed from the metric tensor and its 
first derivative alone. The argument that the Lagrangian 
of general relativity is equivalent to a first order 
Lagrangian which differs from the scalar curvature by 

696 Journal of Mathematical Physics, Vol. 16, No.3, March 1975 

an ordinary divergence is valid but irrelevant since 
more complicated invariant densities, e. g., R2.,j g, will 
never possess this decomposition property. 7 Restricting 
Lagrangians in this manner allows the Simple formula
tion of nontensorial conserved complexes such as the 
Landau- Lifshitz energy-momentum pseudotensors, 
and the superpotentials of von Freud. However, our 
desire is to obtain tensorial identities and ultimately a 
conserved vector which is the generalization of Komar's 
vector. In a forthcoming papers it will be shown that our 
conserved vector, for many Lagrangians, may be used to 
establish connections between quantum fields and current 
algebra. 

A question which arises is the relation (if any) between 
the Komar-type vector and the conserved quantities from 
Noether's theorem. 9 The answer is not clear for the 
following reasons: In a recent paper HartlO derives con
served vectors for Lagrangians which are concomitants 
of the metric tensor and its derivatives and a scalar 
field and its derivatives. Employing Noether's theorem 
and methods of Bergmann, 11 Hart constructs vectors 
which he claims to be analogs of the Komar vector ap
plied to scalar-tensor theories. However, if one ap
plies his results to the Brans-Dicke Lagrangian it is 
found that his conserved vector is quite different from 
the one we derived5 using methods similar to those be
low. Also, Noether's theorem gives the so-called weak 
conservation laws which are satisfied as a consequence 
of the field equations. The vectors we construct below 
are conserved independently of the field equations. On 
the other hand, many people believe that every con
servation law results from an invariance property of 
the system. This converse of Noether's theorem, which 
has been proved for restricted cases, 12 nonetheless 
clouds the picture and raises the posed question. We 
are considering this at the present time. 

The section on invariance identities is somewhat 
related to work by duPlessis. 13 We present it below for 
its relation to the remainder of the paper and the fact 
that duPlessis' notation is not readily applicable to the 
analysis we consider. 

1. CHAIN RULE FOR LIE DIFFERENTIATION 

Consider an n-dimensional manifold and a function of 
the coordinates n(x i ), 1 < i ~ n of class Coo. We shall 
restrict n to be a relative tensor with arbitrary rank 
and weight (with indices suppressed for notation) or the 
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components of an affine connection. This will insure that 
the Lie derivative of n in the direction of an arbitrary 
vector field will be tensorial, 15 and this property is es
sential in the theorem below. 

Consider now a relative tensorial concomitant con
structed from n and its derivatives with respect to the 
coordinates to arbitrary order m. We express the 
relative tensor in functional form as 

where n.klk:l··'km=amn/axklaXk:l .. · axkm and assign the 
weight W to (1. 1). We then have the chai.n rule for Lie 
differentiation: 

Theorem 1: For a relative tensor of the type (1. 1) the 
identity 

is satisfied where L! is the appropriate Lie derivative 
in the direction of an arbitrary vector field ~a. 

Proof: See Appendix 1. 

2. TENSORIAL IDENTITIES 

There are three types of tensorial identities as
sociated with the chain rule for Lie differentiation. To 
obtain them we consider a relative tensor T (with sup
pressed indices) of arbitrary rank and weight which is 
constructed from "P" independent objects n, n2, .. ·, n 

1 ~ 
and their derivatives to any required order. Thus T has 
the functional dependence 

T(n, n.k!, n ,kl~ ... k , ... , n, n. k1 , •.• , n,R1k2 ... k ). 
1 1 1 m1 P p P mp 

For this tensor the chain rule (1. 2) may easily be 
generalized and yields 

(2.1) 

p (aT aT ) L T = 0 - L n -\- ... -\- -("\---.::-=-.-- ( L n) kk_ ... b 

! i= 1 an ! j a.',k b_ ... k ! j '1"2 -"Jn j 
j i 1-., mJ 

(2.2) 

We write this as 

L T = E L n -\- ... -t- E( klk2 ... km.> (L n) 
( j( j j J I j ,kl ~ ... km j 

(2.3) 

where, for the remainder of this section, the repeated 
index "j" runs from 1 to P while all other repeated in
dices run from 1 to n (dimension number). We also 
adopt the notation that round brackets surrounding tenso
rial indices denote the complete symmetrization of the 
enclosed indices, 17 and employ the summation conven
tion. We shall have occasion to symmetrize expressions 
in which contravariant indices are not completely sym
metric. We adopt the notation whereby /s/ following an 
expression means that this operation has been 
performed. The left-hand side of (2.3) is tensorial. 
However, the right-hand side is not yet in manifest 
tensor form. Let us therefore replace each partial deri
vative (~I}) ,klk ... k

m 
_ with the corresponding covariant 

derivative (Ln\kl k2 .J,. km in addition to the appropriate 
connection c!o~fficients ~nd their derivatives as required 
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by the definition of covariant differentiation. We may 
then write (2. 3) in the equivalent form 

LT=:\.Ln-\-:\.k1(Ln)'k -\- ••• -\-:\.(klk:l·" km/(Ln)'k k:l"'k 
! j ! i j ! j 1 j ! j 1 mj 

lsi. (2.4) 

This procedure insures that each term on the right in 
(2.4) is tensorial. 18 Owing to the symmetrization of the 
contravariant indices, one finds that each element of the 
set:\., :\. kl, ... , :\. (klk:l'" kmJ' is also linearly indepen
den£. 13iThis set ~f tensors is identical to the "tensorial 
derivatives" found by RUnd by a different method. 1 From 
(2.4) we are in a position to extract three types of 
tensorial identities in general form: 

A. Invariance identities 

Invariance identities found by Rund follow from the 
invariance of scalars under arbitrary coordinate trans
formation. They may be used, for example, to find the 
explicit tensorial form of the variational derivative of 
scalar denSities. The notion of invariance identities will 
now be generalized to the identities which follow from 
the form invariance of all tensors as in the proof of 
Theorem 1. 

To obtain these identities we examine (2.4) in more 
detail. This identity contains L 9. We may make some 
definite statements about this l,ie derivative without a 
knowledge of the actual fields it operates upon. We are 
speCifically interested in the dependence of L n upon the 
vector field E,i (Lie vector). For example, if Ii are 
relative tensors then the Lie derivative involJes the 
vector field and its first covariant derivative. 15 On the 
other hand, if n contain the components of an affine 
connection, thEin the Lie derivative contains the vector 
field E,i and its second symmetrized covariant derivative. 
Thus, for the class of n under consideration we may 
state quite generally j 

Ln = (J E.a -\- (Jb E,a -\- e(bcl E.a 
t j j a j a I b j a I be 

(2.5) 

where fa' f~, and f~bC) are tensorial concomitants con
structed from n and its covariant derivatives in addition, 
possibly, to th~ curvature tensor. 

We are primarily concerned with the occurrence of the 
Lie vector and its covariant derivatives when (2. 5) is 
substituted into (2.4). This gives 

(2.6) 

We write this as 

by collecting terms containing the same covariant 
derivatives of the Lie vector. In (2. 7), however, not all 
of the terms are independent because the indices under 
covariant differentiation are not completely symmetrized. 
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Following duPlessis13 we write 

(2.8) 

where the dots denote tensors which always involve 
lower order covariant derivatives of the Lie vector and 
the curvature tensor, in addition to their covariant deri
vatives. 19 While (2.8) is quite complicated for only small 
values of "mp", it nonetheless enables us to write (2.7) 
in the general form 

L T = 1/J ~a + <fJb ~a + ••• + $( b ckl k2 • " km,) ~a 
I ,a ja Ib ja Ibck 1k2 '" k mj 

lsi. (2.9) 

Here all terms on the right-hand side are independent. 
But on the left we have the Lie derivative of a tensor 
which may be written in the general form 

£ T = B ~a + Db ~a 
I as aSlb' (2.10) 

Thus in view of the independence of the various tensors, 
by equating (2.9) and (2.10) we obtain the invariance 
identities in the form 

(2.11) 

Here we have reintroduced the summation over "j" to 
illustrate that there is an additive coupling between the 
tensors corresponding to the various O. By proper choice 
of the set r; the identities (2. 11) will teduce to the 
identities found for particular cases of interest. 1 

For all but the most simple choices of r; and a restric
tion upon the order of derivatives of 0 which occur in 
(2.1), the identities (2.11) are extrerhely complicated. 
They are required, however, if one wishes to write 
Euler-Lagrange equations in tensorial form or find the 
Komar-type conserved vectors which will be discussed 
below. 

B. "Compatibil ity identity" 

While invariance identities are associated with relative 
tensors of arbitrary rank and weight the "compatability 
identity, " which is a differential identity relating the 
Euler- Lagrange tensors, is defined only for scalar 
densities. Also, whereas invariance identities are nor
mally complicated, the compatability identities are 
relatively simple in form. 

In (2. 4) let us choose T = L, a scalar density. We then 
have 

LL =(na).a' 
I 

From (2.4) and (2.12) we have 
(L~a) =\LO+\k1(LO)lk + ... + 

.a j I j j I' 1 

iI.(k1k2"· k mJ ) (LO) 
j /jlk1k2 '''km;' 

Integrating by parts, the right side becomes 

(2. 12) 

(2.13) 

=[X-il.k1
Ik + ... +(_l)m,x(klk2,,·km/lkk "'k ]LO+Va

la 
j j 1 1 2 fflJ I J 

(2.14) 

698 J. Math. Phys .• Vol. 16. No.3, March 1975 

where va is the vector density 

(2.15) 

The coefficient of £0 in (2.14) is the set of Euler
Lagrange expressibI'is20 which we now write as 

(2.16) 

The tensorial nature of these expressions is now ob
vious. The vector density appearing in (2.15) is the 
term which is normally discarded in variational prob
lems because it contributes only boundary terms upon 
integration over a volume of the manifold. However, 
this term has importance as it is fundamental in the 
construction of tensorial conservation laws. 

From (2.5) and (2. 16) we find (2. 14) becomes 

(L ~a) -= E . (B ~a + Bb ~a + B(bc) ~a ) + va 
.a j j a j a I b j a I be la· (2.17) 

We now integrate by parts once more to write this as 

(L ~a) -= (Ee - E Bb + E B(bclH" 
,a j j a jib j a j I be j a 

The final term on the right is the covariant divergence 
of a vector density and we may therefore replace the 
covariant derivative with an ordinary derivative. Our 
objective is now to show that the coefficient of ~a in 
(2.18) vanishes identically. The standard method of 
integrating (2. 18) over a fixed volume of the manifold 
and choosing the vector ~a and its ordinary derivatives 
to vanish on·the boundary is not obviously valid. On the 
one hand, it is not clear that this condition can be 
satisfied. In addition, we wish to place no restriction 
upon ~a as we shall have occasion to choose them to take 
specific forms in the Komar vector. We shall therefore 
prove our claim with an algebraic theorem which leaves 
the Lie vectors arbitrary. 

In (2. 18) we replace covariant derivatives by ordinary 
derivatives in addition to the appropriate connection co
efUcients required by covariant differentiation. Then 
from (2.5) and (2.15) we see that (2.18) may be written 
in the general form 

(2.19) 

where "r" is a positive integer. We then have 

Theorem 2: Given an arbitrary vector field ~a and its 
derivatives to any required order and a set of functions 
A;'1i2 ... is, 1 ~ s ~ r, which are independent of ~a and its 
derivatives, then if (2.19) is an identity for all possible 
chOices of ~a it follows that Ei -= O. 

Proof: See Appendix 2. 
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In view of (2. 18) and Theorem 2 we find 

E8a - EI b 8: + E Ibe 8~be):= O. (2.20) 
ij i j 1 j 

This is the tensorial compatability identity relating the 
Euler-Lagrange tensors. 

There are two immediate features one notices in this 
identity. We need not know the Euler-Lagrange tensors 
f explicitly nor do we need know the dependence of the 
Lagrangian upon the derivatives of n. Secondly, (2.20) 
implies an additive rather than muIfiplicative coupling 
for various E. Therefore, to employ (2.20) we need 
only define .i set of quantities n, define their corre
sponding Euler-Lagrange tens'ors and then determine 
the appropriate fa. ~:, f~bC) from the definitions of the 
corresponding Lie derivatives. 

We now choose the set ~ to correspond to Lagrangians 
of interest and compute tKe compatability identities 
(2.20). We assume that a symmetric metric field g .. is 
• I} 

Imposed upon the manifold. 26 

(1) L=L(glJ,gU,k1 ' "', gil'kl~"'kp)' p~2. 

(2.21) 

This is the most familiar identity of this type and corre
sponds to the well-known fact that the Euler-Lagrange 
tensor of a Riemannian invariant density possesses an 
identically vanishing covariant divergence. 

(2) L=L(gij'gij.k ....• <P,<P.a ... .), 

(2.22) 

Here we consider a Lagrangian which is a concomitant 
of the metric tensor and its derivatives and a scalar 
field and its derivatives. This identity may be applied to 
the Brans-Dicke4 theory (in which the identity is not 
mentioned) or the original Yilmaz theory21 (where it is 
employed). Note that the vanishing of Eli implies the 
vanishing of E. One thus obtains the solution of E = 0 
automatically by solving the equation Eli = O. 

(3) L =L(gjj,gji.k."" Ai' Ai,i,"')' 

(2.23) 

Here we consider a combined metric-vector Lagrangian 
where the fields are coupled arbitrarily. The identity 
may be applied to the Einstein-Maxwell Lagrangian 
which is an obvious choice. This identity has been given 
elsewhere. 14 

(4) L =L (gil' gij.k.· .. ' r;t, r:t .T .... ) 

(2.24) 

Owing to the recent return of interest in the Cartan
Einstein theory, 22 we consider the Lagrangian con
structed from the metric tensor and its derivatives in 
addition to a symmetric affine connection and its de
rivatives. The covariant derivative on the left is defined 
with respect to the Christoffel connection while the right
hand side has covariant derivatives with respect to a 
symmetric affine connection. 
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(5) L = L (gij' gij .k, ... , <p! J' <p\ k ... .)' 

2E!lb:= E/ ¢!jla + E/1icf>!j - (i~jcf>!a' (2.25) 

Lagrangians which are concomitants of the metric 
tensor and its derivatives and a mixed tensor and its 
derivatives are currently being considered. All covari
ant derivatives in 2.25 are defined for the Christoffel 
connection. 

An examination of (2.21)-(2.25) shows that if the 
Euler-Lagrange tensors on the right-hand side are set 
to zero then it follows as a consequence that E!lb = O. 
This is a useful feature of coupled metrical theories for 
it allows the association of Elj with the energy-momen
tum tensor. It is easily seen from (2.20) that this prop
erty occurs whenever the Lagrangian contains the 
metric tensor as one of the fields. 

C. Conserved vector densities of Komar-type 

Let us substitute (2.20) into (2.18). We find (2.15) 

Wi .:=(E8i~b+E8(jb)~C -(E8(lb» ~c+Vi-L~i) =0 
" j j b j jC 1 b j C lb. i - • 

(2.26) 

The term in brackets is a vector density whose covari
ant (and hence) ordinary divergence vanishes identically. 
It is apparent that each Lagrangian has a conserved 
vector associated with it. 23 As we shall see these vec
tors. for particular Lagrangians, are identical to the 
conservation laws of Komar. 

Given a vector density whose ordinary divergence 
vanishes identically it is well known that locally there 
exists a two index skew object whose divergence is 
identically equal to the vector density. 24 Thus we should 
be able to write (2.26), locally, in the form 

Wi = (Tij - Tji).j' (2.27) 

If it turns out that the Tlj is tensorial then, of course, 
(2.27) is a global result. For the cases we consider 
below we shall find global expressions for the conserved 
vectors in the form (2.27). 

We now consider a general Lagrangian which is con
structed from fields of phYSical interest. We take our 
Lagrange density to be 

(2.28) 

where gil is the metric tensor, ¢ is a scalar field. and 
Ai is a vector field. We shall now find (2.26) for this 
Lagrangian and write it in the form of (2.27). Then we 
may choose cf> or Ai to vanish and apply the identity to 
cases of more immediate interest. 

For the Lagrangian (2.28) it is not difficult to show 
that (2.26) becomes 

Wi:= 2ETi ~ + 2YTSi ~ + 2ZTSti t _ 2ZTSti t 
r Tis C,rlst I t"rls 

+</!i¢ .~j+nai(~jA .+A.ti )+EiAtj 
.J alJ J~ la Jc, 

where the various tensors are defined by 

ETi:=~. 
I5gri 
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yTSI '" Tensorial derivative of aL 1 
agTs , I ' 

ZTstl", ~, 
agrs,tl 

(2.30b) 

(2,30c) 

(2.30d) 

(2.30e) 

(2.30f) 

To write (2.29) in the form (2.27) one needs the ex
plicit form of the tensorial derivatives as in (2.11). It 
is found that one has the following identities: 

Eli '" ~ gli L - iZ lstu Ristu - t<:\. Ii + 3:\.il) -:\. Uti t + Zlik/ l kl 

(2.3Ia) 

where 

Ail", t(<// 1>,i + £2iA 1+ n ai Aa Ii + n ia Alia)' (2.3Ib) 

Also, 

yrsi", _ t<n(irl AS + n(sil AT _ n(TS) AI) '" ySTI (2.3Ic) 

and 

EI", n; - nii
l }, (2.3Id) 

where nl is the tensorial derivative for a LfaA i. 25 We 
also find that the tensor ZTstl defined in (2. 30c) satisfies 
the identities 

Zabci '" Zbacl '" Zbaic, (2.3Ie) 

Zabci + Zbcal + zcabi '" O. 

By employing the identities (2. 3Ie) and the commuta
tion relations to the third term on the right in (2.29) and 
from the other identities in (2.31) it can be shown that 
aU terms in (2.29) containing ~r explicitly vanish. The 
resultant expression can, with some difficulty, be 
written in the form 

WI'" H·(zalii Ik ~al k - 2zaliilkl k ~a) 

(2.32) 

Note that this is the expression for the divergence of the 
curl17 of a vector density and as such the divergence 
index symbol may be an ordinary or covariant derivative. 

We shall now consider (2.32) for cases of immediate 
interest in which we choose Lagrangians which are more 
simple than (2.28). 

L (gab' gab,c' gab,cd): To obtain the vector conservation 
identity for this case we set AI = 0 in (2.32). Noting 
that there is no explicit dependence upon 1> in (2. 32), 
we obtain 

(2. 33) 

as the conserved vector for Riemannian invariant den
sities constructed from the metric tensor and its first 
two derivatives. Let us now apply this to the case of 
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the scalar curvature density. For L =R(g)1/2 it is easily 
found thae 

zaiik", (g)1/2(g"i glk _ ~ gaigik _ tgakgH). (2.34) 

Hence, (2.33) becomes 

Wi <X eililli (2.35) 

and this is precisely Komar's tensorial vector con
servation law for general relativity. 3 By integrating 
(2. 35) over an asymptotically Schwarzchild universe for 
a particular choice of ~i Komar shows that the total 
energy of a particle is m c2 

• 

L =L(gIJ' gll,k' glJ,kP 1>, 1>,1): By eliminating the vec
tor field Ai in (2.32), we obtain the conserved vector 
for the coupled metric and scalar field as 

(2.36) 

We may apply this to the Brans-Dicke Lagrangian by 
chOOSing L =~/21>R. We find 

(2.37) 

which is the expression we have obtained elsewhere by 
a different method. 5 

L = f (gil' Ai' Ai ,J: This type of Lagrangian will in
clude the Maxwell equations as a special case. To ob
tain the conserved vector we eliminate first and second 
derivatives of the metric tensor from (2.32) with the 
result 

Wi <X [(Ain(aJl_Ai n(ailH" +Aa~a(nii - nii)]I}' (2.38) 

Now it is not difficult to show that for this type of 
Lagrangian (in which first derivatives of the metric 
tensor are absent) nil = - nii. 1 Hence the first two terms 
on the right in (2.38) vanish and the conserved vector 
may be written as 

(2.39) 

If we choose L to be the Maxwell invariant density and 
choose ~a =A.I(A.Ar), then one could interpret W as the 
current and the conservation law is the statement of 
charge conservation. The Significance of the Komar
type ve.ctor for Lagrangians of physical interest will be 
discuSSed in a forthcoming paper. B 

APPENDIX A 

Proof: The transformation law for the tensor (1. 1) is 

where we write 

axb 

B b
--s - axs ' 

axT 

B = det(Bsb), and AT = - . 
c axc 

(AI) 

We now specify a coordinate transformation given by 

(A2) 

where:\. is a constant and ~d is an arbitrary nonnUll 
(~d~d*O) vector field. We do not require:\. to be small 
and (A2) need not be considered an infinitesimal co
ordinate transformation. From (A2) the components of 
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the transformation become 

A;=Ii;- X~r.c' (A3) 

where here and in the following 0(A2) collectively denotes 
all terms containing A 2 and higher order terms as 
explicit multiplicative factors. In (A3) and the following 
all derivatives are taken with respect to unbarred co
ordinates unless stated to the contrary. We now sub
stitute (A3) into (AI) to find 

At this point we compare the coefficient of A in (A4) to 
the Lie derivative of T:~:~::::; which is, by definition.15 

LTr I r 2 ••• rj = ~aTrIr2 ••• rj + w~a TrIr2 ••• ri 
~ sls2"'Sj SlS2°··Sj.a ,a sls2°"Sj 

Note that these functionals differ only by the first term 
on the right-hand side of (A5). 

We now examine the functional dependence of (1. 1) 
and to simplify the notation we suppress the indices on 
this relative tensor. From (1.1) it is clear that (AI) 
means 

where 

(A7) 

From (A2) and (A6) we have 

T(xd ) = T(xd - X~d) = T(xd) - XT ~a + 0(X2) .. (AS) 

where now T(Xd) represents 

T(xd ) = T(!!(xd ) O(xd ) - ••• S1(xd ) - - -) , ,kl" ,klk2 ••• km . (A9) 

In view of (AI) and (A3) we may write (A9) in terms of 
derivatives with respect to unbarred coordinates as 

T(xd
) = T(n(xd

), n(xd).kl + O(x), "', n(xd).k
l
k

2
'" k

m 
+O(X» 

(AlO) 

We may examine (A9) or (AlO) from "Form invariance,,16 
of tensors. We state the result that form invariance 
allows us to drop the bar over T (only) on the right-hand 
side of (AlO). Thus (AlO) becomes 

T(xd
) = T(IT(xd), IT(xd) .kl + O(A), "', n(xd) .k

l 
kz'" k

m 
+ O(A». 

(All) 
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We now eliminate the function dependence from O(xtf) on 
the right-hand side of (All) by considering the trans
formation (A2), and expanding O(xd) - S1(xd) in powers of 
A. The coefficient of X in the resultant series is defined 
to be the Lie derivative of S1 in the direction ~r and is 
tensorial if S1 is a relative tensor or the component of 
an affine connection. That is 

S1(xd ) = S1(xd) + ALS1+ 0(A2). 
f 

(A12) 

We now substitute (A12) into (All) and expand the re
sulting functional in powers of A. It is easily seen that 

(A13) 

From this it is clear that T(xd) - T(xd ) = 0 (A) and we 
may therefore replace T(xd) in the second term on the 
right-hand side of (AS) by T(xd ) and affect only the term 
0(A2). Thus, from (A13) we find (AS) becomes 

T(X<') = T(xd
) - AT •• ~' 

m aT 
- A 6 aS1 (LS1) k k ••• k + 0(A2). 

1=0 • kl k2 ... kl f • I 2 I 
(A14) 

At this point we exhibit the tensor indices explicitly 
and (A14) becomes 

(A15) 

We equate (A4) to (A15) and divide by A to obtain 

(A16) 

From (A5) we identify the left-hand side of (A16) with 
the Lie derivative of T:I:2::: :i. Thus (A16) is 

I 2 J 

(A17) 

Now the left-hand side is independent of A while the 
right-hand side contains A explicitly. Since X is arbitrary 
the left-hand side vanishes identically and this is the 
statement of our theorem. 

APPENDIX B 

Differentiating in the sum we write (2.19) as 

E~a_Ai ~.=t(AJIJ2·"js+AijIJ2·"js )~. 
a a,1 5=1 a a .i .J 1J2 ···)8 
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(El) 

The left-hand side is independent of derivatives of ~ I. 
Hence we may differentiate (Bl) with respect to the 
various derivatives of e to obtain the identities 

(B2) 

A~ili2"'ist+A~(jli2"'i')'I"'O, s=1,2, ... ,r, (B3) 

A~ li , i 2 '" ir) '" 0 (B4) 

where the round brackets again denote complete sym
metrization of the enclosed indices. Let us now dif
ferentiation (B3) with respect to a /axiI for s = 1. Then 

(B5) 

which together with (B2) implies 

(B6) 

Similarly, by differentiating (2. 20b) with respect to 
a/aXi2 , a/axis, ... for s = 2,3, ... , it is easily seen that 
(B2) becomes 

s=I,2, ... , r. (B7) 

In particular, for s = r, (B7) gives 

(BS) 

and this vanishes identically from (B4) which proves 
the theorem. 
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Renormalization group solution of the one-dimensional Ising 
model 

M. Nauenberg* 

Institute for Theoretical Physics, University of Utrecht, Holland 
(Received 2 August 1974) 

A renormalization group approach is applied to the one-dimensional Ising model to obtain a rapidly 
convergent infinite series expansion for the free energy. This series can be summed and yields the 
well-known analytic solution. 

The renormalization group ideas of Kadanoff1 and 
Wilson2 have given us considerable inSight into the 
nature of critical phenomena. The application of re
normalization group methods to calculate the critical 
exponents and the critical temperature for ISing spin 
models in two and higher dimensions have been quite 
successful. 3,4 However, these calculations are mathe
matically very complex and many approximations have 
to be made which obscure the underlying mathematical 
ideas. Accurate values for the fixed points and the cor
responding eigenvalues in the renormalization trans
formation for planar Ising models can be obtained in 
general only with the aid of a large computer. 4,5 Re
cently it has been shown5 that the renormalization group 
approach is actually more powerful than had been ori
ginally envisaged, and that it can be applied to obtain 
not just the singular part, but a complete solution for 
the free energy of general Ising spin systems. Calcu
lations for a square ISing spin lattice in a four cell 
cluster approximation have given excellent agreement 
with previously known analytical and numerical results. 
In order to understand the basic ideas involved it is 
worthwhile to consider the simpler case of a one-di
mensional Ising model with nearest neighbor interactions 
which leads to a much simpler renormalization trans
formation. It is well known that this model, which is 
readily solved by the transfer matrix technique of 
Kramers and Wannier, 6 does not exhibit a phase transi
tion, and thus it appears unsuited to discuss a renor
malization group method developed specifically to con
sider critical phenomena. It will be shown, however, 
that this is not the case and that our approach can also 
be applied here to obtain a rapidly convergent infinite 
series for the free energy. We sum explicitly the in
finite series for the free energy with the aid of a non
linear transformation and obtain the well-known analytic 
solution of the one-dimensional Ising model. 

We start with the familiar Hamiltonian H ),K) for the 
one-dimensional ISing spin model for N spins, 5 i = ± 1, 
i = 1, 2 ... N, with nearest neighbor interaction coupling 
constant K, 

(1) 

where 5 N+1 = 51' Following Kramers and Wannier, 6 we 
introduce the 2x2 transfer matrix lPs s =exp(KS

1
S2 ) 

which enables us to write the Boltzmin~ probability 
function exp( - H N(K)) (kT = 1) in the form 

exp [ - H N(K) ] = IP s s IPs 5 ... IPs s . 
12 23 N1 

(2) 

Instead of computing the usual partition sum, 
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~ (s) exp[ - H N(K)] = tr IP N , we consider here only the 
partial sum of exp[ - H N(K)] over all possible values of 
the even spins, S i = ± 1, i = 2, 4 ... and obtain for N even 

~ exp[ - H N(K) = IPi1 S3 IP~ 55 ... IP~N_1 51' 
t S2 54 ... SN) (3) 

The idea behind this partial summation is to find a 
renormalization transformation K - K' such that 

IP2(K) = exp[2g(K)] IP(K'), 

where g(K) is a scalar of function K. Then K' can be 
interpreted as an effective ISing coupling constant for 
the remaining odd spins S i' i = 1. 3, 5 ... N - 1 and Eq. 
(3) takes the form 

o exp[ - H ),K)] = exp[ - H N!2(K) + Ng(K). 

(4) 

(5) 

This is the basic equation of the renormalization group 
approach. The matrix condition Eq. (4) is readily 
satisfied by 

K' = i In cosh2K (6) 

and 

g(K) = iK' + i In2. (7) 

The nonlinear renormalization transformation Eq. (6) 
has fixed points at K* = ° and K* = 00 with associated 
eigenvalues ?t = ° and ?t = 1, respectively, where ?t = dK' / 
dK evaluated at K =K*. Since a necessary condition for 
a critical transition is the existence of an eigenvalue 
A> 1, this establishes the well-known result that there 
is no phase transition for the one-dimensional ISing 
model. After applying the renormalization transforma
tion n times, the mapping K - K{ n) can be obtained from 
the recurrence relation 

(8) 

where K(O) =K. It can be readily shown that limn_~K(n) 
= 0, 1. e., every finite point K is mapped towards the 
fixed point at the origin K* = 0. In order to solve Eq. (8) 
we introduce a new variable I; related to K by a non
linear transformation in such a way that the renormali
zation transformation in the I; variable becomes Simpler. 
For A *0, 1 this transformation is defined by the con
dition5

•
7 1;'=:1.1;, but this is not possible in the present 

case. Instead, we require 

1;'=1;2 (9) 

and find the solution 

!;=tanhK (10) 
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and 

K( n) = ~ In (1 + 1;2n) 
2 1 + 1;2n , -1<1;<1. 

Introducing the free energy per spin for N spins 

1 
f N(K) = \T In 6 exp[H N(K) J. 

H (SI 

we obtain from Eq. (5) the functional relation 

f N/2(K') = 2{f N(K) -g(Kn· 

(11) 

(12) 

(13) 

In the thermodynamic limit, Eq. (13) then leads to the 
scaling equation for f (K) = lim N'~ f N(K), 

f(K') = 2{f(K) - g(Kn. (14) 

To obtain a unique solution of Eq. (14), we must impose 
a boundary condition on f(K), e. g., for K = 0, absence 
of spin interactions, /(0) = In2. To prove uniqueness 
suppose there are two solutions fl(K) and f2(K) of Eq. 
(14) which satisfy this boundary condition. Then the dif
ference OK) = fl (K) - f2(K) satisfies the homogeneous 
scaling equation 

fJK') = 2fJK) (15) 

and applying the renormalization mapping n-times leads 
to the relation 

Since limn-~K(n) = 0, and fJO) = 0, Eq. (16) implies 
fJK)=O. QED 

Actually, this proof shows that we need to demand 
only the weaker boundary condition that f(K) be finite 
at K = 0, because the solution of Eq. (14) determines 
the value of flO). 

We now solve the scaling equation by conSidering the 
effect of repeated applications of the renormalization 
transformation Eq. (6) on Eq. (14). After the nth map
ping we obtain the re lation 

(17) 

which is valid for each integer n>- 1. Taking the limit 
n - 00, we obtain5 

~ g(K(n») 
I(K) = h(K) + 6 

n=0 2n 
(18) 

where 

(19) 

If we require f(O) to be finite, we have h(K) = 0 and sub
stituting Eq. (6) in Eq. (19), we obtain 

(20) 
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This series converges very rapidly and can be readily 
used to evaluate f(K). For example, for K = 1, the sum 
of the first four terms of this series gives an accuracy 
of 10-4

• We can also sum this series by substituting 
Eq. (11) in Eq. (20) to obtain 

~ (1+ 2")1/2n+l 
f(K)=ln2+ln II -1 1;" 

n=1 + 1;2 

Applying the easily proven identity 

we find 

f(K)= In(2j,rr:-y) 

and from Eq. (10), we obtain 

f(K) = In(2 coshK) 

-1<x<l, 

(21) 

(22) 

(23) 

(24) 

which is the well-known solution of the one-dimensional 
Ising model. We can verify that this solution satisfies 
the scaling equation by substituting Eq. (24) together 
with Eq. (7) into Eq. (14). A second solution of the 
scaling equation is i(K) = In(2 sinhK), for which h(K) 
= In(tanhK). This second solution does not correspond 
to the free energy because it does not satisfy the correct 
boundary conditionf(0)=ln2, but it is also of physical 
interest because it can be shown that the spin correla
tion function Cli_jl(K)=(stsj) is given by 

(25) 

where the correlation length I(K) = I f(K) -l(K) 1-1. 
Hence I(K) satisfies the expected homogeneous scaling 
relation 

I(K') = %1(K). (26) 

These results can be readily extended to include a 
magnetic field, and to higher spins. The main point that 
we want to emphasize is that the infinite series expan
sion Eq. (18) can be applied directly to evaluate the 
free energy. This is important for general Ising models 
in two dimensions and higher, including symmetry 
breaking fields, because the renormalization trans
formations are much more complicated and it has not 
been possible to obtain analytic solutions by any methods 
except for very special cases. After completion of this 
paper, related work of Kadanoff, 8 M. E. Fisher and R. 
Nelson,9 R. E. Prange,10 S. Krinsky and D. Furman, 11 

and R. Priest12 have been brought to my attention. 
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The main stability of matter result of Dyson and Lenard is proven by an alternate method. 

INTRODUCTION 

In a previous paperl stability of matter was shown 
for matter in a (periodic) cube. The methods used had 
the flavor of constructive quantum field theory as dis
tinct to the original proof. 2, 3 Here we continue the work 
of Ref. 1, to obtain the Dyson-Lenard result that the 
lower bound in the infinite volume may be picked pro
portional to N. 

The essential physics of stability we feel is revealed 
in Ref. 1, what takes place in a cube. It is typical in 
constructive quantum field theory to first bound the en
ergy in a finite volume and then obtain the infinite vol
ume result as a sum of local contributions. This is not 
simply a sum of the isolated local bounds; there are in
teractions between local regions, and the important in
gredients in controlling these interactions are the local 
nature of the kinetic energy and the falloff of the inter
action with distance. Both of these effects are present 
in our problem. The long range nature of the Coulomb 
forces is not dangerous (as distinct from the situation 
in scattering say), the treatment of H4 in Ref. 1 shows 
that forces can be given an exponential falloff trivially 
without affecting a linear lower bound in N. Another 
localization must be shown, the localization of positivity 
of the Coulomb energy. This is possibly the most inter
esting new physics in the infinite volume. 

Basically space is cut into a union of unit cubes, with 
interactions smoothed over the edges, The kinetic en
ergy is localized not with local NT operators as in field 
theory, but by writing the free kinetic energy as a sum 
of local kinetic energies in cubes with Neumann bound
ary conditions. The change in boundary conditions is an 
inessential change from Ref. 10 The most difficult prob
lem is the interaction of neighboring cubes when the cut
offs (introduced in Ref. 1) are different in the different 
cubes. Finally, however, everything reduces to the lo
cal problem already treated. 

It is hoped that some of the techniques herein employ
ed will have applications in other situations. The de
gree of simplification over the Dyson-Lenard develop
ment is arguable, but, most Significant, the present 
treatment fits the stability result into a framework of 
greater flexibility. We feel a good next step is the de
velopment of a cluster expansion for the matter prob
lem and thence the infinite volume correlation functions, 

1. NOTATION 

We proceed to establish the notation, There are N 
bosons of charge + q, and N fermions of charge - q, 
and mass m. The boson mass is not relevant. The fer
mions are described by fields ~ and I/!, the bosons by 
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¢ and ¢. The two point distribution function for the bo
sons is given by 

p(x,Y)=(: 1)(x)¢(x)¢(y)¢(y):). (10 1) 

Expectation values are always taken with respect to a 
given wavefunction, We also want the one point distri
bution function for the bosons, 

Pl(X) = (1) (x)¢ (x). (10 2) 

Space is filled with disjoint unit cubes, fl.;. labeled by 
i. We introduce approximate characteristic functions 
Xi> for the fl.j1 satisfying 

2::x i = 1, Xi? 0, 
(1.3) 

and Xi having two continuous derivatives. We want a uni
form bound on the derivatives of all the Xi> easilyob
tained by making the Xi translates of ~ach othero We 
also introduce the extended ith cube fl. i , consisting of the 
union of the 125 unit cubes compriSing a 5 x 5 x 5 cube 
cent~red at fl. i • This is extravagant, but it is convenient 
for fl.; to contain the region where Xi and the X/ s of all 
26 fl./ s touching fl.i are nonzero, We define 

(1.4) 

(1. 5) 

and Similarly ft.-) and it,-) for the negative charges. We _ t t 

let Ni =Ni + N;-), 

Later a cutoff n i will be assigned to fl.;; we take it as 
already given, We define ilo=O and ill> il 2 , 0 •• to be the 
values of {nJ arranged in increasing order, Vj is the 
interaction with cutoff il j' 

Vj=q2exp(-iljr)/r, (1.6) 

P j is the approximate characteristic function of the 
union of fl.i with ni '" Il j' 

Wi is the interaction with cutoff np 

W
i

=q2 exp(-n i r)/r, (1.8) 

and W. k is the interaction with cutoff equal min(np nk ), 
t, 

Finally we defIne F j to be the rescaled fermion kinetic 
energy form on fl.i with Neumann boundary conditions. 
We note in expectations between nice states 

F=N+HoF=1~5ZFI 
i 
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Constants c'" all satisfy 

2. RESULTS 

We summerize the results of the present paper in 
four facts, to continue the three in Ref, 10 The first is 
a variation of Fact 1, and the final is the main resulL 

Fact I': Suppose SuppxF Ak and SUPPX/ C .6. k , then for 
given cI > 0 and f> 0 there is a C(f) such that 

clFk - J : ~1j!XJWX/¢CP : 

:;. - C(f)[J ¢CPXI Wx /WX/¢cp]2H. 

Fact 4: There is c4 such that 

(F I> ~ + c
4
(Nj-J)S/3 • 

(2.1) 

(2.2) 

Fact 5: Let {xl} be translates Over a lattice of a C2 

function of compact support; then there is a Cs (depen
dent on Xl) such that 

l/r - e-r /r:;. cSDx/x/. (2.3) 

Fact 6: There is a B such that 

H=H+BN:;.O. (2.4) 

It is understood that B must be independent of N. 

Fact 4 is proven in Sec. 3 and Fact 5 is proven in 
Sec. 4. Fact 6 is shown in the remaining sections. Fact 
I' is a slightly modified form of (5.23) and (5.24) in Ref. 
1. The only interesting difference is the use of Neumann 
instead of periodic boundary conditions. But the eigen
functions are as explicit for these boundary conditions 
and the computation as easily performed. 

3. LOCALIZATION OF FERMI SEA ENERGY 

We expand 

where I> = 2: 1 /1> is decomposition of 1 > into states 
satisfying 

N:-J Il) = liZ). 

We get 

by the distribution of eigenvalues of F I , and 

1 exp(-r) ~_ 
- - :;. CL.JX IX I r r 

<=> 1 ~ c.0(k2 + l)glgl(k2 + 1) 

<=> 1 ~ C .0(1 - 6>X P - 6)x i • 

But if VI} is an orthonormal set of vectors, 

and, if VI} is a bounded set of orthogonal vectors, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

but 2:(1-6)X/(1-6)x/ can be written as a finite number 
of sums of disjoint and therefore orthogonal (and bound
ed) (1-6)X/. 

Fact 5 leads to a number of questions of mathematical 
generalizations. In particular to NT operators for T neg
ative. Does NT then dominate a sum of local Nv opera
tors? Fact 5 and variations may be used to derive re
suIts on thermodynamic charge density fluctuations. 
This is not pursued here. 

5. THE BASIC PROBLEM 

We split H into seven pieces patterned after Ref. 1: 

H =H I +H2 +···+H6 +(B-1)N, (5.1) 

H1 =HOB ' (5.2) 

H 2 ==tF, (5.3) 

H3 == t.0 J : ~1j![(VJ - VJ+I ) - P j+1 (V j - V j+l)Pj+l]~1j! :, (5.4) 
j 

li4 == t.0 J : (~1j! - ¢cP )(p J+1 (Vj - V J+l)PJ+l]PJ+I](~1j! - (PcP) :, 
j 

(5.5) 

Hs = t F - E J : ~1j![(Vj - V j+l ) - P j+1(VJ - Vj+1 )Pj+lJ¢cp :, 
j 

(5.6) 

As in Ref. 1, the boson field is in a fixed classical dis
tribution, and we neglect HOB. The terms are written in 

(3.3) the above forms mainly to exhibit certain positivity 
properties. 

by convexity of XS /
3

• And thus 

4. LOCALIZATION OF PART OF COULOMB 
ENERGY 

(3.4) 

Using notation of Fact 5, define gj =Xj. We get the 
following chain of implications: 

707 J. Math. Phys., Vol. 16, No.3, March 1975 

ConSidering the terms in order, we have 

H 2 =F/2=1; t ·l!sF/ , 

:;. c.0 (N~-»S/3 
I 

by Fact 4. H3 may be treated as in Ref. 1: 
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H3 ;" O. 

We break H4 into two parts: 

H41 = i 'E j (¢/ji -;;;cf> )Pj+l (V j - V f+l)P j+1 (~/ji -;;;cf», 
j 

H42 =i'Ej[: (~/ji -¢cf»Pj+1(V j - Vj+l)Pj+l(~/ji -¢ cf»: 
j 

(5.10) 

(5.11) 

(with k restricted as described). Maximizing the expres
sion in braces over Nk and Ni,-l, we get 

D;" -C6(Nj-l +Ni). 
i 

6. WITHIN WHICH PROBLEMS WITH 
NEIGHBORS ARE RESOLVED 

(5.12) We write kRi to mean k is one i's 26 neighbors. 

Similar to ReL 1, 

H42 ;" - H~q2(Nj + Ni-l)n j• 
j 

(5.13) 

H41 is positive as before, but now we need more. We 
first note that 

(5.14) 

Those terms in (5.17) not included in D we call L: 

H5=L+D, 

L=6Lii +'ELik , 
inkk 

(6.1) 

(6.2) 

(6.3) 

(6.4) 
since we will require 

n j ;" 1, (5.15) By Fact l' we get 

Fact 5 now gives 

H41 ;" C6(Nj -Nj-l)2. 
/ 

(5.16) 

In Ref. 1 there was guaranteed to N plus charges a fer
mion kinetic energy ~ }(i/3. Here locally there may be 
many plus charges and few negative charges. But the 
contribution to the sum of H2 and H41 here is large when 
there are many positive charges locally. 

H5 and H6 are now rewritten in a different form: 

Hs= iF -'E: ~/jiXj WiXi¢cf>: 
i 

-'Ej :~if!xiWI,kXk¢cf>:, 
i1k 

+i"'Ej: ¢cf>X;W;,kXk¢cf>:. 
i1k 

(5.17) 

(5.18) 

We will ignore the second (positive) sum in (5.18) in 
obtaining our bounds. 

In (5.17) let D denote those terms in the second sum 
where k is not One of i' s 26 neighbors. We require ni to 
satisfy in addition to nl ;" 1 that there is some Ci such 
that 

We define 

D -max(1 CiN 2/3) 
k- 'k' 

we then get 

D;" 'E(- q2)N:- l (6exp(- dl,RD.) Nk) 
i ~ k d/,k 

+'E(-if)N; ('EeXP(-dl,kDk) Ni,-l\ 
j k dl,k } 
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(5.19) 

(5.20) 

(5.21) 

(5.22) 

:;, -C(f)(j ¢cf>XiWjWjXi¢cf»2+E 

:;, - CI(f)(f ¢cf>Xi exp~~ nir\i<Pcf> Y+E. 

Defining 

Pi =XIPXj, 

we have 

(6.5) 

(6.6) 

(6.7) 

We now turn to Ljk' k*i, and assume, as Case 1, 
nj ;" n k • Applying Fact I' again, we have 

(6.9) 

In Case 2, when ni < nk , we have the most difficulty. 
We define 

we get 

L i• :;, - C(f)(J <Pcf>x. Wi,.X~ Wi , kX.¢cf> F+' 

:;, - C(E)(j ¢cf>XkXi Wi,. Wj,kX iXk<Pcf> )2+< 

- C(f)(J ¢cf>XkCi,kCj,kXk¢cf>F+E. 

The first term on right side of (6.13) satisfies 

(j ¢cf>XkXl Wi,kWi,kXiX.¢cf>F+E 

"" c<J <Pcf>x i Wi ,kWi,kX;<Pcf>)2H 

(f exp(_n;r»)2+E I(Ni)Z+E 
""c ' PI---- +C - • ni ni 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

Looking at the second term, we need some properties of 
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XkWI,k - W1,kXk 

exp(-nlx-yl) exp(-nlx-yl) (y) 
=== CXk (x) - 1 x _ y 1 - c 1 x _ y 1 Xk' 

Here n has the obvious definition: 

C;,k === dXk(X) -Xk(Y)] exp( - nl x - y 1)/1 x - y I. 

By the uniform bound on derivatives of the {xk}' 

Ie;, 10 I'" C exp( - nix - y I) 
and 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

The last estimate is a crude estimate of the convolution 
of c; 10 with itself. The second term on the right side of 
(6.1:3) satisfies 

(j ¢<PXkCI,kC;,kXk¢cf»2+E 

H6~6j P1exp(-nlr)/ro (7.8) 
i 

We observe that for x ~ 0, y ~ 0, there is a c> 0 such 
that 

x + (x _ y)2 + yS/3 ~ cxS/3 • (7.9) 

We can collect (7,1)-{7.8), using (7.9), to obtain 

H~~(CIBNI + CuBN:') - CruN; -CrvN:-) 
i 

+Crxj Piexp(-nlr)/r-CX(j Piexp(-nlr)/nl)2+E 

- Cxr(N/nl)2+E +..0 [- CXII(j p/n!)2+E 
10 

kRI 

(7.10) 

With the proper choice for Band nl we claim that each 
(6.19) term in the sum over i is positive. 

7. FINAL ESTIMATES 

We first pick the value of E and two new parameters 
y andy' equal to the values of e, y, andy' of Ref. 1. 
We now collect contributions to ii. 

We begin with Hi and (B -l)N 

Hi + (B -l)N~ (B -1)N, 

From (5.9) 

H2 ~ C ..0(Nt')S/3 
i 

~ C..0 (N:")S/3 
I 

~ c 2? (Nt')S/3 + 2? (~')S/3), 
kRI 

(7.1) 

(7.2) 

We have averaged the contributions over neighboring 
cubes. As in (5.10), 

H3~ O. 

From (5.13) and (5.16) 

H4===H4i +H42 , 

H4i ~ c I? (N; - N:-)2 + 2? (Nk - N~')2), 
kRI 

H42 ~ - C 6(NI + ~')nl' 
{ 

From (5.23), (6.8), (6,10), (6014), and (6,19) 

Hs===L+D, D~ -c..0(N1+N:'), 
I 

L ~ - c I? (<f PI exp( - n j r)/n j )2+E + (N/n f )2'· 

+ 2? [(j p/n2)2+E + (N/n~)2'E]). 
kRf 

From (5.18) 
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(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

Two cases are considered for each i as in Ref. 1: 

Case I: 

(7.11) 

nl =max(1, A (NI )2 13). (7.12) 

Case II: 

(7.13) 

(7.14) 

We have defined NI as the maximum over NI and the Nk 
with k neighboring i. A is greater than zero and 
satisfies 

A < min(Cv, CVII CVIV , CXV)/CVII + CVIII . (7.15) 

When N; is large enough for any value of B ~ 0, the con
tribution of the ith summand is positive by argum.§nts 
similar to that in Ref. 1. For smaller values of Np B 
may be picked large enough to dominate the summand, 

The value of B Dyson and Lenard achieve is roughly 
14 orders of magnitude larger than a realistic bound, 
To extract good bounds from the present procedure, we 
would have to experiment on values of the parameters 
and cube size, as well as trace all the numerical factors 
and find a good value for c2 • If done, this would provide 
an objective basis for comparison of the effectiveness 
of the lower bounds. We do not expect a realistic lower 
bound of the present procedure either. 

*This work was supported in part by NSF Grant GP-17523. 
tJohn Simon Guggenheim Memorial Fellow. 
fpermanent address: Department of Mathematics, Univer
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A definition of quantum particle detection point processes is given for normal and locally normal 
systems. This is realized by building coincidence measurement operators, describing in a thoroughly 
quantum formalism the coincidence experiments that have been actually performed (photon) or that 
might be performed (electron, neutron). The quantum mean values of these coincidence operators are 
shown to be the coincidence probabilities of a mathematically well-defined regular process. Some 
applications of the latter result are given, in particular in the case of fermion point processes. 

INTRODUCTION 

The starting point of the present work is to be found 
in the great number of experimentall - 3 as well as the
oretical4 results obtained in studying the statistical 
properties of light beams, Among the different types of 
experiment performed, we shall focus on the low in
tensity ones, such as counting2 or coincidence3 experi
ments. In fact, with such experiments, the photon de
tection point process consisting of the electronic pulses 
getting out of the detector may be attained. 

In the present paper, we would like to give a general 
definition of the quantum particle detection point pro
cess5 which can be reached by coincidence or counting 
experiments performed on a quantum particle system. 
We shall consider any particle, boson or fermion, and 
give a thoroughly quantum description of the system 
they constitute. Since we want our definition to apply to 
actually performed experiments (or experiments that 
could be performed) we shall give a quantum descrip
tion of coincidence experiments in conditions which are 
generally realized, considering the performances of the 
present particle detectors that might be used. Our 
quantum description of these coincidence measurements 
will consist of the definition of a coincidence operator 
wide enough for not taking into account the particular 
mechanism of the considered detector. 

These quantum descriptions of both the particle sys
tem and the measurements will allow the definition of 
probabilistic magnitudes which are the stochastic events 
"detection of a particle at a point a j at a time instant t;" 
and the point processes6 Pt(V) and Pa(t) they constitute in 
the volume V of the system and in the observation time 
interval T respectively. 

To understand what we are speaking about, let us 
show, in a very intuitive way, how these detection point 
processes may be introduced (our subsequent work, 
which is the aim of this paper, will be, on the contrary, 
to introduce the detection point processes in a rigorous 
way!). Let us set a detector of volume ~ V in a particle 
beam, localized itself in a volume V. Without describing 
the detection mechanism, let us assume that the follow
ing output is obtained: At time t, n particles (n is an in
teger) have been detected iJ? ~ V. We know, from 
quantum mechanics, that n is stochastic, depending of 
the presence probability of the particles in ~ V. Thus, 
we can introduce the stochastic variable N(~ V, f), the 
number of particles detected in ~ V at time t. If we now 
imagine an infinite number of detectors occupying the 
whole volume V, the particle detection point process 
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Pt(V) at time t in the volume V may be introduced. In
deed a point process is a stochastic distribution of 
points in a given space, and it is known if the probabil
ity p(nj, n2,' .. ,nq) that nl pOints be in q disconnected 
volumes ~ Vi> for any q and any ~ VI, is known .. From 
the experimental viewpoint, it may be interesting to 
introduce another point process Pa(T), more closely 
connected with the experiment: Let us consider an ab
sorbing detector (such as a photomultiplier for photons) 
acting on a small volume around a point a; its output 
consists of a time distribution of stochastic pulses con
nected with the absorption time instants tl of the parti
cles; this random time distribution is the time point 
process Pa(T). 

In the first section, we will give the mathematical 
definition of a regular point process (I. 1). The fact that 
such a point process (P. p. ) is entirely defined by its 
coincidence probability densities (c. p. d. ) is under
lined. 7.8 The c. p. d. of Pt( V) are the probability den
sities that P distinct particles will be detected in p 
points at of V, at a given time t, Pp[{a l }, t]; the c. p. d. 
of PaCT) are the probability densities that p distinct par
ticles will be detected at P time instants tl in T, at a 
given point a, Ip[a,{t l }]. In the same section, the condi
tionsS•

10 for a coincidence measurement to give these 
c. p. d. are studied ((I. 2)] in a thoroughly probabilistic 
approach. 

In the second section, the c. p. d. measured in such 
an experiment are expressed in terms of the denSity 
matrix describing the observed system and of a co
incidence operator describing the measurement. The 
problem of the localizationl1• 12 of quantum particles is 
set in Sec. IIA, a definition of a coincidence operator is 
proposed in Sec. IIB and the validity of such a definition 
is established in Sec. IIC. Finally, in Sec. lID, some 
properties of the coincidence operator are studied. 

In Sec. III, some applications of our preceding results 
are given. The fermion detection process5,13.14 is shown 
to be mathematically well-defined [(Ill. 1)]. And a simple 
physical interpretation of the results of Frisch and 
Bourret15 is given, (III. 2). 

I. DETECTION POINT PROCESSES 

Let us consider a volume V of a given particle sys
tem, at a time t. For the point process Pt(V) constituted 
by the stochastic events "presence of a particle in the 
small volume ~1 (~1 c V) at time t," "presence of an
other particle in ~2 (~2 C V) at time t, " and so on, to be 
mathematically well-defined, its coincidence probabili-
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ties (c. p. ) QP[{.6.,}, t], the probabilities that p particles 
will be in p small volumes .6., (.6., c V) at time t, must 
fulfill given conditions. 1,8 (By saying that a quantity is 
small we mean that, from the mathematical standpoint, 
this quantity will be considered as infinitely small. ) 
These conditions are complicated to express. And it is 
Simpler to give them for another set of probabilities, 
the exclusive probabilities (e. p. ) which can be easily be 
related to the c. p. d. and, as the latter, entirely define 
the point process. 7,8 

The properties which are given below can be applied 
to the spatial c. p. Qp[{.6.J, t] defining Pt(V) or to the 
time c. p. Qp[a, {.6.t,}] defining P aCT). But we must be 
careful to notice that the set of stochastic events 
"presence of a particle in .6., at tt does not constitute a 
point process. Indeed two such events may be the same 
one in fact. 

A. Regular point processes 

1. Probability densities 

In the Introduction, we speak of coincidence probabil
ity density (d. p. c. ) Pp[{a l }, f], lp[a, {t,}]. Such quantities 
do exist only if the following mathematical limits exist: 

Pp({a,}, t] = lim 'Qp[{.6.,}, t] ffi .6.,,) (I. 1) 
1t"I- (OJ ~ n~l 

lp[a, {tJ] = lim (Qp[a, {.6.t,}]/,n .6.t,) (1. 2) 
(alll-(O)" .=1 

The existence of such limits implies that the probability 
for an event to take place in a small domain .6., or .6.t, 
is of the same order of magnitude as .6., or .6.tl. The 
probability for more than one event to occur in .6., or 
.6.f, is negligible. The point processes such that these 
limits exist are said to be regular. 8 In the following, we 
will consider only regular processes, because they are 
much easier to handle. 

It is necessary, but not sufficient, for a p. p. to be 
well-defined, that its c. p. d. verify the two following 
properties: 

Property (l': The c. p. d. are nonnegative; 

Property {3: they are symmetrical with respect to 
their arguments ({a,} or {t,}). 

We will also admit the existence of the following 
densities: 

Pp[{al}, {tl}] = lim (QA{.6.,}, {tl}] 
(all-(O) \' 

lp[{a,},{t,}] = lim (Qp[{aJ,{.6.tJ] 
(at HO) \. 

(1. 3) 

(1. 4) 

They will be called coincidence probabilities, although 
they do not define a p. p. 

If the particles are assumed to be quasimonochroma
tic, that is to say, if the velocity v is nearly the same 
for every particle, then 

(1. 5) 

Let us notice that P1[a, t] is nothing but the mean num
ber of detected particles in a unit volume. P 2(a1a2, t] is 
the double density in a1 and a2' 16 Similarly, ll[a, t] is 
the beam intenSity at point a at time f. For p = l, Eq. 
(r.5) reduces to the relation 
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2. Definition of a point process by its exclusive 
probabilities 

(1. 5') 

The exclusive probability Hp D[{D ,}] is the probability 
that an event occurs in a small domain D1, another in 
D2, •.• , another in Dp, and not any other occurs in the 
whole domain D where the events necessarily take 
place. For the p. p. Pt(V) and PaCT), the e. p. will be 
called H/({.6.,}, t] and Hp T[a, {.6.tl}] respectively. 

A regular process is such that an e. p. d. exists: 

G/[{x,}] = lim (HpDI{D;}1 fA IIDil~, (1.6) 
(IIDIIII-(O) f I=t IJ 

where x; is a point of D j and IID,II the measure of D l . 

For Pt(V) and PaCT) we have 

G/[{a,}, t] = lim (H/[{.6. j }, t] (0 .6.;) 
(aiHO) \' ~ Ll (1. 6 ') 

and 

GpT[a,{t,}] = lim (HpT[a, {.6.f;}] fA .6.f i). 
(at,HOI \' ~ l=t 

(1. 6") 

For a regular point process to be well-defined, the 
e. p. d. must verify properties C\' and {3 and the following 
one, that we called Property y: 

Property y: 

.~ 1 1 ~-PI G/[{x,}] dXt"· dxp=1. 
p~o • ~ 

(1. 7) 

Indeed if Pp is the probability for p events to occur in 
D, then 

(1. 8) 

where liP! comes from the symmetry of Gp
D

• Relation 
. (1. 7) follows from (1. 8) and 

15 Pp= 1. 
P=O 

(1. 9) 

(1. 10) 

or 

relations which are equivalent, as shown by Macchi. 8 

From these two relations, it follows that knowing either 
the e. p. d. or the c. p. d. is equivalent and sufficient. 
Moreover, a set of functions defines a p. p. and is its 
set of e. p. d. if and only if the functions verify (l', {3, 
and y. 

B. Coincidence measurements 

Without getting into the description of detectors nor 
tickling the question of the localization of quantum par
ticles but using only the notion of presence probability 
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of a particle, we study the conditions that must be ful
filled for actually realized coincidence experiments to 
give c. p. d. We define two ideal types of coincidence 
measurement. The first one is based on the usual in
stantaneous reduction of the state of a measured sys
tem17 and gives instantaneous presence probabilities. 
The second one schematically describes the action of a 
detector such as a photomultiplier. 9 It is shown that, 
providing given hypotheses, these two ideal types of 
measurement can be identified and considered as good 
descriptions of actually performed measurements. 

7. Ideal coincidence measurements of type 7 

p detectors are set in the volume V of the system. 
Each one is of volume A around a point ai {A; ={ai, A}) 
and acts instantaneously at time t i. Every detector is 
able to localize a particle in A; at time t;: Used alone, 
it gives the spatial presence probability of the particles 
in A; at time t i • This implies that A is small enough for 
the probability of detecting more than one particle in A 

to be negligible. For a p-order coincidence measure
ment, the p detectors are connected with one another in 
such a way that an output is obtained every time the 
event Cp[{Ai}, ttl}], that, for every i from 1 to p, a par
ticle is localized in Ai at time tj, is realized. The en
semble average gives the probability QP[{A;}, ttl}] to 
occur. 

2. Ideal coincidence measurements of type 2 

p points detectors are at distinct points a i in V. They 
act during time interval At; ={ti, At}. Every detector 
may absorb a particle at a i during At;: At is weak 
enough for the probability that more than one particle 
will be detected to be negligible. Used alone, such a 
detector gives the time presence probability of the 
particles in At; at point a j • For a p-order coincidence 
measurement, the detectors are connected with one 
another in such a way that an output is obtained every 
time the event Cp[{a;} , {Ati}] , that, for every i from 1 
to p, a particle.is localized at point a i during At;, is 
realized. The probability Qp[{aj, {At i}] that Cp[{ai}, {At;}] 
will occur is obtained by ensemble average. 

Generally, the two events Cp[{Aj},{ti}] and 
Cp[{a i}, {At i}] cannot be linked easily. The two 
foregoing ideal measurements provide different 
probabilities Qp[{aJ, {At i}] and QP[{A i}, {t i }]. Neverthe
less, if V is assumed to be one-dimensional, say L, as 
it can be done for a parallel beam the section of which 
is small compared with the coherence area, and if the 
particle velocity v is nearly the same for every parti
cle (which is always true for photons but implies quasi
monochromaticity for nonzero mass particles), A and 
At can be chosen in such a way that 

A=vAt. 

With these conditions, Cp[{a i}, {At;}] is still the event 
"for every i from 1 to p, a particle is localized in At; 
at point ai," but Cp[{A.j, V;}] can be considered as the 
event "for every i from 1 to p, a particle is localized 
at Ii in Ai = {a;, l JAt i}." Thus these two events are 
identical and 
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Simple geometrical considerations would allow us the 
extend this identity to nonparallel quasimonochromatic 
beams. Thus, to identify type 1 and 2 experiments we 
need only the quasimonochromaticity hypothesis, which 
we call Hypothesis 1: 

Hypothesis 1: If AE is the energy width of the wave
packets describing the particles, and Eo the mean en
ergy of the particles, the following relation is verified: 

AE «Eo. 

This inequality defines quasimonochromaticity. 

3. Actually performed coincidence measurements 

What conditions must be fulfilled by the actual detec
tors for them to be described by the type 2 ideal model? 

Let us consider the experiments actually performed 
on photon beams. 3 The detectors are photomultiplier 
(P. M. ) interacting with the electromagnetic field during 
a time At in an active volume A. For the equivalence 
between P. M. and type 2 detectors to be set, two ques
tions must be solved: 

(1) What are the conditions for a P. M., which appre
ciates the square modulus of the electric field to be
have as a particle detector? This problem is left for 
Sec. II. Let us assume here that the conditions are 
realized. 

(2) What are the conditions for a detector of finite 
volume A, acting during a time At (such as a P. M. ) to 
behave as a point detector that may absorb one particle 
during At. These conditions are given in Hypothesis 2: 

Hypothesis 2: The dimensions of A and At, on one 
hand, and the measured field intensity, on the other 
hand, are weak enough for the probability that the detec
tor will absorb more than one particle to be negligible. 
In particular, more-than-one-particle interactions are 
not considered. 

Thus, from a mathematical standpoint: 

(1) A and At may be considered as infinitely small. 
The linear dimensions of A and VAt, where v is the 
particle mean velocity, are of the same order. 

(2) The probability that a particle is localized in A at 
a given time or that a particle is localized during At at 
a given point are infinitely small of the order of A or 
At. And the probability for localizing more than one 
particle in A on At is infinitely small of upper order. 

Hypothesis 2 is actually realized in coincidence mea
surements. 3 The only consequence of the finite volumes 
of detection is that a mean value of Qp[{a i}, {At;}] is per
formed on A in the measurements. 

To conclude, we see that, providing Hypothesis 2, 
type 2 experiments and actual experiments can be identi
fied. Moreover, the quasimonochromaticity hypothesis 
allows the identification of type 1 and type 2 experi
ments. Finally, providing these two hypotheses, type 1 
and actual experiments can be identified. Thus our 
problem is reduced to a correct quantum description of 
type 1 experiments, which will be done in Sec. II. 
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II. QUANTUM DEFINITION OF A COINCIDENCE 
OPERATOR 

We consider a free system of particles any finite part 
of which, of volume V, can be defined by a density 
operator Pv. And we look for a coincidence operator 
Nj.[{~I}' {tl}] describing type 1 p-order coincidence mea
surements in V, when Hypotheses 1 and 2 are realized. 
Np[{~I}' {t l}] must be such that 

Tr{p!\;A{~I}' {tl}]} = Qp[{~I}' {tl}]' (11.1) 

where Qp[{~I}' t] defines a regular p. p. Pv(t). 

We first justify the reason why we consider only free 
normal or locally normal18 systems. Then a position 
operator Nl[~' t] is defined. This definition is not 
original and entirely based on the papers of Newton and 
Wigner,11 Jauch and Piron, 19 and the thesis of Amrein.12 
The merits of our choice, from the experimental stand
point, is emphasized. Finally N p is deduced from IV 1 
and shown to verify (II. 1), in a theorem which is the 
main result of the present section. 

A. Localization of quantum particles 

1. Considered systems 

A normal system is finite such that it can be de
scribed by a density operator p (positive operator with 
trace 1).18 A locally normal system reduces to a nor
mal system on any finite part Vof its total volume. For 
normal and locally normal systems, a number operator 
N v exists on any finite volume V of the system. 18 As a 
consequence, the number of particles on any finite 
volume V of the system is finite. This is characteristic 
of normal and locally normal systems. On the other 
hand, regular processes and, more generally, ordinary 
processes8 have the property that the number of points 
in a finite volume is finite. This property explains why, 
wanting to have regular detection processes, we shall 
a priori limit ourselves to normal or locally normal 
systems. 

Moreover, concerning the observed system, the fol
lowing hypothesis will be used that will appear neces
sary in defining the position operator later on: 

Hypothesis 3: The particles of the volume V where 
the measurements are performed do not interact with 
the source(s), that is to say, the field associated with 
the particles in volume V is a free field. 

Practically this means that the volume where the 
measurements are performed is far enough from the 
source(s) for the interaction between the system and the 
source(s) to be negligible. 

2. Nonrelativistic position operator 

Let us first define the position operator Nl[~] on the 
one-particle-state space H. H is invariant by Euclidean 
motion. We have 

(II. 2) 

where X(a) is the position operator at point a. It has the 
properties of a pyojection ope ra to r2 0 and can be written 

X(a) = la)(a I, (II. 3) 
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where I a) is the state of H that describes the particle 
in point a. If we introduce the time t, we shall write 

Nn~, t] = Jll.X(a(t))da(t) 

= Jll. I a(t))(a(t) I da(t). 

The mean value (cp IX(a) I CP) = I cp(a) 12 is the particle 
presence probability density for the state I CP) of H. 

(II. 4) 

Let us now define the position operator Nt[~] on the 
symmetrized or antisymmetrized n-particle-state space 
iH0t. 21 iH0 n is obtained by symmetrization (S) or 
antisymmetrization (A) of H0n, the latter being the 
tensorial product of n spaces H;, identical to H. 22 

We have n 

NN~]= 6 Jll.XI(a)da, 
1=1 

(II, 5) 

where X I(a) is the position operator on R I' 

NN~] can be rewritten in the configuration space 
representation. 23 In this representation the operators 
act on the space iif0n built from fi in the same way as 
!H0n from H. if is the space of the linear forms (x I CP) 
= CP(x), where I CP) belongs to H and (xl to its dual H*. 
The ket Ix) describes a particle in point x. In the con
figuration space representation the action of any opera
tor W, diagonal on the states i I xI) I x2) .. , I x n) = I {x}) 
of iROn, can be described with the help of its diagonal 
elements W({x}) 24: 

({x} I (Wi CP» = W({x}) cp ({x}). (II. 6) 

Thus, in the configuration space representation, Nt"[~] 
is written 

n 

NN~] =6 Jll. 6(a - XI) da. (II. 5') 
1=1 

This expression (II. 5') allows us to write tV 1[~] acting 
on the Fock space (union of all ;'H0n for the integer 
n E [0, + oeD, in the second quantization formalism. 

Let {llJIk)} be an orthonormal basis of R [in the follow
ing, IlJIk) will describe a particle of wave vector k] and 
a; and ak be the creation and annihilation operators of 
IlJIk) respectively. They are normalized in such a way 
that 

(V finite), 

[ak , a;.] = f}(k - k') (V infinite) (II. 7) 

[ak, ak.1. = [a;, a;. 1. = O. 

The sign - (+) indicates a commutator (anticommutator). 

For a one- particle operator, we know how to go from 
the configuration space representation to the Fock rep
resentation25 

: 

Theorem: Let a one-particle operator W be 

W = k~ (lJIk1 1 W IlJIk2)a;lak2 (II. 8) 

in the Fock representation. The operator w acts on H. 
Let, on the other hand, W be an operator the restriction 
wn of which is 

n 

Wn =6 W(XI) 
1=1 

(II. 9) 

on ;,jj0n• By definition 

W(XI)= (XI I wlxl)' (II. 10) 

The operators Wand Ware identical. 
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This theorem allows us to write Nl[~] in the Fock 
representation 

Nl[~]=} //(a)da, . ~::; 

or introducing the time t 

Nl[~' t] = J~ tj(a, t) da, 

where 

tj(a, t) =A +(a, t)A (a, t), 

with 

(II. 11) 

(II. 11') 

(II. 12) 

A(a, t) = V-l/2~ exp[2i1Tk. a- 2i1Tv(k)t]ak (11.13) 
k 

if the considered system is of finite volume V, or 

A(a,t)=} exp[2i1Tk.a-2i1Tv(k)t]akdk, (11.13') 

if the system is infinite. v(k) is the frequency associated 
with the wave vector k. Nl[~] is deduced from Nl[~' t] 
by putting t = 0 in the foregoing formulas. 

A (a, t) andA+(a, t) verify the following commutation 
relations, which are easily deduced from (11.7) and 
(II. 13): 

fA (a, t)A (a', t')]* = fA +(a, t)A (a', t')]* = 0, 
(II. 14) 

fA (a, t)A +(a', t)]* = o(a - a'). 

Let us underline the fact that in the nonrelativistic 
case a density is introduced without mathematical dif
ficulties as proved by formulas (11.2), (II. 5), (II. 5'), or 
(11.11). 

3. Difficulties in building a position operator for nonzero 
mass relativistic particles 

The position operator Nl[~] is now defined as a pro
jection operator acting on the one particle-state space 
H, which is invariant by Lorentz transformation. 11,12,19 

A main property of N l[ ~] is that the representation T 
on H of any translation T in the Euclidean space that 
transforms ~ into ~' such that ~n ~' = 0 transforms the 
eigenfunction 11» of.tV l[~] into the eigenfunction Tl1» of 
Nl[~'l which is orthogonal to 11»: 

(1),71>)=0, (II. 15) 

where ( ... , ... ) indicates a Lorentz invariant scalar 
product. This scalar product is written26 

(11.16) 

where Ik) is of square modulus k~ and describes a par
ticle of wave vector k and where ko = (k2 + m 2)1 /2, m 
being the mass of the considered particle. fi is taken 
equal to one. The spin is not introduced, for 
simplification. 

From (11.15) and (11.16), Newton and Wigner show 
that the function 11>,,) of H describing a particle localized 
at point a is 

f d 3k 11>,,) = Ii; /ko exp(- 2i1Tka) Ik), (11.17) 

or, in the configuration space representation, 
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(11.17') 

We see that, because of the Lorentz invariant definition 
of the scalar product and contrary to the nonrelativistic 
case, this function is not the Dirac function 1)3(a - x). 
As a consequence, contrary to the nonrelativistic case, 
the eigenfunction 1>(x) = (x 11» of Nl[~] is nonzero out of 
~. From this follows that, although the particle is 
localized in ~, its energy in nonzero out of ~: there is 
a nonlocal relation between the position and the energy 
Of a particle. 12 

It appears, as a consequence of the foregoing result 
that our description of detection should have to tell be
tween particle detection and energy detection. Let us 
see that in more detail. To begin with, let us express 
Nl[~] in the Fock representation. The Fock space is 
now built from H and the creation and annihilation bk and 
b; of state 1 k) are normalized in such a way that 

[bk,b;.]~=ko1)3(k-k'). (11.18) 

Thus, a state 11» of H is written 

11» = f d;: 1>(k) 1 k) = f d;: 1> (k)b; 1 0), 

where 10) is the vacuum state. 

Then, it can be easily shown that 

Nl[~] = J~ fj(a) da, 

where 

fj(a) =8+(a)8(a), 

with 

8 (a) = f d;: /ko exp(+ 2i1Tka)bk , 

(II. 19) 

(II. 20) 

(11.21) 

(II. 22) 

such that, according to (II. 17) and (II. 19), 
function 11>,,) of fj(a) is 

the eigen-

11>,,) = 8+(a) 1 0). (II. 23) 

From (11.17) and (11.18), we see that we can go from 
the relativistic formulation to the nonrelativistic one by 
setting 

bk = /koa k , 

and, thus, it follows from (11.13) and (11.22) that 

8(a) =A (a). 

(11.24) 

(11.25) 

Consequently, tj(a) is the same operator in both rela
tivistic and nonrelativistic cases, for nonzero mass 
particles. 

Let us now compare tj (a) with what should be an en
ergy localization operator {(a) 9: 

{(a) = E+(x)E(x), (11.26) 

where E(x) is the positive frequency part of the field 
operator 

E(x) = ivl /2 6 [~h v(k)]I /2 exp(2i1Tk' x)ak (V finite) 
k 

(II. 27) 

or 

E(x) = i I [th v(k)]I /2 exp(2i1Tk . x)ak (V infinite). 

(11.27') 
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Hypothesis 1 allows us to write 

[v(k) - v(K)]« v(K), where K is the mean wave 

vector, (II. 28) 

and to rewrite E(x) as 

E(x) = i0 /2[th v(K)]I /2 ~ exp(2ilTk . x)ak, (II. 29) 
k 

or 

E(x) = i[th v(K)]t /2 I exp(2ilTk' x)akdk. (II. 29 /) 

Thus, Ij(a) and [(a) may be identified, up to a constant 
factor. Hypothesis 1 reduces particle detection and en
ergy detection essentially to the same operation. 

4. Position operator for zero-mass particles 

We are now left with an ultimate question, the detec
tion of zero-mass particles. 

It has been known for a long time that a zero-mass 
particle position operator cannot be defined as a projec
tion operator. 27 Jauch and Piront9 have established the 
existence of a position operator ;\It[a] that does not 
possess the characteristic additive property of projec
tion operators; for two disjoined volumes a and a', 
instead of having 

Nt[a] +Nt[a/] =Nt[au a'l (additive property), (II. 30) 

we have 

Nt[a] +Nt[a/] <;\It[au a/]. (II. 31) 

From this, Amrein12 deduces that 

Nt[a] = ill da i~ daIKll(a, a/);nalA (a /). (II. 32) 

This operator differs from the nonzero mass one by the 
kernel Kll(a, a/), and it would be reduced to the nonzero 
mass operator if Kll(a, a'l were equal to o3(a - a'l. 
Equation (II. 32) shows the nonexistence of a density 
operator Ij(a). From this, the impossibility of defining 
a probability density by a quantum mean value Tr{plj(a)} 
follows. Thus a regular detection p. p. cannot be 
defined. 

Fortunately, Amrein has shown12 that if Hypotheses 1 
and 3 plus a third hypothesis, that we shall call Hypo
thesis 4, are fulfilled, ;\Il[a] can be written, for zero 
mass particles, in the same way as for nonzero mass 
particles: 

(II. 11/) 

Then a density can be defined. The third hypothesis, 
allowing the use of (II. 11), is 

Hypothesis 4: The linear dimensions of the localiza
tion volume a are much larger than the mean wave
length A of the observed field. 

Finally, we are left with the following result: If hy
potheses 1-4 are realized, the particle detection may 
be described with operator (II. 11). 

It is interesting to emphasize that Hypothesis 4 
characterizes the detectors that may be used. Indeed 
the active area of a P. M. is of the order of O. 1 to 1 
mm2 and its resolution time is about 10-9 sec, which 
corresponds to a position incertainty of about 30 cm. 
These magnitudes are much larger than the mean wave-
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length of the observed visible light. The condition a» A3 

is a fortiori fulfilled for electrons: The experiments 
should be performed on electrons whose wavelength is 
of the order of one angstrom with detectors the dimen
sions of which are of a few microns at least. 5 Let us 
notice that our condition a» AO necessary to define a 
presence probability denSity in the photon case appears 
under the form at» v(Ktt to define a counting rate, that 
is to say, a time density, in the study of P. M. done 
by Glauber. 9 

Let us also underline that, for the usual detectors, 
Hypotheses 2 and 4 are noncontradictory. 

All these remarks lead us to the conclusion that our 
four hypotheses well describe the usual experimental 
conditions (and even the potential ones, in the electron 
case) and provide us with a rather simple operator de
scribIng the action of the detectors. 

B. Coincidence operator 

1. Instantaneous coincidence operator 

The operator Np[{a;}] describing the instantaneous 
action, in p different volumes of space, of p type 1 de
tectors verifying Hypotheses 1-4, is defined. 

From the property f3 of the c. p. d. and from Eqo (II. 1), 
!Vp[{a j }] is deduced to be symmetrical with respect to its 
arguments. From Hypothesis 2, we deduce that if the 
field is an n-particle field, the ith detector (1 "" i "" P) 
will act on a (n - i + 1 )-particle field. 

These two remarks suggest the following form of 
NA{aJ]: 

where 

Ijp{a;} =A +(atlA +(a2) •• -A + (aplA (ap) .. -A (at). 

Introducing the time t, we have 

NA{a;}, t] = J{ll;} ... I Ijp{a i , t}dat ••• dap, 

where 

(II. 33) 

(II. 34) 

(II. 33 /) 

(II. 34') 

Remark 1: Let us notice that expression (II. 34) is 
very similar to the one obtained by Glauber28 in cal
culating the p-order intensity correlation function in the 
photon case, Cp(aj, a2, ••• , ap). Indeed, he sets 

D(at , a2 , ••• , ap) = Tr( P,9 pta;}) 

with 

(II. 35) 

According to our Hypotheses 1-4, Ijp{a;} and ,9p{aJ are 
proportional. This result is quite satisfactory: Indeed 
the photon detection p. p. is known to be a compound 
Poisson process, 29 and the proportionality between 
Yp{a;} and,9 pial} expresses nothing but a well-known 
property of compound Poisson process, the identity be
tween the process denSity correlation functions and its 
c.p.d. 

Remark 2: From (II. 14) and (II.33), we deduce that if 
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the volumes Ai are disjoined, every A (a i ) commutes 
with every A +(aJ) as long as a i and ai belong to two dif
ferent volumes and that 

p p 

Np[{Ai}] = n A+(aj)A (a i ) da i = n Nl[Ai ] (II. 36) 
i=l i=l 

This result has already been formulated in other ways, 
by Schweber, for instance, 30 and in the photon case by 
Mandel. 31 If the volumes Ai are not diSjoined, (II. 36) 
does not hold. 

To compare the expression (II. 34) of yp{a i } with non
quantum results, let us establish the reduction of yp{a j } 

on J,H®n. To do so, we shall use the following theorem: 

Theorem: Let Wp be a p- particle operator, in the 
Fock representation, such that 

where 

~ =(A ~)(A ~\ 
{ki ){"~} i=l k I 1=1 "i} 
II/Jf"i)) =!( 1I/J"1) ... I I/Jkp» , 

and w is an operator on !H0t>. 

(II. 37) 

(11.38) 

(11.39) 

Let, on the other hand, U!p be defined by its restric-
- s-""-tion W; on AH'CJ

n
: 

(II. 40) 

(11.41) 

and L:lt indicates a sum such that il may take any value 
from 1 to n, i2 any value from 1 to n different from 
i 1, •.• ,ip any value from 1 to n different from 
i 1, i 2, ••• ,ip_1• It can be shown that 

(II. 42) 

This theorem is established in Ref. 25 for p = 2, and 
in Ref. 5 for any P. 

Thus, the restriction ynp{a l } of y p{aJ on lii0n is 

ynp {ail =?t O(al - Xll)' .• O(ap - Xip) (II. 43) 

and the restrictionNnp[{Ai}] of Np{Ai} on lii0n is 

;\7np [{A i }] l{d ) • 0 • ~ o(a1 -XI) ... o(ap -XI) da1 ••• dap• 
I ft 1 ~ 

From (11.1) and (11.43), we deduce that 

Pp[{a l }, t] = Tr[ p(t)y p{a l }] 
+~ 

= r; J Pn(xt> x2, •.. ,xn;t) 
n=O 

where 

(II. 44) 

Relation (II. 45) is similar to the one that can be estab
lished in classical statistical mechanics. Indeed, if a 
classical particle system is characterized by its con
figuration space probability density Dc(xt> X2, •.• ,xn;t) 
and if the result obtained by Yvon16 for two particles is 
extended to p particles, the classical p-order c. p. d. 
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(that Yvon would call p-order particle density) is given 
by 

PA{al}' t] = J Dc(xt> .•. ,xn;t) it O(a1 - Xi
1

) ••• O(ap - Xip) 
n 

xn dx" (11.47) 
i=l 

the classical equivalent of (II. 45). 

2. Multitime coincidence operator 

The multitime operator yp{a h til such that 

Np[{AI }, {tJ] = l{dl} J yp{a;, tJ Dl da l 

is now defined. 

(II. 48) 

The measurement described by yp{a;, til is a sequence 
of measurements at successive time instants tt> t2 , ••• , 

tp, such that if the system is in a given state II/J) (or in 
a given mixture of states) before the measurement, and 
if its time evolution can be described by the evolution 
operator U(t), at time t, the state II/J) is reduced to a 
nonnormalized time-dependent state, 10 

which in its turn is reduced to a nonnormalized time
dependent state, at time t2, 

A (a2)U (t2' t1)A (a1)U(tl) II/J) =A (a2)U (t2)A (at> t1) II/J), 

and so on until time tp when the following nonnormalized 
time independent state is obtained: 

U+(tp)A (ap)U (tp)A (ap_1, tp_1) .. "A (at> t1) II/J) 

(II. 49) 

The only difference between an instantaneous coinci
dence measurement lies in the fact that the reductions 
of the initial state which are done in a chronological 
order in the second case are performed in any logical 
order in the first case. Thus, whereas in the first case 
every reduction is described by the action of A (ai' t), in 
the second case it is described by the action of A (a;, til. 
yp{a;, til is deduced from yp{a;, t} by putting A p(a i , tl) in 
the place ofAp(a j , t): 

yp{a l , t l }= TU+(at> t1)·· 'A+(ap, tp)A (ap, tp)" -A (at> t1)}, 

(II. 50) 

where the time ordering operator T orders the opera
torsA+ in the opposite way. 

Expression (II. 50) can be Simplified. In fact, with our 
Hypotheses 1-4, we have been able to describe the 
particle detection with free field creation and annihila
tion and annihilation operators A +(a, t) and A (a, t) which 
verify the communication relations (II. 14). This entails 
that the product U +(at> t1) ... A +(ap, tp)A (ap, tp) •.• A (alA)} 
does not vary if two pairs A (ai' ti)A (a" tl) and A +(a" tl) 
A+(a" t i ) are permuted respectively. Thus, we can 
write 

without time ordering operator, the creation and an
nihilation operators being written in two opposite 
orders. 

And 

(II. 51) 
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Remark: In the photon field case, if the beam is 
parallel, we have 

A(x, t) =A(x- et), 

and thus 

C. Validity theorem 

The quantity P,,[{a;}, t] defined by 

Pp[{aJ, t] = Tr[ p(t)1j ,,{a I} ], 

(II. 52) 

(II. 53) 

(II. 54) 

where Ij,,{a j } is given by (II. 12) in its nonrelativistic 
form and (II. 21) in its relativistic form, is shown to be 
a well-defined c. p. d. : The corresponding p. p. is 
regular p. p. 

This result will be formulated as a theorem: 

Validity Theorem: Let a particle system be normal 
(locally normal) and Hypotheses 1-4 be verified, then 
the detection p. p. P t(V) defined on the volume V of the 
system (on a any finite part V of the system) by its 
c.p. d. 

pp[{aJ,t]=Tr[p(t)Ij,,{a j }] (II. 54) 

where Ijp{a j } is given by (II. 12) or (II. 21), is a regular 
p.p. 

Demonstration: To establish that the p. p. is regular, 
we first show that the c. p. d. verify properties a and {3 

and that the e. p. d., moreover, verify property y. 

Property a: We must establish that 

(II. 55) 

Indeed, pet) is a bounded Hermitian positive operator; 
thus the form W defined on the operator space U by 

weAl = Tr[p(t)A] 'riA E U 

is positive definite. This means that if 

A=Z+Z where ZEU, 

weAl = W(z+Z) ~ 0, 

now 

Ijp{a j} =A +(a1)' • A + (ap)A (ap)' . 'A (a 1) = Z"+Z,,, 

then (II. 55) is verified. 

(II. 56) 

(II. 57) 

(II. 58) 

Property {3: It is obviously verified from the very 
form chosen for Ij ,,{aJ 

Property y: The e. p. d. eV.o/.{a j }, t] is obtained by de
tecting p particles in a volume V knowing that only p 
particles are present in this volume. Thus it is given 
by 

eV,,[{a j }, t] = Tr[ P"(t)Y",,{a j }] , (II. 59) 

where the restriction ijP,,{a j } on ~ij0P is given by (II. 43) 
and where p"(t) is the projection of pet) on ~fj0". 

It follows from (ll.43) that 

(II. 61) 

The equality between the first and the last terms ex
presses Property y. This achieves the demonstration of 
the validity theorem. 

D. Properties of a regular point processes and properties 
of the coincidence operator 

Let us consider different probabilities that may be 
defined for regular p. p. We show how their properties 
correspond to similar properties of the coincidence 
operator that may be associated with the p. p. according 
to the preceding method. 

Let ~n,,[{aj}, t] be the probability density that a given 
particle is at point ai' another given particle at point 
a2 • •• , a pth particle at point ap , the total number of 
particles in V being n (n2; Pl. Let P",,[{a;}, t] be the 
probability that any p particles are in a h ... ,ap , know
ing that the total number of particles in V is n, 

P",,[{a;}, t] = n["l~np[{aj}, t]. 

From the quantum standpoint this will be written 

P",,[{a j}, t] = Tr[ pn(t)y",,{a j}] 

or, introducing 

pn({x}, t) = ({x} I p"(t) I {x}) (1{x}E iH 0n) 

and using (II. 43), 

P",,[{aj},t]=j ... j n[Plp"({x},t) Ii dx j • 

j="+1 
Thus 

~np[{a;}, t] = j ..• j pn({x}, t) Ii dx j. 

In particular 

and 

We have 

j ... I ~nA{aj}, t] rt da j = 1, 
;=1 

which entailS, 

;="+1 

J ... j pn,,[{a;},t] rt daj=n[Pl 
;=1 

and, since 
+"' 

Pr,[{aJ, t] = 1.; P",,[{a j }, f), 
n=/> 

(II. 62) 

(II. 63) 

(II. 64) 

(II. 65) 

(II. 66) 

(II. 67) 

(II. 66') 

(II. 68) 

(II. 69) 

(II. 70) 

(II. 71) 

j ' . .. j'Ij-" {a.} n da·=p'I 
p ';=1 ' ., (II. 60) where N is a stochastic variable, the total number of 

particles in the considered system. 
where I is the unity operator. Then, using (n. 59) and 
(II. 60), we may write 
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From the quantum standpoint, let us introduce the 
operator 
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Ijp(V) = I· .. I Ijp{a;} A da;, (11.72) 
;=1 

the p order coincidence operator on the whole volume V 
of the system. Introducing the quantum operator 

(II. 73) 

the total number of particles in V, and using Eq. (II. 7), 
we may write (II. 72) as 

tjp(V) = N(N - 1)' .. (N - P - 1), (II. 74) 

the quantum mean of which gives (II. 71). 

Let us notice that 

~np[{a;}, t] = J ~np+1(Ua;}, ap+1}, t]dap+l, (II. 75) 

which implies 

pnp[{ai}, t] = n ~ p f Pp+1[Ua;}, ap+1}, t]dap+1• (II. 76) 

From (II. 67), (It 70), and (II. 76), the relation (I. 10) be
tween c. p. d. and e. p. d. follows. 

From the quantum standpoint, (II. 63) and (II. 76) lead 
to 

(II. 77) 

which in its turn confirms that the e. p. d. and c. p. d. , 
given by (II. 59) and (11.45) respectively, verify (I. 10). 

III. APPLICATIONS 

A. Fermion detection processes 

According to the validity theorem of Sec. II, if 
Hypotheses 1-4 are verified, the detection point pro
cess measured on any normal or locally normal 
fermion system is regular. Let us apply this result to 
the particular case of fermion chaotic system. 5, 13, 14, 32 

Such systems can be characterized by their density 
operator33 

(Ill. 1) 

with 

(III. 2) 

where the ket l1>k) describes a fermion in mode k. (nk > 
is the mean number of fermions in mode k, 

(III. 3) 

(Once more, the spin has been removed, for simplifica
tions. ) In the second quantization formalism, Pk would 
be32 

Pk = (1 - (nk» exp( - f3ka;ak ) 

with 

(III. 4) 

(III. 5) 

With such a density operator, the c. p. d. obtained by 
using Eq. (11.45) are5.I4 

P 
Pp[{a;} 1 =6 p a(- 1) Il C(a j - a"i), (III. 6) 

;::;1 

where the positive definite function C(ai - aon) verifies 
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(Ill. 7) 

It is the correlation function of the field operator, up 
to a constant factor (according to the quasimonochro
maticity hypothesis). It can be any covariance function 
in the limits where (III. 3) is verified. The symbol 
Z; P" (- 1) indicates a sum over every permutation of 
{I, 2, ... ,p}, each term in the sum being multiplied by 
(-lr, where r is the order of the permutation in the 
considered term. 

The validity theorem proves that the functions given 
by (III. 6), (III. 7), and (III. 3) are the actual c. p. d. of a 
mathematically well-defined regular point process. 

B. Probabilistic interpretation of vacuum mean values 

Let us here comment the following result of Frisch 
and Bourret (F. B. )15,34: 

They consider vacuum mean values such as 

(III. 8) 

where 

(III. 9) 

B(a i ) and B+(a;) are annihilation and creation operators 
in a nonnormalized state I Xi) defined by 

I Xl) =6 «nk ) Iv)1 /2 exp(- 2ilTka i )a; 10). (III. 10) 
k 

For boson, (nk ) may take any nonnegative value; for 
fermion (III. 3) must be verified. 

We have 

(Xi 1 XI) =6 «nk>/V) exp[2ilTk(a, - al)] = C(a, - al)' 
k 

which entails 

C(a, - all is a positive-definite function and thus a 
covariance. 

(Ill.ll) 

(III. 12) 

The problem of F. B. is to associate with M(a;) a 
stochastic function;t; (a i ) the p-order momentum of 
which (;11 (a i ) ••• ;11 (ap) is identical to (III. 8). In the boson 
case, they show that a stochastic Gaussian function 

;11 (a i ) can be defined in this manner, the correlation 
function of which is C(a, - all. In the fermion case, they 
know how to define;11 (a i ) if C(a,-a l ), which will be its 
covariance, is an exponential function. In these condi
tions, ;11 (a i ) is shown to be a dichotomic Markov func
tion: It is a Markov35 function that may be + 1 or - 1 
only. 

Our foregoing results allow a physical interpretation 
of these facts. Indeed, it has been established5,13,14 that, 
for any chaotic system, the density operator of which 
is by definition32 

P =r;!Pk' 

Pk = (1 + E(nk»)"E exp( - (3ka;ak) 

with 

C. Benard 
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[€ = + 1 (- 1) for boson (fermion)], the detection c. p. d. 
are 

pA{a;}] = Tr[ wt(al ) .. ·A +(ap)A (ap) .. -A (al)] 

=~ Pa{E) ri Tr[pA+{a;)A{aa;)] 
;=1 

n 
=~ p a(€) Il C(a; - a",;). 

;=1 
(III. 15) 

[The definition of 2: p a(€) is deduced from the one of 
P a( - 1) by setting € everywhere instead of - 1. ] 

From (III. 15) and (III. 12), it follows that 

pJ{ai }] =:0 p a(E) n (0 IB(a;)B+(aai) 10) 
i=1 

or, by using Wick theorem, 36 

Pp[{a;}] = (0 I B(al ) .•. B(ap)B+(ap) ..• B+(al ) 10). 

Thus, the vacuum mean values (0 I B(al )· .. B(ap) 
xB+(ap) .•. B+(al ) 10) are nothing but the c. p. d. of the 
chaotic detection p. p. characterized by. covariance 
(III. 11). 

As a consequence the result of F. B. concerning 
bosons is nothing but the affirmation that a chaotic boson 
field can be described by a Gaussian stochastic func
tion9,29: The moments of the intensity (square modulus of 
the field) are equal to the c. p. d. of the corresponding 
point process. This property characterizes compound 
Poisson processes and thus in particular boson detec
tion processes, which are necessarily compound 
Poisson processes. 29 For exponential chaotic fermion 
fields, the p. p. defined by (III. 15) has been shown5013,14 

to be a renewal6 process. Thus it can be well under
stood that a Markov dichotomic variable be associated 
with the process. 5 

IV. CONCLUSION 

As a conclusion, we would like to underline that our 
definition of a coincidence operator fulfills all the 
present experimental requirements and nevertheless is 
built in a mathematically rigourous formalism. From 
a theoretical point of view, other coincidence operators 
could be thought of, and it would be interesting to check 
whether they become equivalent to our coincidence 
operator when Hypothesesl-4 are fulfilled. From the 
experimental point of view our results allow the formu
lation of potential measurement results such as fermion 
coincidence measurements. 5 
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The path integral for a three-body problem in one dimension described by the Lagrangian 

L = (1/2) m + g + H) - [(l/4)w 2 (I) (~l - ~d+ (~2 -b)2 + (~3 -~l )2J -g (~l -~2 )-2 

is examined, where ~ I • ~2' and ~3 are the coordinates of the three particles and w(t) is the 

time-dependent angular frequency indicating the coupling strength of the harmonic potentials. 

I. INTRODUCTION 

In Ref. 1 Khandekar and Lawande examined the path 
integral for a three-body problem described by the 
Lagrangian 

L = Hki + k; + k~} 
- tw2Wl - ~2)2+ (~2 -~3)2+(~3- ~1)2}_g(~1 - ~2)-2, 

(1 ) 

where ~l> ~2' and ~3 are the coordinates of the three 
particles, w the constant angular frequency arising from 
the strength of the harmonic potentials, and g is the 
strength of the inverse square potential acting between 
particles 1 and 2. In Ref. 1 the method for evaluating 
the corresponding path integral is mainly based on the 
important results obtained by Peak and Inomata (Ref. 2.) 
They have been able to evaluate some central force path 
integrals. Also, some general expressions for the 
Feynman propagator in the central force problem have 
been derived. In the present paper the Lagrangian under 
consideration is 

Let, ~, t) = H ~i + k; + kn 
- tw2(t)Wl - ~2)2 + (~2 - ~3)2 + (~3 - ~1)2}-

- g(~l - ~2t2, (2) 

where now the angular frequency w(t) is time dependent 
and where t stands for (~l> ~2' ~3)' The present situation 
also arises in connection with a three-body problem 
considered by Calogero in Ref. 3. Let us first transform 
the Lagrangian (1) by introducing the center of mass and 
Jacobi coordinates, defined by 

~l + ~2 + ~3 = 3R, 

~1-~2=l2x, 

~1+~2-2~3=v'6y. 

These transformation formulas make it possible to 
separate L as follows: 

(3 ) 

L=tR2+ }Cf2+Y2)_lw2(t)(X2+y2)_g/2x2. (4) 

Introducing (4) into the definition formula of a path in
tegral (see, e.g., Ref. 4), 

results in 

K(~t> t, ~o, 0) =Ko(Ht> t;Ho, O)K(xt> Yt> t;xo, Yo, 0). 

(5) 

(6) 

K o denotes a free particle propagator corresponding to 
the centre of mass. K represents the relative motion 
and is given by 
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K(xt,Yt> t;xo,Ya, 0) 

I t,x!'Yt it 
= DX(t)Dy(t)exp(~i . (.x2+y2)dt 

O.Xo~Yo 0 

- %i Sa t dtw2(t)(X
2 + y2) - i { ~ ; dt)o (7) 

In fact, the problem of evaluating the right-hand side 
of (7) can be reduced to calculating the following 
integrals: 

K o( Yt, t;Ya, 0) 

= 1.t::

t 

Dy(t)exp(~ it )j2dt-~ it W2(t)y2d1 (8) 

and 

K(xt , t;xo, 0) 

- if[ it 2~;)' (9) 

The path integral of (8) is a simple Gaussian one and 
can be evaluated by following Feynman's theorem (see, 
e. g., Refs. 4-6). In fact, (9) is the path integral of the 
quantal problem of a particle interacting in one dimen
sion with an external time-dependent quadratic potential 
and a constant inverse square potential. This problem 
was solved completely by Camiz et al. in Ref. 7 in the 
Schrodinger formalism. In turn, the path integral 
evaluation of (9) is obtained here as a by-product of our 
calculation of (7). Indeed, one has 

K(x f-x O)=K(xt,Yt,t;xo,Ya,O) 
t, , 0, Ko(Yt> t;yo, 0) 

(10) 

Let us concentrate next to the evaluation of (7) which is 
the main concern of the present paper. From now on 
the bar on K is dropped. 

II. EVALUATION OF K(xt,Yt,t;xo,Yo,O) 

Frist of all "plane polar" coordinates are introduced: 

r=(x2+y2)lf2 (O';x<oo) 

x=rsin8, y=rcos8 (11) 

8=Arctanx/Y (0,; 8<21T). 

The Langrangian 

L(x,y,x,y, t)= tx2 + ty2 _ ~W2(t)(X2 + y 2) -f[/2x2 (12) 
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occurring in the argument of the exponential function 
in the integrand of (7) is transformed into 

(13) 

For the action S corresponding to this Lagrangian, 
one has 

N 

S='~(2! (r; + r:_1 - 2rj r'_1 cos(8j - 8j-l) -dw
2
(jE)r; 

~(a2-t)) 2 
- 2 2 . 28 + OrE N), r; sln ; 

where 

a=~(1+4g)I/2 

Of course, S can be cast into the form 

S=jt (z! (r; + r;_1 - 2r,rj -I cos (8j - 8j -I) - ~EW2(jE)r; 

E(a~ - t). ) + 0(E2N), 
2r

j
r

j
_

1 
sm8

j 
sm8

j
_1 

whence 

exp(iS)= A [exp(2! (r; + rY_l) - idw2 (jE)r;) 

(14) 

(15) 

(16) 

x exp(r
j
z:' -I cos8j cos8j -1 expt'~j -I sin8j sin8'_1 

. (2 1) ~ ] LEla - 4 0 2 
-2r.r. sin8. sin8. exp[ (E)] • 

) ) -I ) )-1 

(17) 

Noting that the asymptotic form of Ia(uIE), the modified 
Bessel function, for small E, is given by 

\
U) (E) 1/2 [. U 1 ~ 1) £ ~ E2)J I - - -- exp--- a 2 __ -+0-

a E 2rrll E 2 4 U u2
' 

(18) 

one gets 

exp (is) = '~I [exp (2iE (r; + r; -I) - i£ ~ w2 (j£)r~ 

xexp(rj:~_1 cos 8, cos8j_0 

x (2rrrjr i _1 :!n8j sin8t _1) 1 /2 Ia t1rt-1 ~!n8t sin8J_~ ] . 

It has to be remarked first that the factor 

ff exp ro( . £2. 2)+ 0(E20 
j=1 L (rjrj _1 sm8, sm8j _

l
) J 

(19) 

can be omitted because the argument of the exponential 
function doesn't contribute to S in the limit for £ - 0. 
Making use of the expansion formula, 

(sin(]l sin,8)1 /NIX_1 /2 (z sin (]I sin,B) exp(z cos acos,B) 

= 22X(21TZ)"1 /2(r(,\))2 t l! (,\ + 1) I (z)CX(cos a )CX(cos,B) 
1=0 r(2,\+ 1) I+~ I I 

(20) 

in exp(iS) of (19) gives 

exp(iS)= L; (IT N: (sin8. sin8 )a+I/2ca+I/2(cos8) 
1112 ••• IN 1.1 11 ) I-I \11 1 

cr;1 /2(COS 8, _I)R I, (r,r, -I) J' (21) 
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where NI is the normalizing factor of the Gegenbauer 
polynomial Crl/2(cos8), and R 1/r1 ,rJ-!) is defined as 

~(rHrJ-l)=(2rr)exp 2iE (ry+r;_I)-i£~w2(jE)r; 

x I 1 (r,ri-l\ 
1 +a+ 2" i£ -J. (22) 

ExpreSSing K(xuYt,t;xo,Yo,O) of (7) in polar coordinates 
and replacing the exponential function of (7) by (21), we 
find 

(23) 

with 

BN = (1 12 rrid" . (24) 

The integrations over the angular variables can be per
formed by taking into account the normalization and 
orthogonality condition for the Gegenbauer polynomials. 
Therefore, we have 

K(rtJ 8t ;ro, 80 ) 

= tK1(ro r o)Ni(sin8t sin8o)a+1 /2 
1.0 

x Q+I/2(cos8t)Crl/ 2 (cos8o), 

where 

(25) 

(26) 

III. EVALUATION OF THE RADIAL PROPAGATOR 

To obtain an analytical expression for (26) we still 
have to carry out the radial integrations of 

N-! 

XIii (- i(]lror l )· •• I Ii (- iarN_1rN) n rj dr" 
) =1 

where 

(}I = E-1, ,8j = (}I (1 _ E; W2(j:~ 

(27) 

and (28) 

lJ.=l +a+ ~ 

The intergrations in (27) may be performed by repeated 
use of the formula of Peak and Inomata deduced in Ref. 
2: 

(29) 
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valid for Re(/l) > - 1 and Re(QI) > O. The result is given 
by 

where 

QlN = QI~(2(l1:\, 
hI YkJ 

N-l 2 

-~-.0~ 
PN - 2 k=1 4Yk ' 

qN = QI/2 - Ql2/4YN _H 

Qlk +1 = QI .f! (2 QI \ (k ?- 1), 
J =1 Yj J 

Yk+l = (3,,+1 - a2/4Yk. 

(31 ) 

The main point in getting an analytical expression for 
Kl(rUrO) turns out to be the evaluation of QlN,PN' and 
qN' Let us first aim our attention to the evaluation of 
Yk. Putting 

2Yk+/QI=Yk+/Yk, (32) 

we rewrite the difference equation for YK in (31) as 

Yk+l - 2Yk + Yk-l + w2(ke)e2Yk = O. (33) 

To solve this equation, let us consider the differential 
equation 

(34) 

Let us denote the solution of this equation satisfying the 
boundary conditions 

y(O)=O and y(O)=1 (35) 

by Y (t) = T/(t). Substituting Yk = T/(k + llE) + O(e3) into (34), 
we observe that the equation, 

(36) 

is satisfied up to the second order in e. Let us consider 
next the initial condition Y1 = PH or 

(37) 

It is readily shown that this equation is also satisfied 
up to the second order in e. 

So one gets for (32) 

1 T/«k + 2)e)+ O(e3) 
h+l =2"' T/«k + l)E)+ O(e3)' 

(38) 

Let us now calculate Qlk +1 of (31) in a similar manner; 

QI =!. ~ T/(je) + O(e3
) 

k+l e j=1 T/«j + l)E)+ O(E3) 

1 T/(e)+O(E3) 
= E T/«k + 1 )E)+ O(E3) . 

(39) 

Thus we obtain 

lim QlN = 1/T/(t) with Ne= t. (40) 
N-~ 

Next the limit of qN is evaluated; 

1· l' (1 IT/«N-1)E)+O(E3)) Imq - 1m ---
N-~ N-N_~ 2E 2e T/(NE)+O(E3) 
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_!.. _1_. lim T/(Ne) - n«N - l)e) 
-2 T/(t) N_~ e ' 

or (41) 

limqN =~(t)/2T/(t) 
N_~ 

The most difficult step turns out to be the evaluation of 
limN_~PN: 

lim =lim -_- .0 E (
1 1 N-l ) 

N-~ PN N-~ 2e 2 k=1 (T/(k + l)E)+ O(E3))2 

. (11ft dt) -hm --- --
-N-~ 2E 2 , T/ 2 (t) • 

(42) 

It is readily seen that this limit exists in the form 

, 1. (1 ft dt ) 
!l~PN = 2T/(t) 11~ E'T/(t) - T/(t) e T/2(t) • (43) 

For every E '* 0, 

1 It dt 
W)=-;T/(t)-T/(t) , T/ 2 (t) (44) 

is a solution of (29) which is linearly independent of the 
solution y(t)=T/(t). Evidently, HE)=T/(e)/E, so that 
lim, _ oHE) = 1. Furthermore, 

t 
.' flU) • I dt 1 
W)=-E--T/(t) , T/2(t) -T/(t)T/2(t) 

and hence 

k (E)- ~(e) __ 1 __ ~(E)T/(E) -E 

- E T/(E) - ET/(e) 

from which follows 

So ~ (t) is a solution of x + w2 (l)x = 0 satisfying the 
boundary conditions HO) = 1 and ~ (0) = O. So we obtain 

. 1 Ht) 
hmPN =2':--(l)' 
N-~ 17 

(45) 

As .a result, the radial propagator is given by 

(46) 

IV, CONCLUSIONS 

Our expression (25) for K(ru et;rO, eo) becomes 

K(r e 'r e )-t~(sine sine \a+l/2C·+l/2(cose )C·+l/2 u t, 0' 0 - 1 t 0 1 1 t 1 
1=0 

( e) 1 (. W) 2 . h(l) 2\1 ( rtro\ 
x cos 0 iT/(O exp t 2T/(t) ro + t 2T/(t) rt) IL r i T/(l)) • 

(47) 

So the path integral for a nonstationary Calogero model 
described by the Lagrangian (2) is achieved. As a by
product of our calculations an analytical expression for 
the propagator of a time-dependent quantal harmonic 
oscillator with a singular perturbation can be obtained 
from (10). The result so obtained is equivalent with that 
of Camiz et al. in Ref. 3. In their paper the solutions 
are found both in the Schrodinger representation, by 
using a generating function or a time-dependent raising 
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operator, and in the Heisenberg picture. In the Ap
pendix it is shown how starting from the Feynman 
propagator (47) and making use of formula (10) one can 
deduce the wavefundions obtained by Camiz et al. 

APPENDIX 

It will be shown how the wavefunctions of the time-de
pendent quantal harmonic oscillator with a singular per
turbation described by the path integral (9) can be 
obtained. 

Formula (10) is valid for Yt=Yo=O, so that 

K( t. 0)_K(xtz 0 1 t;xo,0,0) 
Xu ,xo, - K (0 t·O 0) 

o " , 

Using the formula (20) in (47), one finds 

K(r Ii'r Ii)- 1 (r t sinlitrosinlio)1/
2 

p t, M a - .J21ri1j(t) i1j(t) 

(
iW) 2 .1](t) 2)1 (rtro . II • 11 \ 

xexp 21j(t)rO +z 21j (t)rt a i1j(t) smutSm"a) 

X exp(~~(f) COSet' cos eo) • 

Again introducing the variables xoxo,Yo and Yo by 
(11) and setting Yo=Yt=O, one obtains 

-(x 0) ()jXt XO\1/2 /'W)2 .~(t)2\ 
K ot;xo, =cp t\i1j(t)J exp\z 21j(t)xO +z 1j(t)xtJ 

1/~\ 
x a \i1j(tfJ ' 

where cp(t) is a function of t alone. 

Let us define next two functions p(t) and yet) by 

1j(t) = P (t) siny(t), 

W)= pet) cosy(t). 

It is clear that y(t)=p(t)exp[iy(t)] is a solution of the 
differential equation 

y + w2 (t)y = 0, 

which satisfies 

Y(O)= 1 and y(0)= 1 

provided that 

p(O)=l, y(O)=O, ;'(0)=1 

and 

p2(t)t(t) = 1. 

So K(xo t;xo, 0) is transformed into 

K(xt, t;xo, 0)= cp(t)(P(~) i S~~(t)11/2 exp[dcoty(t)x: + ix~] 
x IPU)siny(t)+p(t)y(t)cOSy(t) 1 (3 t Xo \ 

2 pet) siny(t) a\p(t)i siny(t)J' 

From the well-known Hille-Hardy formula (Erdetyi 
1953), one can deduce 
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~ n!2 [ 3)] )11 =LJ j exp -i(2n+a+2 t (r'r" a+ 2 
n=or(n+ a +2) 

X exp[ _ t(r" 2 + r'2)]L~+1/2(r"2)L~+1/2(r'2). 

Therefore, use of this formula leads to 

K(xo t;xo, 0) = cp(t)· exp(~ x~ t(~n 
~ n l 2 

xI; r( . 1) exp[ - i(2n +a + 1 )y(t)] 
'=0 n+.a+ 

which can still be cast into the form 

-( ) ()~ t-2r(n+l) )1/2 (2a+1)/2 
K xot;xo,O = CPo t n=O ~r(n+a + 1) x t 

x exp[2iy(t)(a + n + 1)] 

x exp[xJ (i :g/ -Yet)) JL~(x~Y(t» 
x ( 2r(n+ 1) )1/2x (2a+l)/2 

r(n+a + 1) 0 

xexp[-2iY(O)(a+n+l)]exp[~ (-it(~~ -YeO~] 
x L~(xgY(O». 

Here CPo(t) is an unimportant time-dependent factor 
which can be determined by the normalizing condition. 
Apparently, the wave function appropriate for our 
propagator is 

(: 
2r{n+ 1) ) 1/2 

.p- (X t) = X (2a+1) /2 exp[2iy(t) fa + n + 1)] n' r(n+a+l) t ~ 

X exp tJ ~ :(~/ -y(t~ ] L:(x~y(t» 
which is exactly the same result as obtained in Ref. 3. 
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An expansion theorem for the twisted product with 
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A mathematically rigorous asymptotic formula in powers of the index (' is obtained for the twisted product 
associated with the Weyl form of eCR for n degrees of freedom. When c is identified with the Planck 
constant. the asymptotic formula is used to give a precise meaning to the usual notion of "classical limit." 

I. INTRODUCTION 

The "twisted convolution" and the "twisted product" 
associated with the Weyl form of canonical commutation 
relations for n degrees of freedom are used by many 
authors1

,2,3 in constructing C*-algebras of quantum ob
servables. In Ref. 3, special attention is given to the 
noncom mutative Banach *-algebra L 2 (R 2n, e), consisting 
of the square-integrable functions on the phase space 
R 2n

, with multiplication given by the twisted product of 
index c> O. The main concern in Ref. 3 is the relation
ship between the phase space formulation of quantum 
mechanics and the theory of pseudodifferential operators. 
While our expansion theorem is suggested by the heu
ristic formula in Ref. 3, our interests lie in the asymp
totic behavior of the twisted product as the index e + O. 
After some preliminaries and definitions in Sec. II, the 
main results are stated in Sec. III, whose proofs are 
found in Sec. V. Section IV contains a number of ap
plications. When the index e is identified with the Planck 
constant, results in this section can be viewed as a 
mathematically controlled version of the theory of quan
tum corrections to the particle-distribution functions. 4 

II. PRELIMINARIES 

Let Ct. = (Ct.!> Ct. 2 , ••• , Ct.
k

) be a k-tuple index of non
negative integers. We shall write 

Ct.! =Ct. 1 !Ct. 2 ! • .. Ct.
k
!, 

k 

1Ct.1 =~Ct.J" 
;=1 

When k=2n, 

0"'=(-0 1"'1 -- -- ••• --( 0 )"'1 ( 0 )"'2 (0 )"'n 
oXn+l oXn+2 oX2n 

X C _0 )"'.+1 ( __ 0 )"'n+2. o. ( _ _ 0 )"'2n. 
\ oXI \ oX2 \' ox. 

Let S(Rk) denote the space of complex functions on Rk, 
rapidly decreasing at "". For rp E S(Rk), define its 
Fourier transform Frp by 

(Frp)(~) = (21T)-"/2 J exp(i~' x)rp(x) dx 

where· is the inner product in Rk. The inverse Fourier 
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transform p-l>lf of >If r:: S(Rk) is given by 

(p-l>lf) (x) = (21T)-k/2[ exp(-ix· ~)>lf(~)d~. 

Dnles,s otherwise indicated, our integrals are over Rk 
with d~ denoting the Lebesque measure. 

Definition 2.1: Let IP,>lfFS(R2n). The twisted convolu
tion and the twisted product of rp and >If (of index c, c 
real) are given respectively by, 

(11.1 ) 

and 

(II. 2) 

where TI=(I,m), u=(s,t) are elements of R2
n and T]XU 

=l·t-m·s. 

Remark 2.1: 

1. One can verify readily that rp*e>lf is again rapidly 
decreasing at 00, so that (2) is well defined and IP 0 c>lf 
is in S (R2n) • 

2. If we set c=O in (11.1) and (n.2), the twisted con
volution becomes the usual convolution * and the 
twisted product is the pointwise product of IP and >If. 
For c * 0, IP* e>lf and IP 0 c>lf are not commutative in 
general. 

Let H be an infinite-dimensional separable Hilbert 
space with inner product (., .) and norm 11'11. (3(H) will 
denote the algebra of bounded linear operators on H, and 
{31 (H), (32 (H) are the subalgebras of (3(H) , of trace and 
Hilbert-Schmidt class, respectively. Also U(H) will 
denote the group of unitary operators in (3(H). 

Definition 2.2: Let c > 0 and 1T(c) be a map from R 2n to 
U(H). 1T(C) is said to be a Weyl system on H if the fol
lowing are satisfied: 

(i) (7T(c»)(O) = I, the identity operator on H, 

(ii) ~-(1T(C)(~)x,y) is continuous for each pair x,Y 
FH, 

(iii) for each pair ~, 77 r R2n
, 

(1T(c»(~)(1T(c)}(T]) = exp(- ic/2(T] x ~»(1T(c»(~ + T]). 

1T(C) is said to be irreducible if whenever M * 0 is a 
closed subspace of H, then (1T(c»(~)M eM for all ~ E R2

' 

implies M = H. (Whenever the context is clear, we will 
drop the c dependence and write 1T.) 
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If 7f is an irreducible Weyl system on Hand fE s(R2n), 
we denote 

B(j)[(x,y)1=J (7fWx,y)(Fj)Wdl; 

for each pair x,y E H. B(j) is a bounded sesquilinear 
functional on H since 1 (7f(I;)x,y) 1 ~ IIxll lIyll. By a theorem 
on the general form of a bounded sesquilinear functional, 
there exists a bounded linear operator W(j) in H, uni
quely determined by B(j) and 

(W(j)x ,y) =B(j)[(x ,y)1. 

Definition 2.3: The operator W(j) associated with f 
is called the Weyl operator and the map W: s(R2n) - f3(H) 
given by f- W(j) is called the Weyl mapping 
(correspondence) . 

Remarks 2.2: 

1. A well known example of an irreducible Weyl sys
tem is given by the Weyl canonical commutation re
lations in the "Schrodinger representation" (Ref. 5, 
p. 119). In fact, all irreducible Weyl systems are 
unitarily equivalent, a theorem due to J. von 
Neumann. 

2. The operator W(j) was suggested by H. Weyl6 as 
a recipe to obtain quantum observable from its classi
cal counterpart f. If one considers s(R2n) as a dense 
subspace of L2(R2n, c), all our definitions can be ex
tended to ones involving functions in L2(R2n, c). The 
Weyl mapping W has been shown to be a faithful *
representation of the B*-algebra L2(R2n, c) on the 
Hilbert space H. Furthermore, the range of W is 
~(H) and the Weyl mapping is isometric up to a fac
tor A(c) with respect to the Hilbert-Schmidt norm. 
For the above results, see Ref. 3, Proposition 1 and 
the references cited there. 

III. MAIN RESULTS 

Theorem 3.1: Let f, g be elements of S (R2n) and F(c, 1;) 
= (fo cg)(I;) is their twisted product. Then for c> 0 and a 
positive integer N, 

N 

F(c, 1;) =6 (b.(f,g])Wc" + 0 (eN) 
,,=0 

(ii) h is bounded, 

(iii) h is a polynomial in 1;. 

The proofs for these results will be given in Sec. V. 

IV. APPLICATIONS 

Definition 4.1: Let f E S(R2n ) and 1 be its complex con
jugate. Set (P[j])(c, 1;) = (fo cJ>W. p[j] is called the 
phase space distribution function determined by f. 

Remark 4.1: From the definition of p[j] and Remark 
2.2.2, we see that if 7f is an irreducible Weyl system 
and W is the corresponding Weyl mapping, then W(P[jJ) 
= W(j)W(j)*. The Weyl operator associated with p[j] is 
positive and of trace class. W(P(fJ) has properties ex
pected of a density operator for a quantum statistical 
system of n particles in equilibrium. 

Let g.E L2(R 2n , c) and g=g. For a given fE S(R2n), 
W(g)W(p(f]) is of trace class since f31 (H) is a two-sided 
ideal in f3(H). Consider s(R2n) as a dense subspace of 
L2(R2n) and let (f,t) =1; we denote 

( (p[f]» - tr(W(g)W(p(fJ» 
g - tr (W(P(fJ» 

where tr (. ) is the trace of any operator in f31 (H). 

Theorem 4.1: For c> 0 and b,,(f,J] given by Eq. 
(m.1), 

N 

(g(p(fJ» =6G"c" + 0 (eN) as dO 
"=0 

where 

G" = I (b,,[j,J]) (l;)gW d!;, 
k 

if one of the following conditions on g is satisfied: 

(i) g is absolutely integrable, 

(ii) g is bounded. 

Proof: From the almost isometric isomorphic prop
erties of the Weyl mapping (see 2 in Remark 2.2), we 
have 

as c + 0 uniformly in the parameter 1;, where tr(W(g)W(p[ fl), W(g» = W(g» = A(c)(p(f1,g) , 

(III.!) where (".) is the inner product in f32 (H). 

and the summation is over all distinct 2n-tuples 0' with 
10'1 =k. 

Corollary 3.1: Let h be a measurable function on R2n. 
Denote 

G(c)=I hWF(c,l;)dl; 

and 

B,,=j hW(b,,[j,gDWdl;, k:;,.O. 

Then 
N 

G(c)=6B"c"+0(eN) as dO 
"=0 

if one of the following conditions is satisfied: 

(i) h is absolutely integrable, 
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Similarly, 

tr(W(P(fJ)} =tr(W(j)W(l» = A (c)(f,t) . 

Thus, since (f,f) = 1, 

(g(p(fJ)) = (p[{] ,g) = J g(l;)p(f] (I;) dl; since g= g. 

Then 
N 

(g(P(f]»=6G"c" +0 (eN) as dO 
1<=0 

follows from (i) and (ii) of Corollary 3.1 by letting g= h. 

Letf,gbe elements of s(R2n) and w{focg) be the Weyl 
operator corresponding to fo cg. Then for each cp,,y in 
the representing Hilbert space H of the irreducible Weyl 
system 7f, 
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(w{fo cg)cp, IJI) = J (1TWcp, IJI)F{fo cg)(~) d~ 0 

Since F{f°cg)=(21T)-n(Ff*cFg) and 1(1T(~)cp,IJI)1 "" Ilcpll IIIJIII 

is bounded, we have 

N 

(W{focK)cp,IJI)=~(W(bk[j,gl)cp,IJI)c"+o(eN) as C+O 
,,=0 

by Corollary 3.1, (iiL 

The above discussion suggests the following definition: 

Definition 4.2 We say the Weyl operator w{fo cg) has 
an asymptotic power series in c to N terms whenever, 
for each cp,1JI in H, 

N 

(W{fo cg)cp, IJI) =~(W(bk[j,g])CP, 1JI)c" +0 (eN) as c+ 0, 
1<=0 

where b,,[j,g] is given by (I1Ll). For notation we shall 
write 

N 

w{fo cg) =k~ W(bk[j, g])c" + 0 (eN) as c" O. 

If [Wet), W(g)] = W(j)W(g) - W(g)W(j} = W{fo cg) 
- W(go cj} is the commutator of W(j}, W(g) and 

{j, gi = t (-.!.L l!L _ YL lK) 
;=1 oqJ OP j oP j oq; 

where ~ F R 2n and 

is the Poisson bracket of f and g, the following theorem 
can be interpreted as saying that the commutator of 
quantum observables goes over to the Poisson bracket 
{f,g} of the classical observables f,g in the "classical 
limt" as c to. Here c plays the role of the Planck 
constant. 

Theorem 4.2: For c>O, 

where 

and b,,[j,gJ, bk[g,j] are coefficients of expansion for 
fo cg and go cf given by Theorem 3.1. 

Proof: By Theorem 3.1, 

+0 (eN) as c+ 0 uniformly in ~. 

as c" 0 uniformly in ~. 

Then the discussion leading to Definition 4.2 can be used 
to complete the proof. 

It is to be noted that d1 ={j,g}. 
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V. PROOFS FOR THEOREM 3.1 AND ITS 
COROLLARIES 

To prove Theorem 3.1, we begin with a lemma: 

Let u=(s,t) and 1)=(l,m) with s,t,l, min Rn so that 
u,1) are elements of R2n. Denote u' = (t, - s), 1)' = (m, 
-Z), and uXT/=s·m-t·l. 

Lemma 5.1: 

(V.I) 

where the summation is over all distinct 2n-tuple Ct with 
I Ct I =k. 

Proof: Since 1) x u=-U x 1) and uX(1)-u)=UX1), it fol
lows then 

(UX1)k = lux (1) - u}]k = [So (m - t) + t· (s - Z)]" 

k' =~-. u"'(1)' - u')'" 
(\I! 

by multinomial expansion. 

Lemma 5.2: For each ~ER2", F(c,~)=(jocg)(~) is 
infinitely differentiable for all real numbers c. 

Proof: Let k be a positive integer and ~ F R2n , 

0" 
F<k)(c,~) = oc" F(c, 0 

= (21T)-2n J exp(- i~ .7) J (- i/2)k(1) X U)k 

x exp(- ic/2(1) x u»(Fj} (u) (Fg)(1) - u) du d1). 

(V.2) 

The above differentiation under the integral sign is 
legitimate since the integral given by (V. 2) is uniformly 
convergent in c. This can be seen by using (V. 1) and 
rewriting 

k' 
[- (1) xu}}" =~ Ct·! u"'(1)' - u')"', 

then substituting into (V. 2). The integral becomes 

(21T)-2n(i/2)k ~ :: f exp(- i~' 1)J exp(- ic/2(1) x u»u'" (Ff) 

x (u) (1)' - u')'" Fg(1) - u) du d1). (V. 3) 

Thus, 

uniformly in c since 

h",(7) = I lu"'(Fj)(u) II (7)' - u' )"'(Fg)(7) - u) I du 

is the convolution of absolutely integrable functions 
lu"'Fjl and l(u')"'Fgl. 

Lemmt7 5 0 3 

F(k)(O,~)/k!=(bkU9J;])W, k?Oo 

Proof: From (V. 3), 

F(k)(O,O/k! 

= (21Trn(i/2)" ~~ rl(u'" Ff*(u' )"'Fg) 
(]I. 
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In the above we have made use of the fact that 

p-l (u" Ff) = D"'f 

and 

F-l(u' "Fg)=a "g, 

(V. 5) 

so that from the properties of convolution 

p-l[u"Ff*(u')"Fg] = p-l[FD"f*Fa "'g] = (21TY'(D"l)(a "'g). 

Comparing (v. 5) with (ill. 1), 

(bk[j,g])(~)=F(k)(O,~)/kl fork>O. 

When k= 0, F(O)(O, ~)= F(O, ~)= bo[J,g]. 

Proof of Theorem 3.1 

By Lemma 5.2 and considering ~ as a parameter, 
F(c, 0 is infinitely differentiable for all real numbers 
c. Using Taylor's theorem with a remainder and ex
panding F(c, 0 to N terms about ° in powers of c> 0, 
we have 

N 

F(c,~>=~F(k)(O,O/k! +RN(C,~,T(O), 
ho 

where 

(V.6) 

and T(~) is a number depending on ~ such that 0< TW 
<c. From (V.4), 

1 FeN+l) (~, T(m/(N + 1)! 1 ~ B < 00 

uniformly in T(~) and ~, where 

B= (21T)"2n(1/2)N+lL; + !h,,(T/)dT/. 
a. 

Thus, 

coN IRN(C,~,T(O)I ~cB-O as c +0, 

uniformly in ~. 

(V. 7) 

The next two lemmas are needed to prove Corollary 
3.1. 

Lemma 5.4: Let a,pbe multi-indices andf,gES(R2n). 
Then for 0< c ~ 1 and 0< T(O < c, 

(V. 8) 

where L(a, f3) is a constant independent of T(O and ~. 

Proof: To show (V. 8) is true for each T(~) is readily 
done. Since [jl(u"FfH(~)(U' )"Fg) is rapidly decreasing, 
so is its inverse Fourier transform. Then let 

B(T(O)= I 1.l)Il(u" Ff*T(~ )(u' ) "Fg)(T/) 1 dT/ < 00 

and we have (v. 8). Tof ruthe r show that (V. 8) is true 
for L(a, (3) independent of T(~), we need to show 

1.l)Il~~"Ff*T(O(u' )"Fg)(T/) 1 ~ h".s(T/), 

where h".s is absolutely integrable and independent of 
T(~). This is done by the following reasoning: 

USing Definition 2.1 and differentiating formally under 
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the integral Sign, one can show that 

1 D8(U"Ff*T(~)(u' )"Fg)(T/) 1 

is dominated by a finite sum of convolution integrals of 
the form 

(1/2)'Yl' (I uYlu" Ffl * 1 DY2(U,)a Fg 1 )(T/), 

where 1'1> 1'2 are muti-indices with I I'll ~ I p I and I 1'21 
~ 1,81. In the above, we made use of the fact that ° 
< T(~) < C ~ 1. If we denote the sum by ha.a('TJ) which is 
absolutely integrable and independent of T(O, we have 

lP-l([jl(u"Ff*T(mU' )"Fg»W 1 ~ (21T)-n 

xl Ih".a(7j) 1 dT/=L(a,f3)<oa 

independent of T(~) and ~. 

Lemma 5.5: Let p be a multi-index. Then for 0< c 
~ 1, 

I'~a( (f 0 cg)(~) - k~ (bk[J,g])(Ock) I ~ cH+ l L(P) 

where L(P) is a constant independent of T(O and ~. 

Proof: For each ° < T(~) < C ~ 1 and using (V. 6) and 
(V.7), we have 

I ~8 ~fOCg)(~) - ~ (bk[f,g])Wc11 

= l~aRN(C,~,T(O)1 

= CN+l (21T)"" (1/2)N+ll ~ -i- ~a p-l(U" FfH(~)(U')" Fg)m I a. 

uniformly in ~ and T(O by Lemma 5.4, where 

L(,8)= (21T)'"7I(1/2)N+lL; -i-L(a, p). 
a. 

Proof of CorOllary 3.1 

In all cases, G(c) and Bk exist for each c and k>- ° 
sincefocg and bk[f,g] are S{RlrI) functions. 

To prove (0, we note that 

coN IG(e) -tBkckl 
k.o 

~C-N I Ih(OII (focg)(O -tabk(OCk I d~ 
~ cB I Ih(OI d~ 

(V.9) 

by (v.6) and (v. 7). Hence 

limc-N I G(e) - t BkCk 
1 =0 

c.o koO 

since h is absolutely integrable by assumption. 

To prove (ii), let M> ° be a bound for h. From (V. 9), 
we have 
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coN I G(C) - E BkCk I ~ c-NM I ~2n (U ocg}(O - E bk (~)ck) d~ I. 
Let K be the closed unit ball in R?J'I centered at the 

origin and R 2n - K is the complimentary set of K, Then 
for c> 0, 

1271 (Uocg)(O -E bk(~)ck) d~ 
= f ((joCg)(~)-Ebk(~)ck) d~ 

K 

+ f2n ~; ~a (UoCg)(~)-f2bk(OCk)d~ 
R -K 

for any multi-index /3. 

By (V. 6) and (V. 7), the absolute value of the first 
integral is bounded by cN+1Bm(K) < 00 uniformly in T(~) 
and ~ since m (K) is the Lebesque measure of a compact 
set, By Lemma 5,5, the absolute value of the second 
integral is bounded uniformly in TW by (for c ~ 1) 

~+lL(/3) f Ivld~<oo 
R?J'I-K 

if /3 is chosen so that 1/ ~a is integrable on R2n - K. 
Combining these results, we have 

c"NMI f (UoCg)(O-~obk(~)ck)d~1 
R2n 

~cM (Bm 1ft) + L(/3) L2n_
K 

I ~~ I d~) - 0 as c+ O. 

To prove (iii), we note that 

coN 1 G(c) -:t Bkck 
I 

k=Q 
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=c-NI i h(~)(Uocg)(~)-Ebk(~)ck)d~ 
K 

~C(B i Ih(~)1 d~+L(e) 12n-K 1 h~~) I d~), 
as in the previous proof, The bound is finite and uniform 
in ~ and T(~) since h is continuous and f( is compact so 
that 

lih(Oi d~ < 00. 

K 

If f3 is chosen so that h (~)j ~a is integrable on R2n - K, 
then 

( 1~ld~<oo. JR 2n_K ~ 
This can be done since h is a polynomial in ~ by 
assumption, 
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A model of quantum field theory treated in the Fock-Cook 
formalism. II 
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The Fock-Cook formalism for quantum field theory is further generalized, and the methods 
developed are used to remove all cutoffs from a variety of Yukawa-type interactions in one and two 
space dimensions. We conclude that the usual operator-valued distribution approach to quantum field 
theory is not always necessary. 

I. INTRODUCTION 

In a previous paper, 1 henceforth referred to as Paper 
I, we generalized the Cook formalism for Fock space2 

by giving a Hilbert space discussion of second-quantized 
forms of n-body operators. (In this formalism the fields 
are bona fide operators in Fock space creating or 
annihilating "particles" with wavefunctions in the proper 
one-particle Hilbert space. In this way the difficulties 
inherent with multiplying operator-valued distributions3 

are circumvented. ) We showed that many of the mathe
matical properties of a second-quantized n-body opera
tor (self-adjointness, etc.) are inherited from the cor
responding first-quantized operator. 

In a subsequent paper, 4 henceforth referred to as 
Paper n, we developed additional results for the Fock
Cook formalism (therein denoted "lemmas") and com
menced a discussion of a generalization of the scalar 
field model5 (denoted "assertions") which includes the 
Nelson model6 and other similar persistent models 7 as 
well. Thus the singularities in the model are of the 
usual types, but we are attempting to analyze them in a 
nonstandard but rigorous formalism. {For example, in 
the case where spins and charges are neglected, the 
model reduces to precisely the scalar field model in 
which the potential is written5 formally, in the usual 
formalism, Vo= AJ dpdkw(k)-1/2[a(k) +a+(- k)]lV(p +k) 
x l/!(p). } In the present work, we continue generalizing 
the Fock-Cook formalism, illustrating the results with 
the model. The deSignations "lemma" and "assertion" 
will again be used to distinguish general results from 
properties of the particular model. 

In Paper II, the potential for the model is written as a 
sum of products of second-quantized forms of one-parti
cle operators with fields whose wavefunctions are 
chosen from an arbitrary basis for the Single-particle 
Hilbert space. In order to establish the self-adjointness 
of the Hamiltonian, these sums over the basis were re
stricted (the so-called "mode cutoffs"), and momentum
space cutoffs were introduced. 

In Sec. n of this paper we review some of the results 
of Papers I and II, and present several new lemmas. In 
Sec. III we discuss the removal of the mode cutoffs, 
treating the removal of the remaining cutoffs in Sec. IV. 

II. NOTATION AND OTHER PRELIMINARIES 

The model introduced in Paper II treats two types of 
particle, designated here as "a particles" and" If; 
particles" : 
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The a particles are taken to be bosons of mass J..I. > 0 
with na spin/charge states. We let P 0= (Pi' ... ,P s) E lRs, 
p20=pr+"'+p~, W(P)0=(p2+J..I.2)1/2, s henceforth denoting 
the dimension of configuration space. The single parti
cle quantum-mechanical Hilbert space for the a parti
cles, H~1>, is taken to be the direct sum of na copies of 
L~(lRS), the space of functions square-integrable with 
respect to the measure w(p)"l dSp. The variables for 
functions in L~(lRS) are interpreted as momentum. The 
hat ~ will denote Fourier transform and the wedge v in
verse Fourier transform. The transformed variables 
correspond to position in configuration s.£ace. Check./ 
denotes second Fourier transform [thus l(x) 0= f(- x)]. 
Elements of H~1> will be distinguished from elements of 
L~(lRS) by a vector bar - [thusJ={j",}, f",EL~(lRS)]. 
Henceforth the subscript Ct will be understood to run 
over the na spin/charge labels. We define natural in
jections from L~(lRS) to H~1> by 

2 S _ - (1) - _ 
fELaCIR) f.aEHa where (f.",)",-o""""f. 

The n-particle spaces and the Fock space for the a par
ticles are denoted H~nl and] a respectively. The space 
of finitely many a particles, denoted ]~, is defined as 
{¢ E] such that ¢ has nonvanishing components in at 
most a finite number of the H~nl}. Scalar product in any 
of these spaces is denoted (. , . )a with no chance of con
fusion. The creation and annihilation operators for an 
a particle corresponding to the wavefunction J are 
denoted at(J) and a(J) respectively, and obey the 
canonical equal-time commutation relations [a(J),atCi)r 
= (f,g).n a, etc., where na is the identity operator on 
]., and - denotes the smallest closed extension. na 
denotes the second-quantizer defined in Paper I. In 
particular, if n is the identity operator in H d1

) and Na 
is the number operator for the a particles, then Na 
= na (n). The kinetic energy operator is multiplication by 
w(P) in L~(lRS) and is denoted ha there. In H~l) it is de
noted by Hci! l and satisfies (Hci! If) '" = haf "" In] a we have 
HOa '" na(H~~l), which from Paper I is easily seen to be 
self-adjoint and positive. 

The Ij! particles are of mass 111 > 0 with n¢ spin/charge 
states (henceforth indexed by the subscript (3). The sin
gle particle quantum mechanical Hilbert space for the If; 
particles, HJ1l, is taken to be the direct sum of n", 

copies of L 2 (lRS) (Lebesgue measure). The overarrow 
will here also be used to distinguish vectors in HJ1> 
from those in L2 (lRS

) , and we define f~ as in the pre
vious case. HJnl and]", denote the n-particle space and 
Fock space for the If; particles, and scalar product in 
either of these, or in L 2(lRs

), is denoted (. , '). We 
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shall not employ the 1/1 particle fields singly here (see 
Papers I and II) since only the second-quantized forms, 
n~(A; r) (see Paper I) for first-quantized r-particle 
operators A appear in the model. (Thus the particular 
statistics chosen for the 1/1 particles is immaterial; 
some authors choose boson statistics, 1 others Fermi 
statistics,5 but parastatistics will do as well. ) The num
ber operator N~ is given by n~(n), etc. We shall treat 
three cases for the kinetic energy: €(p) = m (recoilless), 
€(p) = m + p2/2m (Galilean recoil), and €(p) = (p2 + m2)1/2 
(relativistic recoil). The kinetic energy operators are 
multiplication by E(p) in L 2 (JRS) andH~I) and are denoted 
h~ and H~!) respectively. Ho.;:n.(H~!». We remark that 
the relativistic recoil choice does not make the model 
relativistic since the measure onHi1l is not relativistic, 
there are no antiparticles, and even H!1) has the wrong 
measure if the a particles are not of spin zero (see 
Paper II). 

The Hilbert space accommodating the model is taken 
tobeJ.®J~. Thanks to the ample a, 1/1, 0', and {:lsub
scripts, the ® notation is superfluous and will be 
dropped. For example the positive, self-adjoint free 
Hamiltonian, Ho, is written Ho = [Ho. + Ho.r rather than 
Ho = [Ho. ® n. + n. ® Ho.r. 

Having established the definitions of the spaces in 
which we work, we next introduce some of the operators 
which appear in the model. 

For pEL "'(JRS), define the bounded linear operator 
J p on L~(mS) by (Jpf)(P) =p(P)f(P), fE L~(mS). The 
definition of Jp is extended to H~1) by (Jpj)", = Jpf", for 
j ={f",}EH2). The regularized (smeared) fields are 
accordingly defined by ap(j);: a (Jpj) , a~(l);: at (Jpj). 

We emphasize that J p is multiplication in momentum 
space. For configuration space we let jE L "'(mS) a~ 
define the bounded linear operator O(f) by o (f)g=jg, 
gEL2(JRS) [or L!(JRS)]. Then o (f)O (h) =O(h)O(f), 
Ii E L "'(mS). For this definition it is not necessary that 
j be the Fourier transform of any function, in which 
case the caret is purely notational; however, if f, h 
EL 1(rnS)nL 2(ms ), thenO(f)g=f*g, where * denotes 
(21TtsI2 times the usual convolution, and O(g)O(h) 
=O(g*h). Now let C be an n"xn. complex matrix and 
define the bounded operator M(f, C) on HJ1l by 

n. 
(M(f, C)";)s= 6 Css,O(f)g6" 

6'=1 

where g = {gJEHJ1l. 

We remark that J p and 0 (f) could have been defined 
for any p,} that are Lebesgue measurable with only the 
loss of the bounded operator property. The unbounded 
operators of primary interest here are the momentum 
and kinetic energy operators and are given special 
notations. 

Lemma 1: Letj,gEL "'(JR'), and let C,C1 be n"Xn. 
complex matrices with IIClI the matrix bound on C. Then 

(0 II M(f, C) II "" II j II '" II C II ; 
(ii) M(f, C)t = M(J*, Ct ); 

(iii) M(f, C)M(g, CI ) =M(f*g, CC I ); 

(iv) for [c,cd=o, [M(f,C),M(g,CI)]=O. 
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The proofs follow from the definitions and j* = ~. 
Since the M(f, C) are bounded operators, applying 

Theorem 2 of Paper I, we immediately obtain 

Lemma 2: Letj,gE L "'(JRS) and let C, CI be n.Xn" 
complex matrices. Then 

(i) n.(M(f, C»t = n.(Mc}*, Ct»; 
(ii) [n~(M(f, C»n.(M(g, C l»r 

= [n,,(M(f, C)® M(g, Ct);2) + n,(M(f*g, CCt»r; 

(iii) for [C,Cd=o, [n.(M(f,C»,n.(M(g,c1)>r=0. 

The momentum operators are defined in the canonical 
fashion: Let PI denote the momentum operator for the 
ith spatial dimension. Then D(Pj ) ={jE L 2 (mS) I J k~ If(k) 12 

XdSk < oo}, and for fE D(Pj ), (P;!)(k) ;:k;!(k). Further
more, for 1 ={jJEHJ1J, faE D(P,), define (PiJ)a=P;!a. 

The momentum operators and the M operators are 
related by 

./""-..A '" 
Lemma 3: Let g, h be such that Pjg, P~h E L (mS

) for 
n = 0, 1, 2, and let C, C1 be n~xn. complex matrices. 
Then 

(i) [p;,O(g)r=O(p;g); 

(ii) [PI>M(g, C)r=M(p;g, C); 

(iii) [~, M(g, C)r=M(p~g, C) +2M(Pj g, C)P;; 

(iv) If [C, cd = 0, [M(h, C j ), [M(g, C), ~W 

= 2M(P;g, C)M(P;h, C1) = 2M«Pi g) * P;h, CC I ); 

(v) Multiple commutators of ~ with more than two 
M operators vanish. 

Proof: (i) holds since Fourier transform preserves 
the derivation property of the derivative. The rest 
follow from application to I = {j J E H~1l, such that fa 
ED(~). 

In the Galilean recoil case we have e(k) =m +k2/2m; 
i. e., H~!) = mn + L;i=1 PV2m. Thus we have 

Corollary 1: If H~!) denotes the Galilean kinetic en
ergy operator and g, h, C, C1 are as before, then 

(i) [M(g, C), H~!)r 

=- (2mr1M(t ~g, C\ - m-1i; M(P;g, C)P;; 
.=1 'J ;=1 

(ii) [n.(M(g,C)}, Ho.t 

o{_ (2m)"'n+(~, Pjg, c)) -m-' 
x ~ n.(M(p;g, c)p/) r 

(iii) [M(g, C), [M(h, C t ), HJnr 
S 

=m-16 M([P;g]* P/h, eC t ); 
i=t 

(iv) [n~(M(g, e)), [n.(M(h, (t)), Ho.J]~ 

=m-tn.(E M([P;g] * P/h, ect»). 
Finally we consider the potential for the model. We 
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introduce and discuss a family of operators which in
cludes the potential as a special case, the more general 
operators being useful for defining the dressing 
transformations. 

Assertion 1: Let {gJ:=o be an orthonormal basis for 
L 2 (IRS) such that {g J~ 5 (IRS). Let pEL"" (IRS) and let 
a E C""(IRS) be polynomially bounded in absolute value. 
Let L be a fixed extended real number. Let {KJ be a 
sequence of real numbers such that the sums 

"" 
F(P,q)==6 IKnlllh~~gnllallh:agnlll 

n=O 

converge for all positive integers p, q such that P + q < L. 
Let 

na N 

V~a,K== 6 6 Knap(g;;::)n~(M(ag .. Ca )) 
"'=1 n=O 

na N 

+ 6 6 Kna: Cg:;;;:) n! (M(agn, C a». 
a:r1 n=O 

Then the sequence {V~ a, Kt~=O converges strongly on 
each D(N~ 12) ® H~·), lJ = 0, 1, .. " to a self-adjoint opera
tor V~~,K; i. e., {VZa,K} converges strongly on D(N~/2) 
® J. to the self-adjoint operator Vp,a,K==L::=OEEl V~~,K' 
Furthermore, Ho + V p,a,K is self-adjoint and D([Ho 
+ V",a, KY') =D(HS) for all integers P < L. Also, defining 
the remainders R(P) by R(P) = [Ho + V p,a,KY' - HS, there 
exist constants e, 6, )I;, i = 1, 2, 3,4 (depending on 
lJ,p,p,a,K, which labels will be omitted below) such 
that Ho + V + 6n is positive in Ja® H~·), and for aU X in 
D(HS) nJ a® H~·>' 

IIRx II '" )1111 (Ho + V + 6nY'X II, 
II (R + 6n>x II '" )1211 (Ho + V + 6n)pX II, 
IIH~x II '" II (Ho + en)PX II '" )1311 (Ho + V + 6n)pX II, 

and 

II (Ho + V + 6n)PX II '" )1411 (Ho + en)PX /I. 
Furthermore, J ~® H~·) is an analytic domain for 
V~~,K' 

Proof: The case a == 1 is the potential for the model and 
a proof for that case accompanies Assertion II and 
Corollary 3 of Paper II. 8 We remark here that if we in
clude the antiparticles for the 1/1 fields and disregard the 
terms in : 1/It 1/1: which doubly create or doubly annihilate 
to obtain a so-called "persistent interaction", 7 we still 
have a model of the present form if we introduce an
other dimension to the charge label, namely one to dis
tinguish particles from antiparticles. In both of the as
sertions the restriction {gn}~ S(1RS

) is made to insure in 
a simple manner that the arguments of the M and 0 
operators remain in S(.lRS)~L ""(.IRS), as well as possess
ing other nice properties. 

To treat the case (J -11, the proof for the (J == 1 case is 
altered as follows: Lines 8-14 of the proof of Assertion 
II of Paper II are changed to read: 

"Since P;(g*!) = (Pig) *!+g* Pd, then g,JE D(pt) 

implies g *! E D(pt). Furthermore, 
S 

D(h~) = 21 D(P'fP):2 S(IRS
), 

where 
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lOin the recoilless case 
e = 1 in the relativistic recoil case 

2 in the Galilean recoil case. 

Since gnE S(IRS
) and (J E C""(1RS) is polynomially bounded, 

then (Jg n E 5 (1RS
) ~ C""(h*). Now let I = {j J E D(HS~). Then 

[M((Jg .. C a)l1B = 6 C aBB,(ag n) *! B', 
B' 

so that M(ag .. C a)D(HS) ~ D(HS). " 

From here the proof is the same with the exception of 
the substitutiongn-agn in the appropriate places, and 
with the printing correction (m/ e)q-p - (m/ e)p-<l in two 
places. 

The physical derivation of the interaction is contained 
in Paper II, from which we recall that C aBB' is the 
coupling constant for the process of annihilating a 1/1 

particle in spin/charge state 13', creating one in spin/ 
charge state 13, and annihilating an a particle in spin/ 
charge state a. Since these C a are real matrices C T 

t t ' a 
= C a' Let a represent the a particle spin/charge state 
of opposite spin/charge as a. Then (Cat)B'B is the 
coupling constant for annihilating a 1/1 particle in state 
13, creating one in state 13', and creating an a particle 
in state at. Since the changes in spin/charge in the 
processes described by Cat B'B and C aBB" differ only in 
sign, it seems physically reasonable to require them to 
be equal; i. e., Cat = C! = C~. In the sequel we shall use 
the weaker condition that the adjoint operation rear
ranges the set of COl'S. 

Under the following conditions the Col'S commute: 

(a) the 1/1 particles are scalar particles (CaE lR), 

(b) the a particles are scalar particles (one value 
for a), 

(c) a particle spin/charge independence (all COl'S are 
equal). 

To simplify the otherwise cumbersome calculations in 
the model, we shall assume that the Col'S commute. We 
shall say that the set of matrices {C a} satisfies "condi
tion C" if the adjoint rearranges the set, and all COl'S 
commute. 

Assertion 2: Let {CJ satisfy condition C, let p,p',p" 
E L ""(IRS), and let a, a', a" be C""(1RS) polynomially bound
ed functions. Let {g J be an orthonormal basis for 
L 2 (1RS) such that {gJ~ S(IRS

). Let K = {KJ, K' = {Kj, 
K" ={K;} be sequences of real numbers such that the 
corresponding F(O, 0) of Assertion 1 converge. Then 

= closure of ~ E K,K:"{pg .. p'grf)a 

J*J* 
x n~(M(a'grf' C~»n~(M(ag", Ca» 

-66 K,K~,{P'gn"pgn)an~(M(a'grf' Ca» 
a n, rf 

(b) if in particular a = a', then 
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= closure of 

;0 ;0, (- K'!(:"(p'g"., pgn)a +Kn,K~(Pg"., p'gn)a] 
" ", n ,,* J* t ' 
x[n,,(M(u gm C,,)® M(ag"., C,,);2) 

+ n,,(M«(ugn(* * (ag".), C~C,,»]; 

(c) ifu=a', K=K', andpp'*=p*p', then 

(d) if (agS'* = 8nugm (a'gS'* = 8nu'gm where 
8n=±1, and if (p*p')./=p'*p, then 
[Vp, cr, K, Vp', a'. K'] .... = 0; 

(e) [V p,a, K, [Vp',a', K', Vp",a", K"Jr = O. 

Proof: Since J~® H~v>, lJ = 0,1,2,···, are dense in
variant analytic domains for the V's, it suffices to 
establish the commutation relations here. [The com
mutation relations here imply corresponding commuta
tion relations for the exponentiated operators exp(iVt), 
for t real, on this domain, which are then uniquely ex
tended to the entire space. The general commutation 
relations are then those of the generators of these ex
ponentiated forms.] Since, onJ~®H~v>, the series de
fining the V's converge absolutely, we may evaluate 
the commutators term by term. From Condition C and 
Lemma 2(iii), the nil factors in the summands commute 
giving result (a). Interchanging dummy indices n, n' 
gives (b) and (c), and the fact that the adjoint rearranges 
the C,,'s gives (d), terms cancelling in pairs. (e) fol
lows from (a) and another application of Lemma 2(iii). 

III. REMOVAL OF THE MODE CUTOFF 

Up to the present it has not been necessary to specify 
any particular basis for L 2(:~S), although it was con
venient to require {gn}c;:.: 5(IR S

). Once a basis is chosen, 
however, the cutoff {KJ must be chosen to insure con
vergence of F(O, 0). The removal of the mode cutoff then 
corresponds to having all Kn's converge to 1 in some 
limit. We shall parametrize K =K(t) = {Kn(t)} so that, as 
the parameter approaches some limit, each of the Kn(t) 
converges to 1. As we shall see shortly, it is most con
venient if one can choose K(t) such that the sums 

00 

B(x,y, t)=;0 Kn(t)gn(x)gn(Y), x,Y E JRs , 
n=O 

may be explicitly evaluated and correspond to the 
canonical form used in the demonstration of the com
pleteness of the basis. This choice is not rigid, how
ever, since one could choose any cutoff K'(t) for which 
(a) F(O, 0) also converges and such that (b) Kn(t) - K~(t) 
converges (as a function of t) to zero nicely enough so 
that Vp,a,K_K' converges strongly to the zero operator. 
[For example, Kn(t) and K~(t) could differ for a finite 
number of n's and have this property. 1 (b) defines an 
equivalence relation, and (a) specifies the equivalence 
classes of cutoffs which make mathematical sense in 
the model. It is also necessary that (c) as the parameter 
t approaches its limit, Vp,a,K<tJ converges strongly to 
some (symmetric) operator V p, a. It is not known if (a), 
(b), (c) determine a unique class of cutoff. If the 

732 J. Math. Phys., Vol. 16, No.3, March 1975 

uniqueness fails, there is no unique limit operator for 
the potential. We will show that in the case of the 
harmonic oscillator basis, the class of the canonical 
choice of cutoff satisfies (a) (Assertion 3) and (c) 
(Assertion 4). 

We choose to work with the harmonic oscillator basis 
since it is familiar to a wide audience. We list the 
harmonic oscillator properties that we shall use9- 11 : 

(i) Let kE JR, nEiZ+={O, 1, 2,···}. Let Hn(k) denote 
the nth Hermite polynomial. The harmonic oscillator 
(h. o. ) basis {gn} for L 2(m) is given by 

gn(k) = (2 nn! lT1!
2r1 /2Hn(k) exp(- k 2/2). 

Furthermore {gn}<:: 5(JR). 

(ii) There is a constant, herein denoted d, such that 
IIgnll 00 <:= d, for all n E iZ+, (d "" 1. 09). 

(iii) kg n(k) = [(n + 1)/2]1 /2gn+l (k) + (n/2)1!2g n-l (k). 

(iv) ifn = (- i)ngn; g~ = gn;~n = (- l)ngn. 

(v) Mehler's formula: Let t E <1:, I t I < 1. Then 
00 

B(k,p, t) = ;0 t"gn(k)gn(P) 
n=O 

= [ (1 _ i?)]-l /2 {4kpt - (k
2 

+ p2)(1 + t
2») 

1T t- exp , 2(1-t2) 

and, for all f E L 2 (IR), 

f(k) = 1. i. m. 1 00 

f(p)B(k, p, t) dp 
t -1- _00 

00 

= 1. i. m. ;0 tngn(k) J 00 f(p)gn(P) dp. 
t -1- n=O _00 

(vi) In s dimensions, the h. o. basis is given by gn(k) 
= gnl (k) ... g n (k s); n = (nt. ••. ,ns), nj E iZ+; k = (kt. • , . , k s) 
EJRs

• Thengn E5(JRS
). Set Inl=nl+···+nsandkn 

= kl1 ••• k~s. 

(vii) From (iii) we deduce the existence of constants 
b(l), c(l), 1 = (l1, . .. , ls), l/ E!L,+ such that 

Ilk'gn(k)lloo<:=b(l) ~ (l+n j)'j, 
J=l 

Ilk'gn(k) 111 

= Ilk' A (1 +k;) .n (1 +ktrlgn(k) II 
J=l .=1 1 

<:= t~lk~j(l+k;)gn(k)tU (1+x
2
r 1dx]S 

S 

<:=e(l) n (1 +n j )l j +2 
j=l 

where e(l) = [b(l) + b(l + 2)][J (1 +x2r 1 dx y. 
(viii) Let 

B( p, k, t) =.B(Pt> kl' t1)B(P2, k2' t2) ... B(ps, ks' ts); 

then 

l.i.m. If(p)B(k,p,t)dsP=f(k), fEL 2(ms). 
allti-1-

Let 
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F(k, t) = I f(p)B(k,P, t) dSp 
00 

'" 6 tngn(k) I f(p)gn(P) dSp. 
... 0 

Then II Flb "" IIflb, which in turn implies that the 1. i. m. 
property holds for t1 '" t2 '" .•• '" ts with a single limit 
being taken. 

In view of properties (v) and (viii) we see that the 
canonical choice for the mode cutoff is Kn(t) '" tin I , 

tE(-1,1). 

As sertion 3: Let {g J denote the harmonic oscillator 
basis, let pEL OO(lRS) , let a E COO(lRS) be a function poly
nomially bounded in absolute value, and let Kn(t) = t'n'. 
Then V p. a, K( t) satisfies Assertion 1 with F( p, q) con
verging for all p, q E !L.+. 

Proof: Since h~P is a polynomial of order 2P, by prop
erty (vii) of the h. o. functions, IIh! Jpgnll a "" IIplloof.1. -1/2 
X II h! g nil which in turn is bounded by a sum of terms of 
the form c(l) rr~=1 (1 + ny j with Ill"" p; i. e., IIh! Jpgnll a 
is bounded by a multinomial in the components of n of 
order"" p. Similarly, for E(k) one of m, m + I k 12/2m, 
[m 2 + I k I 2]1/2 "" m + I k I, h: is polynomially bounded by 
a polynomial of order eq, where e = 0, 2, 1 in the re
spective recoil cases. Let a' be a polynomial bounding 
a and let r be the order of a'. Then IIh:agnllt is bounded 
by a multinomial in the components of n of order eq + 2s 
+ r. Thus F(P, q) "" Ln (multinomial in the components of 
n of order p + eq + 2s +r)t 'n' , which converges for all 
p, q whenever I t I < 1. 

For removal of the mode cutoff we have 

Assertion 4: Let pEL!(lRS), GEL 1 (lRS) or a=1, Kn(t) 
=t'n', -1<t<l, and{gn}denotetheh.o. basis. Then 
Vp,a,K(t) converges strongly onJ~®H~·l for each 1/E!L.+, 
to a self-adjoint operator V P<J which is reduced by N. and 
for which the vectors in J ~?; H ~Vl are analytic. 

Proof: Since 5 (lRS) is dense in L 1 (lRS) and invariant 
under Fourier transform, we may consider a sequence 
of functions {ar} such that arE 5 (lRS

) and aT converges to 
{j in L 1 (IRS) norm. For such aT> Assertions 1, 2 apply so 
that the sum defining Vp.ar,K(t) converges strongly on 
any xEH~~l®H~vl. Thus in computing IIVp,a,..K(tlXII we 
may interchange summation with the scalar products in
volved in taking the norm. Furthermore, since X has 
a fixed number, 1], of a particles, the "at at" and "aa" 
terms in II Vp,a,.. K(t)X 112 vanish. Using Lemma 2(i), (U), 
and 

[ap(g;;::) , a~Cg;t.:·) r = (Jpgn, a, Jpgn·, ~')an 

= °Ol,a·(pgmpgn·)an, 
and interchanging dummy indices (n, 0') - (n', 0") in one 
place, we obtain 

5 

1/ Vp,a,..K<tlX 112 = ~ I,(t), 

where 

733 

I 1(t) =66 f'n+n"(pgmpgn')" 
a n, 11' 

X (X, n.(M(aTgn * [argn'(*, C aC~»X)' 
I2(f)=06 f'n+n"(pgn,pgn')" 

a ",Tf 
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x (X, n.(M(argm C a)® M([ argn'r'*, C~);2>X), 
13(1) '" 2 0 6 t In+n' I (X, a~(g:;!".)ap(g ,/a) 

a.a! n,n' • I 

I 4(f) '" 0 6 f'n+n'l 
a, ex' n, n' 

X (X, a~(gn', !.)ap(g .. )a)n.(M(argn * [arg".r'*, CaC~,)>X) 
and I 5(t) is as in I 4(f) but with (n, 0') interchanged with 
(n', 0") in the at a factors only. 

Now X EHd~l® H~Vl may be written X =~",®6 X®a,®6' 
where ® 0' runs over the 1]-tuples (0'10 0'2,' •• , o'~), ® {3 
runs over the 1/-tuples ({3h' .. ,(3v), and X®a,® 6 is an ele
ment of the product space of 1] copies of L!(lRS

) and 1/ 
copies of L 2 (lRS). For the present calculations we 
Fourier-transform the 1/ L 2 (lRS) variables and write 
X®a,®6(k 1, •• • ,k~;y1o'" ,Yv)' Subsequent calculations 
are simplified by recalling from Paper I that [at(f)a(g)r 
= na(fg*), where (fg*)(h) = (g, h)a/ for all f,g, h EH~1 l. 
Writing the indicated integrals in the Ii (f), we see that 
the Fourier transformation of the <p variables leads to 
sums in n of the form 

o t 'n, gn (k),g.n (v) =B(k, v, - it). 
n 

Since IB(k, 11, ± it) I "" (27Tts /2, from the conditions on a" 
p, and X we may then bound each term, the aT occurring 
only in the form 1I~111' We first take the limit aT-a and 
then apply Lebesque's dominated convergence theorem 
to take the limit f - 1 -, obtaining 

I1(t) - (27T)-:llap II! (X, n.(~ c",C~)X), 
I 2(t)-'66 6 6 (Ca)Il'~(C~)6"/Y,' 

ex, '3) a' (9 a" i, j=1 J j I I 

®Il' ®Il" ;'j 

X~a·,?;Il'(kh'" ,k~;Yl"" ,yvl 
x Xrg;"'':®il'' (kb .•. ,k~; Y10 ••• ,Yv), 

f dSk dSk 
X (27T)-s __ 0_ ••• --~- dSv '" dSy 

w(ko) w(k~)' 1 v 

X exp(- ikoY j + ik;yz)(ap*)(ko)(a*p)(k;) 

xX~a . . ?;6(kb • •. '!?~;Yb •. . ,Yv) 

XXrg;a',®Il'(k b •.. ,!?; -ko,··· '!?~;Yb. o. ,Yv), 

~ v 

I 4(t)-L; 6 ~~(C"",c~i)6.m 
®'" ® "" .=1 ,=1 • • • 
®6 ®Il' 

(2 )-S f dS!?o dS!?~ S 
X 7T w(!?o) ... w(k~) d Y1 ..• dSyv 

X exp[ - iy j(ko - !?i) ](ap*)(!?o)(a*p)(k;) 
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XX®",,®/kt. ••• ,k~;yt. ..• ,Yv) 

x X®,,', ®B'(kt. ••• ,k, - ko, •.• ,k~; Yt. 0 •• ,Yv), 

and Is is similar to 14• 

We shall call the limit operator Vpa. For X EH~~)® H~V) 
the bound used in the dominated convergence proof 
reads II V paX1I2.; (A + B1)lIxI1 2, where A, B are constants 
depending on lIaplia '" Ilall~lIplia and on the C", are poly
nomials of order two in the number, II, of 1jJ particles in 
X, and are otherwise independent of X. A proof similar 
to that of Corollary 2 of Paper II then establishes that 
J~® H!V) is a dense analytic domain for VPG as a self
adjoint operator onJ.®H!V). Since N, reduces Vp,a,K(t) 
and hence Vpa, it follows that V pa is self-adjoint. This 
bound on V pa also indicates that it is inconsequential 
whether the aa - 0' limit is taken before or after the 
t -1- limit. 

Corollary: HOa + V pa' Ho + V pa are self-adjoint with 
domains D(Hoa ), D(Ho) respectively. 

Proof: From the estimates: For any f> 0, there 
exists b such that 

1)1/211 X II = II N~ 12X II '" /l-1/2 11 H~f2X II 
'" f II HOaX II + b II X II '" f II HoX II + b II X II 

and Kato's perturbation theorem, 12 the corollary follows 
from the bound on Vpa. 

We conclude the discussion of V pa with 

Assertion 5: Let the {CJ satisfy condition C, and let 
p,p',a,a' satisfy the conditions of Assertions 4 and 2(c) 
or 2(d). Then 

[Vpa, Vp',a',K(t)r=O, [Vpa , Vp'a'r=O, 

andforallXE.1a®H~V), liE 1.+, andSEffi, 

exp(isVp ~-K(t)h - exp(isV ~)x. 
,~ t-r --

Proof: Since our Hilbert space is separable and the 
V",a,K(t) form a commuting set of self-adjoint operators, 
there is a spectral family {EJ independent of p, 0', t such 
that 

Vp,a,K(t)=f {j(p,a,t,>t)dE)., 

where the {j are measurable functions. 13 Since the 
strong limits as t -1- exist on a (dense) core, 
lim t _1-{j(p,a, t, >t)={j(p,a, >t) exists a. e., and Vpa 
=J {j(p,a, >t)dE).. Thus Vpa commutes with Vp',a',K(t) and 
with VP'a' as well. Furthermore, for X in J~® H~V) 
c.;: D(Vp,a,KItl) n D(V pa), 

II (exp(is V Po a, KIt» - exp(is Vpa»X II 
= II fo S dTexp[iT(V p, a, KItl - V pa)]i(V Po a, Kit) - V pa)x II 
.; s II (V p, a, KI t) - V pa)x II , 

providing the convergence of the exponentials. 

IV. REMOVAL OF THE REMAINING CUTOFFS 

In order to exhibit the seU-adjointness of the full 
Hamiltonian with all cutoffs removed, we shall employ 
the method of "dressing operators,,14 which we under
stand as follows: If the Hamiltonian H is self-adjoint, a 
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dressing operator is a unitary operator U such that 
UHU-1 is manifestly self-adjoint. If the Hamiltonian re
quires an infinite mass renormalization, a dressing 
operator is a family of unitary operators {UK} depending 
on the cutoff for the Hamiltonian such that (a) UK con
verges strongly to a unitary operator as the cutoff is 
removed, (b) a diverging term IjEK is isolated in 
UKHKu-) , IjEK commutes with UK' and deletion of IjE K 
does not change the dynamics of the system other than 
to alter the mass, (c) UKHKU;l-IjEK converges strongly 
to a manifestly self-adjoint operator. (a) Prohibits the 
occurrence of the so-called wavefunction renormaliza
tion which would require a change from Fock space to 
another Hilbert space for a mathematical interpreta
tion. 1S The requirement of strong convergence in (a), 
(c), rather than weak convergence, is to prohibit a 
vehicle for nonuniqueness of the limit operator. 16 

In the present model we shall exponentiate V p, a, Kit> 

and Vpa to obtain the dressing operators. We consider 
exp(iV p,a, Klt»(Ho + V 1",0', K( 0) exp(- iVp,a, K(t» and remove 
the cutoffs in the following order: First let t -1-; then 
substract IjE if necessary; finally let p', a' - 1. The 
recipe is carried out in detail in the recoilless and 
Galilean recoil cases while in the relativistic recoil 
case we only prove that the limit operator is symmetric. 

Analysis of UHU-1 is simplified by employing 

Lemma 4: Let A be a self-adjoint operator and let 

D1={XEC~(A)lto~! IIAnxl1 <c.o}-
Let X E D1 and let B be a closed linear operator such 
that 

(adA) (k)(B)x E D1, k =0, 1, ... ,K, 

k>K. 

Then exp(iAh E D(B) and 

exp(- iA)Bexp(iA)x = E (-k~)k (adiA)(k)(B)x. 

Proof: For X E Dt. the series L:'o (1/ n! )(iA)nX con
verges to exp(iA)x. By induction 

B(iArX = t (- 1)k(~)(iA)n-k(adiA)(k)(B)x. 
k=1 

Thus 

N (iA)n 
"£B--X 
n=O n! 

Taking the limit N - 00 and invoking the fact that B is 
closed implies the result. 

We recall that VPo a, K(t)D(HQ) <: D(Iro-1) and VPoa,K(t}J~ 
®H~V) <:J~® H~V) for 1 tl < 1. Thus we may choose A 
= Vp,a,K(t), B = either Hoo or Ho. or Vp'.o'.K(t), and X 
E C~(Ho)nJ~®HiV)<:D1' We will show that the multiple 
commutators vanish for k> 2 under the assumptions (a) 
Galilean recoil or recoilless 1jJ particles and (b) the C" 
obey condition C. 
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In the following calculations all operators will be 
understood to be applied to vectors in C"'(Ho)n]~®H~~), 
liE Z •. 

In Assertion 2 and its corollary (adV"'CI,K(o)(k) 
on V ... ,cr',K<t') is computed, vanishing for k~ 2. Since 
[iV"'CI,K{t),Hoa] = V_1W",D,KW, it follows that (adV"'CI,K(t»(k) 
on (Boa) is also computed and vanishes for k> 2. For the 
recoilless case Ho.=mN~ which commutes with V"'CI,KW' 
For the Galilean recoil case we apply the corollary to 
Lemma 3 to give (ad V'" CI, K( 0) (k) (Ho.) = 0 for k> 2. Col
lecting these results we have Eq. E: 

exp{iV",a, K(t)}(Hoa + Ho~ + VP', 0', K(t) exp{- iV"'D, K(t)} 

=HQa+Ho.+ Vp',a',K(t) + V-1wPrCl,K(t) 

+ti[V",a,K(t), V-1w",a,K(O] +i[V",a,K(t), Vp',a',K(t)] 

+ {V", _lp 2C1 12 .... K(t) - im-I :0:0 tlnlap(~) 
'" n 

xo.(t M(Ppgm C",)Pi )- im-I :0:0 tlnla~(~) 
i-I '" n 

XO.(t M(Pp./*g~*, C~)Pi) - (2mr1 

i-I 

x:0 :0 tln+"'lap(~)ap(gn, ~) 
"', at! II, '" 

XO.(t M([Ppgn] * [ppg".] , C"'C:.)\ 
i-I ~ 

- (2mtI:0 :0 tin "'la~<,g;;:;~.)a~Cg;;~:) 
0:, ex' n, If 

XO.(E M([Ppgn]{* [Ppg",f'*, C~C~»)} 

- (2mrI :0 :0 tln''''I[apCg;;~.)a:(gn, ~) 
"', at' ... n' 

+a~(g ... ",)ap(g;;;;-:.)] 

XO.(~ M([ppgi** [ppg",], c~c",.»)}, 
where the terms in braces { } appear in the Galilean 
recoil case only. (We will treat the relativistic recoil 
case separately later. ) 

The recoilless case 

For this case we may choose a =a' = 1 and p' =iwp to 
simplify the right- hand side of Eq. E which now reads 

and which equals HOa + Ho~ + y(t) + 6E t, where 

y(t) = - O.(Y~2);2), 6E t = - O~(6E~1», 

y~2) =:0 :0 tln+ft'1 (gn, w-21 p' 12g",) 
'" ... n' 

xM(gn, C"')® M(g~*, C~), 
6E~1)=:0 :0 t'n+""'(gn,w-2IP'12g ... )M(gn*i*,c",c~). 

" 11,'" 

To remove the remaining t, p' cutoffs, we follow the 
method of the proof of Assertion 4 first chOOSing p' = pL 
where p~ is a symmetric function in s(mS

) such that 
O';;p~';;1, p~(k)=1 fork<L, p'(k)=Ofork>L+1, and 
then letting L - 00. Thus the dreSSing operator con
verges to a unitary operator since p = - iw-lp~ remains 
inL;(mS

) as L-oo for s=1,2. For s>2, for this choice 
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of recoil, and for this choice of dreSSing operator, 
wavefunction renormalization difficulties arise. 

It remains to remove the t, p' cutoffs from y(t), oE t. 
The analysis of these terms (as well as 110 12 of Asser
tion 4) is simplified by the continuity property of the 
second quartizer: 

Lemma 5: Let {AJ be a family of symmetrized opera
tors on H{n) (see Paper I, Theorem 2). Then {A",} con
verges weakly (resp. strongly, or uniformly) to opera
tor A on H(n) iff O(A",;n) converges weakly (resp. strong
ly, or uniformly on eachH(m), m~ n) to O(A;n) as an 
operator on Fock space. 

Proof: Convergence of the A" implies the convergence 
of the O(A ",; n), since N reduces 0 and on H(m), m'" n, 
n(A",; n) is a finite sum of operators of the form UA", 
® n m-

nu-1, where U is a unitary permutation operator. 
(See Paper I. ) The extra condition for uniform con
vergence is necessitated by Theorem 2f of Paper I. The 
converse follows from O(A;n)H(n) =A. 

Furthermore, the operator y~2) is a special case of 
the following considerations: 

Let W be an operator on L 2(m2s), and let C1 ® C2 be 
the direct product of the two n~ xn~ complex matrices 
Cb C2. Let 1> EH!2). Then 1> =11>/l,yJ~y=1o 1>8, yEL 2(m2S). 
If in addition </>/l,yED(W) for each {3,y, we write "1> 
E D(W). " We define the operator WCI ® C2 by 

(WC1 ® C2¢)8',y'= t Cl8'8C2y'yW¢/l,y 
8, Y=I 

for ¢E D(W). 

Lemma 6: Let fE L 1 (mS), a, a' either'" 1 or G, (j' in 
L I(ms). Let {gJ be the h. o. basis, and let W, be the 
operator defined by D(W,) ={¢ EL 2 (m2s) I f dSp~ 
xIJ(P-q)~(P,q)12<00}and, for ¢ED(W,), (W,¢)(p,q) 
= (2rrtSI2j(p - q)¢(P, q). Furthermore, let 

Then the strong limit of y(2) (t,J, a, a') as t - 1- exists 
on a core for the limit operator, which equals 
2;", Wo'a*'C",® C~ and which is self-adjoint if~, and 
the C'" are real. 

Proof: From the definition of y(2)(t,J, u, a') we obtain 
the bound 

lI y (2)(t,J,a,u')II.;;:0 :0 t'n+n"llfI111Ignll",llgn'll~ '" ... n' 
X II C'" Ij 2 l1a'gn Illllagn' 111, 

which is seen to converge for - 1 < t < 1 by estimates 
similar to those in Assertion 3. Thus D(y(2)(t,J,u, a')) 
=HJ2). 

Since (j'(j*fEL l(m S
), D(W,) =L 2(m2S) so that any dense 

linear set is a core for the limit operator. 

Let ¢ ={¢8y}EH!2). Then 

II y(2)(t,J, a, u')¢ 112 
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x J dSxdSy dSP dSqj(x)f*(Y)¢if.y.(P, q) 

X ¢8,y(P, q)B (x, y, p, q) 

where 

B (x, y,p, q) = 6 tln+n'+n"+n'''lg:(x)gn'(x)gn .. (y)g~(y) 
11, n'. n", nlN 

,.......-...... ."......* ~* ~ 
Xa' g n( P )agn'(q)a'g n"( P )ag n"-(q) 

B(x,p, - it)B(x, q, it)B(y,p, it)B(y, q, - it), 

if a, a' = 1, 

(21T)-2s J dSw dSz dSr dSv cr.' (p - w)a* (q - z) 

* xa'(p - r)a(q - v)B(x, w, - it)B(x, z, it) 

xB(y,r,it)B(y,v,-it), if a',aEL 1 (JRS). 

In either caseB(x,y,p,q) is bounded, and so we may use 
Lebesgue's dominated convergence theorem to take the 
limit t - 1 -, obtaining 

II y(2)(t,/, a, a')rp 112 
- 6. 6 C"'P'sC~PYC~'P'B'C""p,..(21T)-2s 

a,a B,fI,,. 
,..', P, p' 

x J dSP dSq dSx dSy j(x)f*(Y)¢if.,..(P, q)¢8,y(P, q) 

xexp[ - i(x - y)(P - q)l(a'a*)(x)(a'a*)(y) 

= 11.0 Wa'a*fC ",:9 C~rp 112. 
'" 

For a'a*j real-valued and C'" real matrices, self
adjointness follows from the spectral theorem. 

Corollary: The result of the previous lemma also 
holds whenever a'a*j E L 2 (JRS) and a, a',j are viewed as 
limits of a sequence of functions a 1> ai'/j such that 
aj' ai'/j EL 1 (JRS) n L 2 (JRS) (or a =a' = 1). 

Prooj: Since L 1 (JRS) n L 2 (JRS) is dense in L 2 (JRS) , view
ing a'a*j as the above limit is natural. Now for ai' ai,j} 
EL 1 (JRS) or a j ,aj=l, 

y(2)(t,/j' a j , ai) - 6 Wa'.a'i'f C",:9 c~. 
t -1- '" J J J 

Since a'a*jEL 2(JRs), S(JR2s) is a core for Wa'a*f 17 ; we 
choose rp = {rp8,), rp8,y E S(JR2S). Thus 

x ess sup I ¢;.y.(P, q)¢8,y(P, q) I 
pEIRs 

from which convergence follows. 

For the model, we havej= Ip~12W-2_W-2 as L-oo, 
and a = a' = 1. Furthermore, w-2 E L l(JRS) for s = 1 and 
w-2 EL 2(JRs) for s = 1,2,3. We recall that we have ob:
tained y:2) on the domain Coo(Ho)nJ~0H~") which con
tains all of the </J-particle wavefunctions of fast de
crease, a core for the limit operator. 17 
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Computing ~2 (to understand the physics in the Wf 
operator), we obtain 

w-2(x-y)= c2Ko(lJ.lx-yl), s=2, 
___ lCleXP(-IJ.IX-YI), s=l, 

c3Ix-yl-l exp(-lJ.lx-yl), s=3, 

where cj, C2, C3 are positive constants and Ko is the 
modified Bessell function of the second kind. There
fore, the s = 1 and s = 2 cases are the one- and two
dimensional analogs of the Yukawa potential. 

It remains to consider 5E t which is the potentially 
divergent mass renormalization term. In the words of 
Cook2

: "Divergence cannot be properly coped with when 
convergence itself has never been rigorously defined. " 

Lemma 7: LetjEL l(JRs) and a,a'=1 or a,a'EL 1 (JRS). 
Let 

5E(1)(t,/, a, a') =6 6 tln+rtl(gmjgn') 
O! n, n' 

xM«(a'gn) * (agn'f*, C"'C~», 
Then as t -1-, 

5E(1)(t,/, a, a') - (21T)-s J dSxj(x)a'(x)a* (x) 6 C ",c~. 
'" 

Prooj: We have 

115E(1) (t'/, a, a') II 
"" 6 .0 tln+n'1 III 11111gn II 00 Ilgn·11 00 Ila'gn 11111agn' 11111 C'" 11 2

, 
O! n,n' 

which is convergent for - 1 < t < 10 For X =hJEH~1l we 
then have 

115E (1) (t'/, a, a'h 112 
=.0 .0 (C",C~C""C~,)a"B' J dspdSxdSy 

0:',0'.' ~,(!!I 

Xj(X)f*(Y)X}(P)XIl'(P)B2(X, y, p), 

where 82(X,y,P) =B(x,y,p,p). Thus B2(X,y,P) is bound
ed, so that we may apply the dominated convergence 
theorem to obtain 

115E (1) (t'/, a, a'lx II 
- II (21Tts I dSxj(x)a'(x)a*(x)6 c",C~X II, 

t -1- '" 

and the lemma follows. 

Corollary: If {lj}, {a J, {aj} are sequences in L 1 (JRS) 
such that jpjaj - g in L 1 (JRS) norm, then as t - 1- fol
lowed by j- 00, 

5E(1)(t'/j, a j , ai) - (21TtS J dSxg(x)1,f C",C~. 

For the recoilless model we have a=l, andlL 

= w-2 1 p~ 12 which remains in L 1 (R S
) as L - <X) for s = 1 only. 

Since I w-2(k) dk = 1TIJ. -1, we have for s = 1, 6E:1) 
- (1T/2)1/2IJ.-1L;", C"'C: which operates only on the spin/ 
charge variables. Also since C ",a"s(C:)/l8' corresponds to 

the diagram 1'" ~ J 
(jr ~ff 

which does not physically occur unless f3' = f3", C"'C: is 
diagonal, and 5E(1) is a finite mass renormalization 
with values possibly depending on the spin/charge state. 
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BE may be analyzed further in the usual language of the 
SU(n) analysis of particle physics. 18 

To treat the case s = 2, we observe that, by Lemma 2, 
BEt commutes with the dressing operator. We then 
perform a "mass renormalization"; i. e., we simply 
subtract BE t and take the strong limit 

lim lim exp(iVp 1 K(t}){Ho + VI"I K(t) - BEt) 
L.!lO t~1- Lt • L' , 

xexp(- iVPL,I,K<tl) =HOa +Ho~ - P.I/>(Li Ww·2C,,0 C~; 2) 

on C~(Ho) nJ~0 H~V) n D(Ww.2). Since Ko(x) is singular 
only at x = 0 (where "it dive~s like -In Ix I), it is in 
L 2(rns). Alternatively Ko = w· E L 2 (rn2) since w·2 E L 2(rn2). 
It followS 17 that finite linear combinations of the h. o. 
basis form a core for the self-adjoint operator HOa +Ho~ 
- P.~O~" Ww·2C,,0 C,,;2) since that set is a subset of 
C~(Ho) nJ~0 HJV) n D(Ww·2), liE Z+. Self-adjointness in 
the case s = 1 is less difficult since the mass renormal
ization term as well as the Yukawa interaction term are 
bounded in each H ~V), II E Z+, so that no subtraction of 
the mass renormalization term is needed. 

We summarize these results in 

Assertion 6: For this model with the recoilless ap
proximation on the if! particles and s = 1, all cutoffs may 
be removed from the Hamiltonian in the strong topology. 
For s = 2 the cutoffs may be removed after a well-de
fined mass-renormalization subtraction. In both cases 
the dressing operator converges to a unitary operator 
and the Hamiltonian to a self-adjoint operator. 

We remark that the domains of the resulting Hamil
tonians include the image of a subset ofJ~0HiV) under 
the unitary dressing operator. For the case s=1, PL 
- 1 we see from term 11 in Assertion 4 that the domain 
of V does not intersect J ~0 H~v). Thus the domain of 
the Hamiltonian without cutoffs (or finite mass renor
malization), as an operator Ho + V, consists entirely of 
vectors with an infinite number of a particles, and can
not be characterized by its effect on finite numbers of 
particles. Nonetheless, we have not left Fock space, 
contrary to a common myth. 

The Galilean recoil case 

Again we choose p, a so as to obtain the greatest sim
plification of Eq. E. We have Vp', a', K<tl + V.1wp,a, K<tl 
+ V",-i p 2a/2m,K(t) which by Assertion 4 converges as 
t -1- to VI" ,+ V . + V~ = V· subJ' ect to f1 -lWpa -s €-m)pa P'a'-l (w+e-m)pa 

the requirements a,a', aEL 1 (lRS) (or equal to 1) and 
, 2 ( , 

P ,wp,PELa lR S
). We choose a'ooaooaLES(lRS) such that 

o ~ a L ~ 1, a L (k) = 0 for I k I > L + 1, a L (k) = 1 for I k I < L 
L fixed. Then p 2a E 5 (lR S

) so that all conditions on a a; 
are met. We choose p' = PI =a l for some 1 chosen inde
pendently of L. We choose p = PI such that p' - i(w +E 

- m)p = O. Taking the limits 1- co, L - co will remove the 
remaining cutoffs from the interaction. Since p - - i(w 

-1 2 S ' I-~ 
+ E - m) E La(lR ) for s = 1,2,3,4, we may apply Asser-
tions 2(c), 4, and a minor generalization of Assertion 5 
to obtain a unitary dreSSing operator in the limit 1 - co 

L - 00. We conclude that this recoil case is free of ' 
wavefunction renormalization difficulties for s = 1,2,3,4. 

USing Assertion 2(b) and Lemmas 5,6,7, we see that 
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i2-1[Vp,CJ,K(t), V_iw",,,,K(t)] +i[V",,,,K(t), VP'.~ K(t)] converges 
as t-1- to - P.*(Wf 2:" C,,0 C~;2) - (21Tts ;t f f(k) dSk 

xP.~(2:" C"C~), where f=fl.L = - (w + 2E- 2m){w +E- mt2 

xw-llaLI2IPI12. Since lim"L_ .. fl,L is inL 1 (lRS) for 
s=1,2, and inL2(]RS) for s~5, Lemmas 6,7 imply that 
(a) for s = 1, 2 the mass renormalization is finite and W, 
is a bounded operator and (b) for s ~ 5, P. ~ (W, 2:" C" ° C~;2) is self-adjoint. 

The remaining terms in Eq. E are different in form 
from any previously considered, so that we return to a 
direct calculation of them by methods similar to those 
used in Assertion 4. As before, we start with a vector 
X EH~~)0 H~v). Here, however, we only obtain conver
gence for X E D(HU2

) as we take the limits t -1-, 1, L 
- 00. A further necessary condition for convergence 
turns out to be PpEL~(lRS), which only occurs for s 
= 1,2, and under these conditions we obtain bounds on 
the limit operators of the form of a linear combination 
of IIHU2xlI, IIN!/2HU 2xlI, and II Naxll (all of which may be 
overestimated by II Hoxll ). The coefficients of these 
terms all contain a factor of either II C "II or 2: I C "M,I so 
that for sufficiently small coupling constants these 
terms comprise a Kato perturbation12 of Ho. Since for 
s = 1, 2, the Wf operator is a bounded operator and the 
mass renormalization is finite, we conclude that the 
limit dressed Hamiltonian is self-adjoint. Since the 
dressing operator is also unitary for s = 1,2, we then 
conclude that 

Assertion 7: For this model, with Galilean recoil on 
the if! particles and s = 1, 2, all cutoffs may be removed 
from the Hamiltonian as strong limits and without mass 
renormalization. The dreSSing operator converges to a 
unitary operator and the Hamiltonian to a self-adjoint 
operator for II CII small. 

The failure of the method for the case s = 3 may be 
overcome by allowing convergence in the weak topology 
as the cutoffs are removed. This has been accomplished 
by Nelson6 using a slightly different dressing operator, 
arising as follows: If, in the first paragraph of this 
section, we had chosen P' - i(w + E - m)p = 1;; for 1;; E L ;(rnS

) 

rather than = 0, then by Assertion 4 we still obtain a 
unitary dreSSing operator. (Nelson6 takes 1;; to be the 
characteristic function for a ball of radius K in mo
mentum space, whereas Gross19 chooses 1;; = O. ) Now, in 
the limit 1- 00, P = i(w +E - mt1(1;; - 1) so that the asymp
totic behavior of P is unchanged by inclusion of 1;;. Thus 
none of the singularities throughout the analysis are 
altered. 

Since the dressing operator, the dressed Hamiltonian, 
the mass renormalization, etc., all depend on 1;;, we 
cannot justify attaching any physical interpretation to 
the dressed objects. This is doubly true since there is 
no physical justification for the form of the dressing 
transformation either. It follows that arguments for 
choosing the mass renormalization "so that the result
ing one-dressed-particle spectrum is correct" are to 
be avoided. These arguments do not furnish sufficient 
information to fix 1;; anyway, since they only determine 
f f(k) dSk and not f in the mass renormalization term. ill 
fact even f f(k) dSk is determined from an argument 
based on mass splittings of the dressed particles and is 
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not determined from a single dressed mass, since the 
bare mass is unknown. f would better be determined by 
measuring the Yukawa type interaction (which is beyond 
present experimental capabilities). Rather than expand
ing on this argument, we turn to the relativistic recoil 
case. 

The relativistic recoil case 

In the previous cases the dressed Hamiltonian con
sisted of a finite number of terms each of which was 
susceptible to complete analysis. Furthermore, the 
fact that there were a finite number of terms was a 
reflection of the form of ho~ (e. g., Lemma 3 and Corol
lary 1). If we choose the relativistic form for ho~, then 
this termination of the series for the dressed Hamilton
ian no longer occurs and we are faced with the problem 
of "resumming the Born series," or of finding alterna
tive methods. 7,20 We present here a method which is 
perhaps a new approach and encouragingly simple. 

Let us initially consider Q to be any function of mo
mentum for which termination of the series for the 
dressed Hamiltonian occurs. Then consider ho~ - Q as a 
perturbation of the resulting (self-adjoint) operator. 
For example, take Q to be Pc = Lt.l P t , the sum of the 
momentum operators. Then Lemma 3 implies 
[M(h, C), [pc, M(g, Cl)]]~ = 0 if [c, Cd = 0 and similarly 
for the second-quantized forms. Now using n~(Pc) for 
Ho~ in the left-hand side of Eq. E, the right-hand side 
becomes 

Ho. + n~(Pc) + Vp', 0', K(t) + V_t"'Pta,K(t) + V Pt -IPca, K(t) 

+ i[ V Pt a, K( t), VII', 0', K(t)] + ~ i[V Pt a, K(th V_I",Pt a, K<t>] 

+ ~i[V Pta, K(th Vp,-IPCa,K(t)]. 

Thus we may choose a =a' =aL as before, p' =a l as be
fore, and p such that p'a' - iwpa - ipPca = 0; i. e., p 
=-i(w+Pc)-lp', which is inL~(JRS) for s=1,2 in the 
limit l- "". We therefore obtain a unitary dressing 
transformation, in the limit as all cutoffs are removed, 
for s = 1,2. The commutations, by applying Lemmas 
6,7, yield a Yukawa type term and a mass 
renormalization: 

- n~ (W,~ C,,0 C~;2) _(21Tts /
2 J f(k)dSk n~(L2 c"c~), 

where now 

f(k) = ~W(ktl w(k) + 6 k; • 
( 

S )_1 
1=1 

Since f EO L 1 (JRS) for s = 1 and f EO L 2 (JRS) for s = 1, 2, 3, we 
obtain (a) finite mass renormalization and W, a bounded 
operator for s = 1, (b) self-adjoint Yukawa-type inter
action for s = 1,2,3. Furthermore, from Paper I, The
orem 2c, we have 

n~(Pc0 n;2) iH(n+m) =mn,,(Pd iH(n+m)' 

However, 

(1/2m)(Pc0 n +n0 Pc) - W,6 C,,0 C~ 
" 

is self-adjoint by a standard classical argument. Thus 
n~(Pd +Ho. + V(- 6E) is self-adjoint for s = 1,2 with 
domain ooD(Ho), since D(Ho~) =D(n~(Pc)}. (The dressed 
form of this is even self-adjoint for s = 3. ) Thus (after 
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subtraction of a mass renormalization for s > 1) 

Ho" +Ho. + V(- 6E) = [Ho" - n~(Pc)] 

+ [n.(Pc) +Ho. + V(- 6E)] 

is a symmetric operator defined on D(Ho). We sum
marize in 

Assertion 8: For the model, with relativistic recoil 
on the 1/J particles and s = 1, all cutoffs may be removed 
from the Hamiltonian in the strong topology. For s = 2, 
the cutoffs may be removed strongly after a mass re- ' 
normalization. For s = 3 the present dressing operator 
causes wavefunction renormalization problems. 

We may now compare the results of Assertions 6, 7, 
and 8 to emphasize that the singularities of the model 
depend on the choice of recoil, as has been previously 
noted in other models. 21 The behavior in the recoilless 
and relativistic recoil cases is the same but different 
from the Galilean recoil case, the differences arising 
from the contribution to the form of p in the dressing 
operator. [p - (w + Et

1 so that until E is of order higher 
than linear in momentum, p - w-1• ] For s = 1 all three 
recoil cases are well behaved. For s = 2 mass renor
malization is required in the recoilless and relativistic 
recoil cases. For s = 3 mass and wavefunction renormal
ization appears in the recoilless and relativistic recoil 
cases. For s = 3, 4 the Galilean dressing operator is 
unitary, but weak convergence may be necessary to 
make sense of the dressed Hamiltonian even after mass 
renormalization. For s = 5, weak convergence and mass 
and wavefunction renormalization may suffice to make 
sense of the Galilean case. 

V. CONCLUSION 

In Papers I, II, and this paper we have shown that it 
is feasible to analyze models of quantum field theory 
without introducing operator-valued distributions. The 
methods developed provided enough simplification so 
that we could complicate a model by the inclusion of spin 
and charge, obtain self-adjointness, and discuss some 
of the physics in the model in a relatively few pages of 
analysis. At the same time, we have seen at what point 
we may as well turn to a distribution approach (as in 
the Galilean case for s = 3) and use weak convergence. 

The asymptotic and interpolating fields for the model 
may be treated in this formalism by extending the re
sults previously obtained in the spinless, chargeless 
case. 22 Since no further development of the formalism 
is required for such analysis, we will not discuss it 
here. The formalism is, therefore, sufficiently devel
oped to be considered a viable alternative to the usual 
formalism of operator-valued distributions. 
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Change of Petrov type under generation of solutions of 
Einstein's equations 

G. E. Sneddon 

Department of Mathematics. Monash University. Clayton. Vic 3168. Australia 
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A method given by Geroch [I. Math. Phys. 12, 918 (1971)] for generating new solutions of the 
vacuum gravitational field equations from known solutions is investigated in order to find out how 
the Petrov type of the new metric will be related to that of the old metric. Conditions are found 
under which algebraically special metrics will generate algebraically special metrics. It is shown how 
the Petrov type of these metrics will change under the generation method of Geroch. 

1. INTRODUCTION 

Various authors have discussed methods of generating 
new solutions of Einstein's equations from known solu
tions. In particular, Buchdahl,' Ehlers, 2 Harrison, 3 and 
Geroch4 have shown how to obtain new stationary vacu
um solutions from known stationary vacuum solutions. 
Their method has been extended to solutions of the 
Einstein-Maxwell equations. 5 Also ways of generating 
solutions of the vacuum Brans-Dicke equations have 
been found by Buchdahl, 6.7 McIntosh, B and Sneddon and 
McIntosh. " 

It is known3
,4 that if the method of generation dis

cussed by Geroch4 is applied to the Schwarz schild solu
tion, the result is the NUT metric. 10 This is an example 
where a metric whose Weyl tensor is of Petrov type D 
generates a family of type D metrics. In this note, this 
method is investigated more fully in order to discover 
in general how the Petrov type of the new metric will be 
related to the Petrov type of the old metric. In Sec. 2 
some results due to Perjes ll on a spinor treatment of 
stationary space-time metrics are summarised. In 
Sec. 3 Perj€~s' results are used to find conditions under 
which an algebraically special metric will generate 
algebraically special metrics. Section 4 describes in 
detail how the Petrov type of metrics may change under 
the generation of new solutions. 

2. STATIONARY SPACE-TIME METRICS 

Perjes" has given a spinor treatment of stationary 
space-time metrics. The necessary results may be 
summarised as follows. The line element of a stationary 
space -time can be written as 

where i, j run from 1-3 andf, WI' and gij are time 
independent. Einstein's vacuum field equations imply 
that the rhs of 

(1) 

(2) 

is curl-free and hence there exists, at least locally, a 
function 1> such that 1> I = 1> , i' Following the notation of 
Ernst, 12 the "potential" [ is defined as 

8 =f+i1>. 

The metric Kij of the 3-space can be described by a 
triad 

(3) 

(4) 

(m = 0, +, -) where li is real, m I is the complex con
jugate of mi, ZiZI=m;'ini=1 and llml=mimi=O. Then 
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This triad can be used to define a null tetrad for the 
metric (1). One possibility is 

7" =[r' -ljwi , zil, 

in" = I'l 2[ _ (miwi ), mil, 

1 -
n"=-2Il"+a", 

where jJ. runs from 0-3, t =xo, and a" = 06' 

(5) 

(6) 

As in the null tetrad formalism of Newman and 
Penrose'3 Greek symbols are used to denote linear com
binations of the Ricci notation coefficients 

(7) 

In particular, if the congruence to which li is the tangent 
vector is geodesic, K = Y.oo is zero and I a I = I Y.o+ I is 
the shear of the congruence. The components of the con
formal Weyl tensor for the tetrad (6) are 

>¥ 0= 2[ BG. - aGo + 'TG. + (2G. + G J G.), 

>¥4 =U2 [6G_ - aGo + TG_ +(2G_ +cJGJ, 

where Gm=zmI8.i(2/f\ 0m=zm iOI , andD=oo, 0=0., 
0=0_. 

In this formalism the method referred to in Sec. 1 for 
generating new vacuum solutions from known vacuum 
solutions can be stated thus: 

If (8, zml
) is a solution of the vacuum field equations, 

then (&', zmi
) is also a solution if 

&. = {& [exp(2iil') + 1] + [exp(2iil') - 1 ]}/{8 [exp(2iil') - 1] 

+lexp(2iil') +1]} 

where il' is a real constant. 

3. GENERATION OF ALGEBRAICALLY SPECIAL 
METRICS 

(9) 

In order to investigate how the Petrov type of a met
ric will change under this generation it is convenient to 
consider how various quantities will change when the 
parameter il' is small. Then conditions can be found 
under which a stationary metric will be algebraically 
special and any metric generated from it will also be 
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II 0 

ill 
/t t 

ill N_O 

(a) (b) 

FIG. 1 (a) Metrics without a GSE will generate families of type I 
metrics under (9). (h) Metrics with a GSE may change Petrov 
type under (9) but will remain algebraically special. 

algebraically special. For small a the new Weyl com
ponents are 

>¥~'" >¥o(1 -2iaj) +2iaj(- 6G.2
), 

r 1
/

2 >¥ ~ "" r 1 /2>¥ 1(1 - 2iaj) + 2iaj(3G .Go), 

r 1 >¥~ '" r 1 >¥2(1 - 2iaj) + 2iaj( G .G_ - G0
2), (10) 

r3/2>¥~"", r 3/ 2>¥3(1 -2iaj) +2iaj(-iGoGJ, 

r2>¥~ '" r 2>¥4(1 - 2iaj) +2iaj(-iG_2). 

The condition for the metric (1) to be algebraically 
special is that the polynomial 

>¥o +4b>¥1 +6b2>¥2 +4b3>¥3 +b4 >¥4 (11) 

has two coincident roots. This condition will be pre
served (to order a) in the new metric if and only if the 
double root is also a root of 

(fl/2G_b +Go +(G02 +2G.GJl/2) 

x (fl/2G_b + Go - (Go 2 +2G.Gy/2). (12) 

At this stage it is convenient to use some of the avail
able triad freedom by choosing I i to be an eigenray. 11 

Zi then satisfies 

(13) 

(Le., G.=O). In this triad the roots of (12) are 

(14) 

In general there will be two solutions of (13). This free
dom enables I i to be chosen so that G. = ° and the root 
of (12) corresponding to the double root of (11) is b=Oo 

These conditions imply that there exists a triad in 
which G. = ° and >¥ 1 = >¥2 = 0. Hence from (8) (JGo = KGo 
= 0. If either (J or K is nonzero, then G + = Go = ° and the 
field equations imply that G _ = ° (L e., 8 = const), and 
the space-time is flat. Therefore, a necessary condi
tion that the metric (1) and any metric generated from 
it by (9) be algebraically special is that (1) possess a 
geodesic, shear-free eigenray (GSE). The converse can 
easily be shown to be true, namely if the metric (1) has 
a GSE then it is algebraically special. Thus for station
ary metrics it is only necessary to look at first order 
terms (in a) to decide if a metric will remain algebrai
cally special under (9). 
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4. CHANGE OF PETROV TYPE 

It is clear from the previous section that stationary 
metrics which do not possess a GSE will generate a 
family of algebraically general metrics under (9) [see 
Fig. l(a)]. (Flat space-time metrics will always 
possess a GSE). 

Suppose now that the metric (1) has a GSE and choose 
Ii to be this eigenray. The formulae (10) can now be used 
to show how the Petrov type will change under (9). Again 
it turns out that it is sufficient to consider terms of 
first order (in a). The results are displayed in Fig. l(b) 
where the arrows indicate the possible changes of 
Petrov type. 

It is important to realize that these changes depend 
not only on the metric itself, but also on the choice of 
Killing vector. As an example, a metric generated from 
flat space-time (which is type 0) can be type 0 (if the 
Killing vector is chosen so that 8 = const) type N (if Go 
=0, G_*O) or type D (if Go*O). Thus metrics generated 
from 

ds 2 =d12 _dx2 _dy2 _dz 2 (15) 

with Killing vector ~"= 06 will be flat (type 0), but if the 
Killing vector chosen is ~"=(x,t,O,O) a family of type 
D metrics results. (These metrics are actually a family 
of metrics found in Ref. 10 with the parameter J.l.Q = 0). 

Metrics generated from a metric of Petrov type N can 
be type II (Go*O) or type N(Go=O). Also, for certain 
values of exp(2ia) metrics in this latter class may be 
type O. (This is to be expected since some type N met
rics can be generated from flat space). There can be 
at most a finite number of values of exp(2ia) for which 
this will be true. Thus in general a type N metric will 
generate type N or type II metrics. 

Type III metrics will generate type III metrics if Go 
= 0 or type II metrics otherwise. 

In general type II metrics will generate type II met
rics. However, in analogy with the type N metrics there 
may be certain type II metrics which [for specific values 
of exp(2ia») will become type N, or type III. 

The condition for a metric with a GSE to be type D is 

(16) 

An argument similar to that used in Sec. 3 can be used 
to show that this condition will be preserved if and only 
if 

r
3

/
2 

>¥3G_ = r 2 >¥ 4 GO 

or, equivalently, 

3r1 >¥ 2G _ = 2r3
/ 2 >¥ 3GO. 

(17) 

(18) 

However, it can be shown14 that Eqs. (17) and (18) will 
always be satisfied for type D metrics, and so all type 
D metrics with a GSE will generate a family of type D 
metrics under (9). 

5. CONCLUSION 

Metrics with a GSE will generate algebraically spe
cial metrics under the generation (9), and it has been 
shown how the Petrov type of these metrics will change 
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in general. All other stationary metrics will generate 
type I metrics. 
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